JPH0374051A - Polymer secondary battery - Google Patents

Polymer secondary battery

Info

Publication number
JPH0374051A
JPH0374051A JP1207913A JP20791389A JPH0374051A JP H0374051 A JPH0374051 A JP H0374051A JP 1207913 A JP1207913 A JP 1207913A JP 20791389 A JP20791389 A JP 20791389A JP H0374051 A JPH0374051 A JP H0374051A
Authority
JP
Japan
Prior art keywords
polypyrrole
electrode
secondary battery
laser
polymer secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1207913A
Other languages
Japanese (ja)
Inventor
Hisashi Jo
尚志 城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP1207913A priority Critical patent/JPH0374051A/en
Publication of JPH0374051A publication Critical patent/JPH0374051A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain polypyrrole having output performance by specifying the ratio of the maximum peak intensities in the highest wavenumber region of peak intensity in Raman spectrum obtained by irradiating argon ion laser as an excitation beam source onto the cross section of polypyrrole on an electrode. CONSTITUTION:In the cross section of polypyrrole, which is a positive active material, accumulated on an electrode, the R value defined by the ratio of the spectrum maximum intensity in the wavenumber region of 1580+ or -20cm<-1> obtained by vertical incidence of the laser polarization plane to a surface of the electrode and the spectrum maximum intensity in the wavenumber region of 1850+ or -20cm<-1> obtained by parallel incidence of the laser polarization plane to the surface of the electrode in the resonance Raman spectrum analysis by use of argon laser beam is specified to 1.2 or more. High R value shows that vertical orientation of polypyrrole chains is higher than parallel orientation of them. Polypyrrole having high capacity in high constant-current discharge and high output can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は正極に電解酸化重合法で製造したポリピロール
を用いることを特徴とした二次電池に間するものである
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a secondary battery characterized by using polypyrrole produced by an electrolytic oxidation polymerization method as a positive electrode.

〈従来の技術〉 近年、電池の軽量化を目的として、ポリアセチレン、ポ
リアニリン、ポリピロール、ポリチオフェンなどの導電
性高分子物質を電極活物質として使用する二茨電池につ
いて種々検討されている。
<Prior Art> In recent years, with the aim of reducing the weight of batteries, various studies have been conducted on two-thorn batteries that use conductive polymer materials such as polyacetylene, polyaniline, polypyrrole, and polythiophene as electrode active materials.

しかしながら、これら従来の導電性高分子を電極活物質
として用いた二次電池は、下記に示す様な問題点を有し
ている。
However, secondary batteries using these conventional conductive polymers as electrode active materials have the following problems.

ず々わち、高定電流放電時の容量が小さく、高出力を得
にくいという事である、従来のポリマー二次電池である
ポリアニリンはメモリーバックアップ相等小出力で長時
間使用する用途はよいが、進展の著しい、高出力を要す
る携帯用の電子機器の用途に対しては、不充分な性能し
か有していない、この様な分野に対して電池としては軽
量にして高出力特性を発揮するものが必要とされている
The conventional polymer secondary battery, polyaniline, has a small capacity during high constant current discharge and is difficult to obtain high output. Although it is good for long-term use with a low output comparable to memory backup batteries, A battery that is lightweight and exhibits high output characteristics for use in portable electronic devices that are rapidly progressing and require high output, but has insufficient performance. is needed.

〈発明の目的〉 本発明はかかる現状に鑑みなされたもので、優れた出力
特性を発揮するポリピロールを正極に用いた二次電池を
得る事を目的とするものである。
<Objective of the Invention> The present invention was made in view of the current situation, and an object of the present invention is to obtain a secondary battery using polypyrrole as a positive electrode, which exhibits excellent output characteristics.

〈発明の構成・作用〉 本発明は、正極活物質である、電極上に積層堆積してい
るポリピロールの断面において、R値が1.2以上であ
るポリピロールを用いたポリマー二次電池である、そし
てまたピロールを重合温度0℃以下で電解酸化重合する
事により得られるポリピロールを用いたポリマー二次電
池である、以下、本発明の具体的な内容について詳細に
説明する。
<Structure and operation of the invention> The present invention is a polymer secondary battery using polypyrrole, which is a positive electrode active material and has an R value of 1.2 or more in the cross section of the polypyrrole stacked and deposited on the electrode. The present invention, which is a polymer secondary battery using polypyrrole obtained by electrolytic oxidative polymerization of pyrrole at a polymerization temperature of 0° C. or lower, will be described in detail below.

先ず、R値については、1.2以上、好ましくは1.3
以上、更に好ましくは1.4以上である。
First, the R value is 1.2 or more, preferably 1.3.
above, more preferably 1.4 or above.

ここでR値とは電極上に重合堆積したポリピロールの断
面の配向性評価の一つの指標である。すなわちこれは、
共鳴ラマンスペクトル法による、アルゴンイオンレーザ
−(波長488m>を励起光源として、電極上に積層堆
積したポリピロールの断面に照射し、得られたラマンス
ペクトルにおけるピーク強度の一番高い1580±20
34での最大ピーク強度を比較する事により行われる。
Here, the R value is one index for evaluating the orientation of the cross section of polypyrrole polymerized and deposited on the electrode. In other words, this is
By resonance Raman spectroscopy, an argon ion laser (wavelength 488 m>) was used as an excitation light source to irradiate a cross section of polypyrrole stacked on an electrode, and the highest peak intensity in the obtained Raman spectrum was 1580 ± 20.
This is done by comparing the maximum peak intensities at 34.

このRは R=(レーザーの偏光面を電極面に対し垂直方向に入射
して得られた1580±20(!114の波数域のスペ
クトルの最大ピーク強度)/(レーザーの偏光面を電極
面に対し平行方向に入射して得られた1580±203
4の波数域のスペクトルの最大ピーク強度) で定義されるものである。
This R is R = (1580±20 (maximum peak intensity of spectrum in the wave number range of !114 obtained when the polarization plane of the laser is incident perpendicular to the electrode surface) / (the maximum peak intensity of the spectrum in the wave number range of !114) On the other hand, 1580±203 obtained by incident in parallel direction
The maximum peak intensity of the spectrum in the wave number range of 4) is defined as:

ここで電極面とは、現実にポリピロールが堆積している
面のことであり、平板状電極においてはその平板面を意
味し、メツシュ状あるいはスポンジ状等の電極において
は、そのメツシュあるいはスポンジ状電極を構成してい
る線状電極物体や多孔状電極物体の面を意味する。従っ
てこの場合上記Rの測定は電極の微小部分を切り取って
測定する。
Here, the electrode surface refers to the surface on which polypyrrole is actually deposited, and in the case of a flat electrode, it means the flat surface, and in the case of a mesh-like or sponge-like electrode, it means the mesh or sponge-like electrode. means the surface of the linear electrode object or porous electrode object that constitutes the electrode object. Therefore, in this case, the above-mentioned R is measured by cutting out a minute portion of the electrode.

この配向性評価の場合、R値が高い方が、低いものより
配向性が高いという事になる。言い換えるとこの値が高
い方が、電極面に対し、その垂直方向にポリピロール鎖
の配向が平行方向より高いという事を意味している。 
 < H,Yalaura、T、HaQiWara。
In the case of this evaluation of orientation, the higher the R value, the higher the orientation than the lower R value. In other words, a higher value means that the orientation of the polypyrrole chains is higher in the direction perpendicular to the electrode surface than in the parallel direction.
<H, Yalaura, T, HaQiWara.

H0旧rasaka and K、IWata: 5y
nthetic Metals、 28゜C157(1
989)) 。
H0 old rasaka and K, IWata: 5y
nthetic Metals, 28°C157 (1
989)).

この値が高い程、高定電流での放電容量が大きいという
事は、ポリマー分子鎖が電極に対し垂直方向に配向して
いる事が電解質アニオンのポリマー中の拡散と関係して
いるからと思われる。
The higher this value, the greater the discharge capacity at a high constant current, which is thought to be due to the fact that the polymer molecular chains are oriented perpendicularly to the electrode, which is related to the diffusion of electrolyte anions into the polymer. It will be done.

次に本発明のポリピロールフィルムはビロールおよび/
またはその誘導体を必要に応じて水を含む有機溶剤を溶
媒として、電解質存在下に定電位電解酸化重合すること
により陽極板上に析出させることにより得られる。(^
、F、Diaz、andに、に。
Next, the polypyrrole film of the present invention contains virol and/or
Alternatively, a derivative thereof can be deposited on an anode plate by constant potential electrolytic oxidation polymerization in the presence of an electrolyte, using an organic solvent containing water as a solvent, if necessary. (^
,F,Diaz,and,to,to.

にanazawa ; J、C,S、Chei、Co1
m、 、 1979.635)この方法によると反応系
に共存する陰イオンがビーパントとして取り込まれるた
め、新たに電子受容性化合物をドーピングしなくても高
い導電性を発現する。
ni anazawa; J, C, S, Chei, Co1
1979.635) According to this method, anions coexisting in the reaction system are taken in as bepants, so high conductivity can be achieved without doping with an electron-accepting compound.

本発明において用いられるビロールおよびその誘導体は
、純度の高いものが好ましく、使用前蒸留精製して用い
るのが望ましい、ビロールの誘導体としては、ピロール
環のN位の置換体、ピロール環のβ位のモノ置換体、β
、γ位2置換体等が用いられ、具体的な例としてはピロ
ール、N−メチルピロール、N−エチルピロールなどの
N−アルキルピロール、N−7エニルピロール、3−メ
チルピロールなどの3−アルキルピロール、3.4−ジ
メチルビロールなどの3,4−ジアルキルビロールなど
が挙げられる。
The virole and its derivatives used in the present invention preferably have high purity, and are preferably purified by distillation before use. Examples of virole derivatives include substituents at the N-position of the pyrrole ring, and substituents at the β-position of the pyrrole ring. monosubstituted, β
, γ-position disubstituted products, etc. are used, and specific examples include pyrrole, N-alkylpyrrole such as N-methylpyrrole, N-ethylpyrrole, 3-alkylpyrrole such as N-7enylpyrrole, and 3-methylpyrrole. Examples include pyrrole and 3,4-dialkylvirol such as 3,4-dimethylvirol.

ピロールまたはその誘導体は溶媒に対して0.0001
モル/リットル(M)へIM、好ましくは、0.001
 M〜0.5 Mで用いられて重合が行なわれる。
Pyrrole or its derivatives are 0.0001 to the solvent
IM to moles/liter (M), preferably 0.001
Polymerization is carried out using M to 0.5 M.

電解質としては、無機、有機の酸のテトラアルキルアン
モニウム塩、無機、有機の酸のアルカリ金属塩などが挙
げられる。具体的には、過塩素酸テトラエチルアンモニ
ウム、ホウフッ化テトラエチルアンモニウム、テトラメ
チルアンモニウムへキサフルオロホスフェート、テトラ
メチルアンモニウムへキサフルオロアルセネート、テト
ラブチルアンモニウムスルホネート、テトラエチルアン
モニウムトリフルオロメチルスルホネート、リチウムト
リフルオロメチルスルホネート、過塩素酸リチウム、な
どの塩が挙げられるが、この限りでない。
Examples of the electrolyte include tetraalkylammonium salts of inorganic and organic acids, alkali metal salts of inorganic and organic acids, and the like. Specifically, tetraethylammonium perchlorate, tetraethylammonium borofluoride, tetramethylammonium hexafluorophosphate, tetramethylammonium hexafluoroarsenate, tetrabutylammonium sulfonate, tetraethylammonium trifluoromethylsulfonate, lithium trifluoromethylsulfonate. Examples include, but are not limited to, salts such as , lithium perchlorate, and the like.

電解質は溶媒に対してO,OOOIM〜IM、好ましく
は、0.001 M−、−0,5Mが用いられる。
The electrolyte used is O, OOOIM to IM, preferably 0.001 M to -0.5 M relative to the solvent.

重合溶媒である有機溶媒としては、アセトニトリル、ベ
ンゾニトリル、ニトロベンゼン、テトラヒドロ7ラン、
ニトロメタン、プロピレンカーボネート、エチレンカー
ボネート、スルホラン、ジメトキシエタン等の前記電解
質を溶解し易いものが好ましいが、必ずしもこれに限定
されない。
Examples of organic solvents that are polymerization solvents include acetonitrile, benzonitrile, nitrobenzene, tetrahydro-7rane,
Preferred are those that can easily dissolve the electrolyte, such as nitromethane, propylene carbonate, ethylene carbonate, sulfolane, and dimethoxyethane, but are not necessarily limited thereto.

所望により使用される水の役割は電解質の効果を上げ、
ポリピロールの析出する形態を良好にするものである。
The role of water used as required is to increase the effectiveness of electrolytes,
This improves the form in which polypyrrole is precipitated.

この使用量は使用する電解質の種類により興なり、電解
質溶液中での水の濃度は0.1Mから5M、好ましくは
0.3 Mから3Mである。
The amount used depends on the type of electrolyte used, and the concentration of water in the electrolyte solution is from 0.1M to 5M, preferably from 0.3M to 3M.

反応に用いられる陽極材料は該電極反応において欠損、
変質の伴わないものであれば汎用のもので良く、特に限
定されるものではないが、白金、金、銅、ニッケル等の
金属、またはこれらに類した導電性材料や炭素電極等が
用いられる。また、陰極の電極面積は陽極のそれよりも
大きい方が一般的に生成するポリピロールの析出の状態
が良好である。陰極の陽極表面積に対する比率は1.1
倍以上が用いられるが、好ましくは1.5倍以上、更に
好ましくは21以上、特に好ましくは3倍以上である。
The anode material used in the reaction is deficient in the electrode reaction,
Any general-purpose material may be used as long as it does not undergo deterioration, and metals such as platinum, gold, copper, and nickel, or similar conductive materials, carbon electrodes, and the like may be used, but are not particularly limited. In addition, when the electrode area of the cathode is larger than that of the anode, the state of precipitation of polypyrrole that is generally produced is better. The ratio of cathode to anode surface area is 1.1
It is preferably 1.5 times or more, more preferably 21 times or more, particularly preferably 3 times or more.

電解電位は、銀/塩化銀(Ag/AgCf )参照電極
に対して、0.7ボルト以上が用いられる。
The electrolytic potential used is 0.7 volts or more with respect to a silver/silver chloride (Ag/AgCf 2 ) reference electrode.

好適には0.8〜1.2ボルトが、特に好ましくは0.
9〜1.1ボルト用いられる。電解電位を0℃以下の低
温で抑制するためにはKCI /寒天塩橋などが用いら
れる。電解電位を制御できればいずれの方法を用いても
よい、電解電流は陽極での電流密度としては、0.01
m^/−〜10園^/−1好ましくは0.05mA/a
l〜51A/dである。
Preferably 0.8 to 1.2 volts, particularly preferably 0.8 to 1.2 volts.
9 to 1.1 volts are used. In order to suppress the electrolytic potential at a low temperature of 0° C. or lower, a KCI/agar salt bridge or the like is used. Any method may be used as long as the electrolytic potential can be controlled.The electrolytic current has a current density of 0.01 at the anode.
m^/-~10 garden^/-1 preferably 0.05mA/a
1 to 51 A/d.

重合温度は0℃以下が用いられ、−20℃以下が好適に
採用される。より湿度が低いはど配向性の高いポリピロ
ールが得られることよりより低温が好ましい、しかしな
がら、電解液の融点以上で行われなければならない、(
特開昭59−140027号)所望により、超音波を■
重合中量時間に亘る、■重合の途中から照射する、■重
合の途中まで照射するなどの方法を用いてもよい、 本発明の超音波照射に用いる超音波発生器としては、超
音波洗滌用のもの、生化学用に主として用いられるI!
Ii胞破砕機用のもの等が主として用いられる。超音波
の周波数は、特に限定されないが電波法の観点から20
KH2以上のものが主として用いられる。パワーは反応
容器の大きさなどにより適宜選ばれる。
The polymerization temperature used is 0°C or lower, preferably -20°C or lower. The lower the humidity, the more highly oriented polypyrrole can be obtained, so lower temperatures are preferred; however, it must be carried out above the melting point of the electrolyte (
(Japanese Patent Application Laid-open No. 59-140027) If desired, ultrasonic waves can be
The ultrasonic generator used for the ultrasonic irradiation of the present invention may be one for ultrasonic cleaning. I!, which is mainly used for biochemistry!
Those for Ii cell crushers are mainly used. The frequency of ultrasonic waves is not particularly limited, but from the perspective of the Radio Law, the frequency of ultrasonic waves is 20
Those of KH2 or higher are mainly used. The power is appropriately selected depending on the size of the reaction vessel.

超音波照射は重合時に行われるので照射温度は重合温度
が採られる。
Since ultrasonic irradiation is performed during polymerization, the irradiation temperature is taken as the polymerization temperature.

重合反応時間は、所望とする膜厚のフィルムが生成する
ために通電量と通電時間の関係から適宜選ばれる。
The polymerization reaction time is appropriately selected from the relationship between the amount of current and the time of current application in order to produce a film with a desired thickness.

以下、実施例により本発明を詳述する。但し、本発明は
これに限定されるものではない。
Hereinafter, the present invention will be explained in detail with reference to Examples. However, the present invention is not limited to this.

実施例、比較例 500m1のセパラブルフラスコに陽極として表面研摩
したガラス状カーボン板(東海カーボン製GC−20)
 、陰極として白金ホイルを用いて、蒸留したでの10
ピレンカーボネート400 ml、水4mlの混合溶液
、テトラエチルアンモニウムバークロレート5.51g
 (0,024モル)を入れ、窒素ガスを導入し脱酸素
を行なった。その後ピロール1.61゜(0,024モ
ル)を入れた。実施例1として一20℃。
Examples and Comparative Examples A glassy carbon plate (GC-20 manufactured by Tokai Carbon Co., Ltd.) whose surface was polished as an anode in a 500 m1 separable flask
, using platinum foil as the cathode, 10
Mixed solution of 400 ml of pyrene carbonate, 4 ml of water, 5.51 g of tetraethylammonium barchlorate
(0,024 mol) was added, and nitrogen gas was introduced to remove oxygen. Thereafter, 1.61° (0,024 mol) of pyrrole was added. -20°C as Example 1.

実施例2として0℃に冷却し比較例として20℃で窒素
気流下、Ag/AgCJ電極に対して1.OVで24時
間(通電量425クローン)電解酸化重合を行なった0
重合終了後生成した30μmのフィルムを陽極板から剥
離し、アセトニトリルで洗浄し、乾燥した。得られたフ
ィルムを割断し、その断面のR値を共鳴ラマンスペクト
ル法で求めた、その結果を表1に示す。
As Example 2, the Ag/AgCJ electrode was cooled to 0°C, and as a comparative example, it was cooled to 20°C under a nitrogen stream. Electrolytic oxidation polymerization was performed in OV for 24 hours (current application amount: 425 clones).
After the polymerization was completed, the resulting 30 μm film was peeled off from the anode plate, washed with acetonitrile, and dried. The obtained film was cut, and the R value of the cross section was determined by resonance Raman spectroscopy. The results are shown in Table 1.

次に、陽極としてガラス状カーボン板の代わりに80メ
ツシユの白金網を用いて、前述の方法で、白金網上にポ
リピロールを析出堆積させた、この得られたポリピロー
ルを白金網と共に正41i(約32−〉とし、L1金属
を負極(約32−)として、電解質としてはリチウムバ
ークロレート1.0モル/lのプロピレンカーボネート
を用いて非水電解液によるポリマー二次電池を組み立て
た。
Next, using an 80-mesh platinum wire mesh instead of the glassy carbon plate as an anode, polypyrrole was precipitated and deposited on the platinum wire mesh by the method described above. 32->, L1 metal was used as the negative electrode (approximately 32-), and propylene carbonate containing 1.0 mol/l of lithium barchlorate was used as the electrolyte to assemble a polymer secondary battery using a non-aqueous electrolyte.

そしてこれらの電池について、充電終止電圧3.6V、
放電終止電圧2.OVとして定電流放電容量(実験した
最小定電流IIIAでの放電容量で規格化)を求めた、
この放電特性を示したのが図1である。
And for these batteries, the end-of-charge voltage is 3.6V,
Discharge end voltage2. The constant current discharge capacity (normalized by the discharge capacity at the lowest constant current IIIA tested) was determined as OV.
FIG. 1 shows this discharge characteristic.

表1より、実施例1,2のR値は夫々1.41゜1.3
2であり1.2より高く、比較例は1.16であり1.
2より低い値を示した。そして図1より、実施例1.2
の放電容量は、2011Aと高放電々流にまでわたって
いずれも、比較例より高い値を示し良好である事がわか
った。
From Table 1, the R values of Examples 1 and 2 are 1.41° and 1.3, respectively.
2, which is higher than 1.2, and the comparative example is 1.16, which is 1.
It showed a value lower than 2. From FIG. 1, Example 1.2
It was found that the discharge capacity of 2011A and high discharge current were both higher than those of the comparative example, indicating that the discharge capacity was good.

表  1Table 1

【図面の簡単な説明】[Brief explanation of drawings]

図1は本発明及び比較例の一定放電々流に対する規格化
放電容量を示すグラフである。
FIG. 1 is a graph showing the normalized discharge capacity for a constant discharge current of the present invention and a comparative example.

Claims (3)

【特許請求の範囲】[Claims] (1)正極活物質に電解酸化重合法で製造したポリピロ
ールを用いるポリマー二次電池において、正極活物質で
ある、電極上に積層堆積しているポリピロールの断面に
おいて、波長488mmのアルゴエレーザー光を用いた
共鳴ラマンスペクトル分析で、下記式; R=(レーザーの偏光面を電極面に対し垂直方向に入射
して得られた1580±20cm^−^1の波数域のス
ペクトルの最大ピーク強度)/(レーザーの偏光面を電
極面に対し平行方向に入射して得られた1580±20
cm^−^1の波数域のスペクトルの最大ピーク強度)
で示されるR値が1.2以上である事を特徴とするポリ
マー二次電池、
(1) In a polymer secondary battery using polypyrrole produced by electrolytic oxidative polymerization as the positive electrode active material, Argo-elase laser light with a wavelength of 488 mm is applied to the cross section of the polypyrrole, which is the positive electrode active material, and is stacked and deposited on the electrode. In the resonance Raman spectrum analysis used, the following formula; R = (maximum peak intensity of the spectrum in the wave number range of 1580 ± 20 cm^-^1 obtained by making the polarization plane of the laser incident in the direction perpendicular to the electrode surface)/ (1580±20 obtained when the polarization plane of the laser is incident parallel to the electrode surface
Maximum peak intensity of the spectrum in the wave number range of cm^-^1)
A polymer secondary battery characterized by having an R value of 1.2 or more,
(2)特許請求の範囲第1項記載の電池において、正極
活物質のポリピロールが重合温度0℃以下で製造された
ものであることを特徴とするポリマー二次電池。
(2) A polymer secondary battery according to claim 1, wherein the polypyrrole of the positive electrode active material is produced at a polymerization temperature of 0° C. or lower.
(3)特許請求の範囲第1項記載の電池において、正極
の集収電極上に直接電解重合したポリピロールを用いる
ことを特徴とした、ポリマー二次電池。
(3) A polymer secondary battery according to claim 1, characterized in that polypyrrole is directly electrolytically polymerized on the positive collecting electrode.
JP1207913A 1989-08-14 1989-08-14 Polymer secondary battery Pending JPH0374051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1207913A JPH0374051A (en) 1989-08-14 1989-08-14 Polymer secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1207913A JPH0374051A (en) 1989-08-14 1989-08-14 Polymer secondary battery

Publications (1)

Publication Number Publication Date
JPH0374051A true JPH0374051A (en) 1991-03-28

Family

ID=16547641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1207913A Pending JPH0374051A (en) 1989-08-14 1989-08-14 Polymer secondary battery

Country Status (1)

Country Link
JP (1) JPH0374051A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274268B1 (en) 1998-07-10 2001-08-14 Nec Corporation Polymer secondary battery and method of making same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274268B1 (en) 1998-07-10 2001-08-14 Nec Corporation Polymer secondary battery and method of making same

Similar Documents

Publication Publication Date Title
Dokko et al. In situ Raman spectroscopic studies of LiNi x Mn 2− x O 4 thin film cathode materials for lithium ion secondary batteries
Kumar et al. Electrochemical characterization of poly (vinylidenefluoride)-zinc triflate gel polymer electrolyte and its application in solid-state zinc batteries
Chusid et al. Electrochemical and spectroscopic studies of carbon electrodes in lithium battery electrolyte systems
EP0510236A1 (en) Electrode for secondary battery
ATE139868T1 (en) HIGH ENERGY DENSITY LITHIUM CELL WITH NON-AQUEOUS ELECTROLYTE, READY TO USE OVER A WIDE TEMPERATURE RANGE
JP6035345B2 (en) Aluminum-based metal-air battery
JPH0237673A (en) Cell using ionizable compound
KR20010085578A (en) Secondary battery
Park et al. Degradation of electrochemically prepared polypyrrole in aqueous sulfuric acid
EP0149133B1 (en) Polyacetylene composite, process for production thereof, and method for use thereof
FR2588007A1 (en) NITROGEN ELECTRONIC CONDUCTIVE POLYMERS, PROCESSES FOR PREPARING THE SAME, ELECTROCHEMIC DISPLAY CELL, AND ELECTROCHEMICAL GENERATOR USING THE SAME
Chandrasekaran et al. Preparation and characterization of a new polymer electrolyte (PEO: NaClO 3) for battery application
Kanamura et al. Electrochemical oxidation processes on Ni electrodes in propylene carbonate containing various electrolyte salts
US4935319A (en) Organic secondary battery
JPH0374051A (en) Polymer secondary battery
JP3237394B2 (en) Electrochemical element
Narsaiah et al. Study of a new polymer electrolyte (PVP+ KYF4) for solid-state electrochemical cells
JP3131441B2 (en) Anode for battery
JP3346661B2 (en) Polymer electrode, method for producing the same, and lithium secondary battery
Vivier et al. Electrochemical study of the degradation kinetics of polyaniline powder in sulfuric and hydrochloric acid media
Pei et al. Preparation, characterization, and application of electrodes modified with electropolymerized one-dimensional Magnus' green salts: Pt (NH 3) 4· PtCl 4 and Pt (NH 3) 4· PtCl 6
Chandrasekaran et al. Role of composite MnO 2 cathode on electrochemical cells based on polymer electrolyte (PEO/NaClO 3)
JP2669672B2 (en) Joint
EP2827438A1 (en) Non-aqueous electrolyte for a metal-air battery comprising a dinitrile solvent and metal-air battery comprising said electrolyte
JPH05135769A (en) Reversible electrode