JPH0373891A - Electromagnetic pump control device - Google Patents

Electromagnetic pump control device

Info

Publication number
JPH0373891A
JPH0373891A JP1209534A JP20953489A JPH0373891A JP H0373891 A JPH0373891 A JP H0373891A JP 1209534 A JP1209534 A JP 1209534A JP 20953489 A JP20953489 A JP 20953489A JP H0373891 A JPH0373891 A JP H0373891A
Authority
JP
Japan
Prior art keywords
electromagnetic pump
pump
excitation current
abnormality
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1209534A
Other languages
Japanese (ja)
Other versions
JP2664778B2 (en
Inventor
Jun Ito
潤 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1209534A priority Critical patent/JP2664778B2/en
Publication of JPH0373891A publication Critical patent/JPH0373891A/en
Application granted granted Critical
Publication of JP2664778B2 publication Critical patent/JP2664778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To improve power factor and to obtain flow cost down characteristics by providing the electromagnetic pump control device with a synchronizing machine in parallel with an electromagnetic pump, and at the time of generating abnormality, supplying an excited current to be changed by a cause-sorted program. CONSTITUTION:At the normal operation, a variable voltage/variable frequency power supply device 9 receives a flow rate command signal 10 and applies an adjusting current to the electromagnetic pump 1 and the synchronizing machine 3. The machine 3 is overexcited based upon a function fn selected by an excited current controller 7 to compenstate the delay current of the pump 1. At the time of generating an accident such as a failure in the insertion of a control rod, an ATWS signal 16 is outputted and the controller 7 selects a function f2, so that an excited current with a slow change ratio is applied to the pump 1 and a slow flow cost down characteristic is applied to a cooling material circulation system. Consequently, the power factor of the electromag netic pump 1 is improved and the flow cost down characteristic optimum to the cause of the abnormality can be applied.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は高速増殖炉の冷却材循環系等に使用される電磁
ポンプ制御装置に係り、特に電磁ポンプの力率を改善し
、冷却材のフローコーストダウン特性を多様に調整する
ことが可能な電磁ポンプ制御装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to an electromagnetic pump control device used in a coolant circulation system of a fast breeder reactor, and in particular, to improve the power factor of an electromagnetic pump. The present invention also relates to an electromagnetic pump control device that can adjust the flow coast down characteristics of coolant in various ways.

(従来の技術) 導電性を有する金属ナトリウムを冷却材とする高速増殖
炉においては、冷却材を循環させるために、従来より機
械式ナトリウムポンプが使用されてきた。この機械式ナ
トリウムポンプの駆動源は、他の汎用ポンプと同様に誘
導電動機が一般的に採用されており、その運転制御方法
は確立されている。
(Prior Art) In fast breeder reactors that use conductive metallic sodium as a coolant, mechanical sodium pumps have conventionally been used to circulate the coolant. As with other general-purpose pumps, an induction motor is generally used as the drive source for this mechanical sodium pump, and its operation control method has been established.

そして誘導電動機は、一般に力率が0. 8〜0゜9と
極めて優れているため、力率改善装置等を設置しなくて
も、効率的な運転を行うことができる。
Induction motors generally have a power factor of 0. Since it is extremely excellent at 8 to 0°9, efficient operation can be performed without installing a power factor correction device or the like.

また電動機容量および効率によって、その駆動電源容量
も一義的に決定される。なお電動機の力率が優れている
ため、その駆動電源容量も比較的に小さい。
Furthermore, the capacity and efficiency of the electric motor uniquely determine the capacity of its driving power source. Note that since the motor has an excellent power factor, its driving power supply capacity is also relatively small.

ところで運転中の高速増殖炉において、異常が発生した
場合には、制御棒が原子炉炉心に急速に挿入されるため
、炉心出入口における冷却材に過渡的な温度差を生し、
炉心周辺の構造材に大きな熱衝撃を与える場合がある。
By the way, when an abnormality occurs in an operating fast breeder reactor, the control rods are rapidly inserted into the reactor core, causing a transient temperature difference in the coolant at the core entrance and exit.
It may cause a large thermal shock to the structural materials around the reactor core.

そのような熱過渡現象を緩和し、構造材の健全性を維持
するために、ナトリウムポンプの駆動電源が遮断された
後においても、しばらくの間、冷却材を流通させる機能
、いわゆるフローコーストダウン特性をもたせることが
望ましい。
In order to alleviate such thermal transient phenomena and maintain the integrity of the structural materials, a so-called flow-coast-down feature, which allows coolant to flow for a while even after the sodium pump's driving power is cut off, is used. It is desirable to have

従来の機械式ナトリウムポンプでは、電動機の回転子が
保持する慣性力や電動機の回転軸に一体的に取り付けら
れたフライホイール等の慣性力によってポンプインペラ
を漸くの間、回転させることによってフローコーストダ
ウン特性を得ている。
In conventional mechanical sodium pumps, flow coast down is achieved by rotating the pump impeller for a short period of time using the inertial force held by the rotor of the electric motor or the inertial force of the flywheel that is integrally attached to the rotating shaft of the electric motor. It has acquired characteristics.

回転子またはフライホイールの仕様は一義的に定められ
ているため、1種類のフローコーストダウン特性しか保
持し得ない。またその特定のフローコーストダウン特性
に対応するように、炉心構造材および周辺機器の設定条
件が定められており、多様な異常現象に対して、個別に
フローコーストダウン特性を発揮させることは困難であ
った。
Since the specifications of the rotor or flywheel are uniquely defined, only one type of flow coastdown characteristic can be maintained. In addition, the setting conditions for core structural materials and peripheral equipment are determined to correspond to specific flow coast down characteristics, and it is difficult to individually demonstrate flow coast down characteristics in response to various abnormal phenomena. there were.

一方、上記従来の機械式ナトリウムポンプに代えて、近
年電磁ポンプが採用される場合が多い。
On the other hand, in recent years, electromagnetic pumps have often been adopted in place of the conventional mechanical sodium pumps.

この電磁ポンプは、液体金属ナトリウムが電気の良導体
であることを利用し、電流が流れる導体を磁界中に置く
と、磁界強度に比例して、その直角方向に力を受けると
いう原理に基づいてナトリウム冷却材を移送するもので
ある。この電磁ポンプは従来の機械式ナトリウムポンプ
と比較して、冷却材流量を容易に直線的に加減できるこ
と、完全に密封構造とすることができること、小型であ
るため設置位置についての制約をうけないこと、可動部
分がなく保守管理が容易であること、高い吐出圧を得る
ことができること、などの優れた特徴を有している。
This electromagnetic pump utilizes the fact that liquid metal sodium is a good conductor of electricity, and is based on the principle that when a current-carrying conductor is placed in a magnetic field, it receives a force in the direction perpendicular to the magnetic field strength. It transports coolant. Compared to conventional mechanical sodium pumps, this electromagnetic pump can easily adjust the coolant flow rate linearly, has a completely sealed structure, and is small, so there are no restrictions on installation location. It has excellent features such as no moving parts, easy maintenance and management, and the ability to obtain high discharge pressure.

従来、高速増殖炉のナトリウム補助系に配置されている
比較的小容量の電磁ポンプにおいては、一般に定流量条
件で使用され、流量制御の必要性は少ない。
Conventionally, relatively small-capacity electromagnetic pumps placed in the sodium auxiliary system of fast breeder reactors are generally used under constant flow conditions, and there is little need for flow control.

(発明が解決しようとする課題) しかしながら、電磁ポンプは、極端にインダクタンス負
荷が高いため、力率は0.5程度であり、機械的ナトリ
ウムポンプと比べて極めて小さい。そのため高速増殖炉
の冷却材循環ポンプのように、大容量を必要とするポン
プとして電磁ポンプを使用する場合には、低力率負荷の
電磁ポンプの無効電力を補償する何らかの力率改善手段
を設けないと、その駆動電源容量が膨大なものとなり、
電源設備のレイアウトが困難となり、設計作業が煩雑に
なるとともに、プラントコストが大幅に高騰してしまう
問題点がある。
(Problems to be Solved by the Invention) However, since the electromagnetic pump has an extremely high inductance load, the power factor is about 0.5, which is extremely small compared to a mechanical sodium pump. Therefore, when using an electromagnetic pump as a pump that requires a large capacity, such as a coolant circulation pump in a fast breeder reactor, some kind of power factor improvement means is required to compensate for the reactive power of the electromagnetic pump with a low power factor load. Otherwise, the drive power capacity would be enormous,
There are problems in that the layout of the power supply equipment becomes difficult, the design work becomes complicated, and the plant cost increases significantly.

また、電磁ポンプは、回転部材を有していないため、原
子炉スクラム時等で駆動電源が遮断された場合には、従
来の機械式ポンプのように運動エネルギを保存すること
は不可能であり、冷却材流量が急激に減少する。従って
異常時における熱過渡に充分に耐えるように、炉心構造
材の設計基準に大幅に余裕をもたせる必要があり、過大
な設計基準を採用することを余儀なくされていた。また
上記熱過渡を緩和するフローコーストダウン特性を付与
させるためには、何らかのエネルギ蓄積手段を装備する
必要があったが、安価で効果的な手段を見出すことは困
難であった。
Furthermore, because electromagnetic pumps do not have rotating members, they cannot conserve kinetic energy like conventional mechanical pumps when the drive power is cut off, such as during a reactor scram. , the coolant flow rate decreases rapidly. Therefore, in order to sufficiently withstand thermal transients during abnormal conditions, it is necessary to provide a large margin in the design standards for core structural materials, and it has been necessary to adopt excessive design standards. In addition, in order to impart flow coast down characteristics that alleviate the above-mentioned thermal transients, it was necessary to install some kind of energy storage means, but it was difficult to find an inexpensive and effective means.

なお、発電用高速増殖炉プラントに設けられる冷却材循
環ポンプとしての電磁ポンプは、タービンに供給する蒸
気条件を一定に保持するため、原子炉出力に比例して、
ナトリウム冷却材流量を、定格流量の100%から30
%程度まで連続的に変更することができる制御系を備え
ることが必要である。
In addition, the electromagnetic pump as a coolant circulation pump installed in a power generation fast breeder reactor plant maintains the steam condition supplied to the turbine constant, so that
Increase the sodium coolant flow rate from 100% of the rated flow rate to 30%
It is necessary to have a control system that can continuously change the temperature up to about %.

本発明は上記の問題点を解決するためになされたもので
あり、プラントの通常運転時には、電磁ポンプの低力率
を改善すると同時に円滑な流量制御を可能とし、電磁ポ
ンプの電源回路が遮断されるような異常発生時には、プ
ラントの熱過渡を緩和するフローコーストダウン特性を
補償し得る電磁ポンプ制御装置を提供することを目的と
する。
The present invention was made in order to solve the above problems, and it improves the low power factor of the electromagnetic pump and at the same time enables smooth flow control, and the power circuit of the electromagnetic pump is cut off during normal operation of the plant. An object of the present invention is to provide an electromagnetic pump control device that can compensate for flow coast down characteristics that alleviate thermal transients in a plant when an abnormality occurs.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するため本発明に係る電磁ポンプ制御装
置は、プラントの正常運転時において、冷却材等を循環
させる電磁ポンプと並列に運転され、電磁ポンプの電源
回路が遮断されるような異常発生時において回転エネル
ギから励磁電流を回生し、その励磁電流を上記電磁ポン
プに送給する同期機と、上記励磁電流値の変化率を、異
常原因別にプログラムした複数の関数発生器を内蔵し、
異常原因別に特定の関数発生器に切換えることにより、
電磁ポンプに送給する励磁電流を制御する励磁電流制御
器とを備えたことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, an electromagnetic pump control device according to the present invention is operated in parallel with an electromagnetic pump that circulates coolant etc. during normal operation of a plant, and the electromagnetic pump is powered by a power source. A synchronous machine that regenerates excitation current from rotational energy in the event of an abnormality such as a circuit being cut off, and sends the excitation current to the electromagnetic pump, and a plurality of synchronous machines in which the rate of change of the excitation current value is programmed according to the cause of the abnormality. Built-in function generator,
By switching to a specific function generator depending on the cause of the abnormality,
The present invention is characterized by comprising an excitation current controller that controls an excitation current that is supplied to the electromagnetic pump.

(作用) 上記構成に係る電磁ポンプ制御装置によれば、プラント
の正常運転時においては、同期機を過励磁運転すること
により、同期機は進み電流を電源からとり電磁ポンプに
流し調相機動作を行う。従って電磁ポンプの力率が改善
され、付設する電源設備を大幅に小型化することができ
る。
(Function) According to the electromagnetic pump control device having the above configuration, during normal operation of the plant, by overexciting the synchronous machine, the synchronous machine advances by taking current from the power source and flowing it to the electromagnetic pump to operate the phase adjuster. conduct. Therefore, the power factor of the electromagnetic pump is improved, and the attached power supply equipment can be significantly downsized.

また電磁ポンプに接続する電源回路が遮断されるような
異常が発生した場合には、同期機の回転子に蓄積された
回転エネルギが、電磁ポンプに励磁電流として供給され
、必要なフローコーストダウン特性を付与するため、熱
過渡現象などが効果的に抑制される。このとき励磁電流
制御器は、予め異常原因別にプログラムされた関数発生
器の出力信号に対応して最適な励磁電流を電磁ポンプに
送給する。従って異常原因別に最適なフローコーストダ
ウン特性を与えることが可能となり、プラント系内の安
全性を効果的に維持することができる。
In addition, if an abnormality occurs such as cutting off the power supply circuit connected to the electromagnetic pump, the rotational energy stored in the rotor of the synchronous machine is supplied to the electromagnetic pump as an excitation current, and the necessary flow coast down characteristic is generated. As a result, thermal transient phenomena are effectively suppressed. At this time, the excitation current controller supplies the optimum excitation current to the electromagnetic pump in accordance with the output signal of the function generator programmed in advance for each abnormality cause. Therefore, it is possible to provide optimal flow coast down characteristics for each cause of abnormality, and safety within the plant system can be effectively maintained.

(実施例) 次に本発明の一実施例について添付図面を参照して説明
する。第1図は本発明に係る電磁ポンプ制御装置を高速
増殖炉の冷却材循環系に適用した一実施例を示す系統図
である。
(Example) Next, an example of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a system diagram showing an embodiment in which an electromagnetic pump control device according to the present invention is applied to a coolant circulation system of a fast breeder reactor.

すなわち本実施例に係る電磁ポンプ制御装置は、原子炉
の正常運転時において、冷却材である金属ナトリウムを
循環させる電磁ポンプ1と並列に運転され、電磁ポンプ
1の電源主回路2が遮断されるような異常発生時におい
て回転エネルギから励磁電流を回生し、その励磁電流を
上記電磁ポンプ1に送給する同期機3と、上記励磁電流
値の変化率を、異常原因別にプログラムした複数の関数
発生器4. 5. 6を内蔵し、異常原因別に特定の関
数発生器4. 5. 6に切換えることにより、電磁ポ
ンプlに送給する励磁電流を制御する励磁電流制御器7
とを備えて構成される。
That is, during normal operation of the nuclear reactor, the electromagnetic pump control device according to this embodiment is operated in parallel with the electromagnetic pump 1 that circulates metallic sodium as a coolant, and the main power circuit 2 of the electromagnetic pump 1 is cut off. A synchronous machine 3 that regenerates excitation current from rotational energy when such an abnormality occurs and sends the excitation current to the electromagnetic pump 1, and a plurality of function generators in which the rate of change of the excitation current value is programmed according to the cause of the abnormality. Vessel 4. 5. 6, and a specific function generator for each cause of abnormality 4. 5. 6, an excitation current controller 7 controls the excitation current supplied to the electromagnetic pump l.
It is composed of:

また電源主回路2は高圧母線8と電磁ポンプ1および同
期機3とを接続する。この電源主回路2には、可変電圧
・可変周波数電源装置(VVVF)9が配設され、この
可変電圧・可変周波数電源装置9は、図示しないプラン
ト制御系からの流量指令信号10を受信して、電磁ポン
プ1の電源電圧、周波数を調整し流量制御動作を行うよ
うに構成される。
Further, the power supply main circuit 2 connects the high voltage bus 8 to the electromagnetic pump 1 and the synchronous machine 3. A variable voltage/variable frequency power supply (VVVF) 9 is disposed in the main power supply circuit 2, and the variable voltage/variable frequency power supply 9 receives a flow rate command signal 10 from a plant control system (not shown). , is configured to adjust the power supply voltage and frequency of the electromagnetic pump 1 to perform flow rate control operations.

また同期機3を起動するための励磁電源となる交流コン
トロールセンタ(C/C)11が、遮断器12を介して
励磁電流制御器7に接続される。
Further, an AC control center (C/C) 11 serving as an excitation power source for starting the synchronous machine 3 is connected to the excitation current controller 7 via a circuit breaker 12 .

一方、遮断器13を介して電源主回路2が励磁電流制御
器7に接続される。また電源主回路2には、遮断器14
が配設され、この遮断器14は、原子炉トリップ信号1
5によって開動作するように構成される。
On the other hand, the power supply main circuit 2 is connected to the exciting current controller 7 via the circuit breaker 13 . In addition, the power supply main circuit 2 includes a circuit breaker 14.
is provided, and this circuit breaker 14 receives the reactor trip signal 1
5, it is configured to open.

さらに励磁電流制御器7の関数発生器4は、通常運転時
に電磁ポンプ1に、励磁電流として同期機3に進み電流
を流すように予めプログラムされた関数f。を出力する
。関数発生器5は原子炉トリップ信号15により、励磁
電流を急速に減少変化させるように予めプログラムされ
た関数flを出力する。同様に関数発生器6は、制御棒
挿入失敗(ATWS)信号16により、励磁電流を緩慢
に減少変化させるように予めプログラムされた関数f2
を出力する。上記各関数f、ft、f2は、通常運転時
、または原子炉トリップ信号15出力時、ATWS信号
16出力時等の異常原因別に切換えられるように構成さ
れる。
Further, the function generator 4 of the excitation current controller 7 has a function f programmed in advance so as to cause current to flow through the electromagnetic pump 1 as an excitation current to the synchronous machine 3 during normal operation. Output. In response to the reactor trip signal 15, the function generator 5 outputs a preprogrammed function fl to rapidly decrease the excitation current. Similarly, the function generator 6 generates a preprogrammed function f2 to slowly decrease the excitation current in response to the control rod insertion failure (ATWS) signal 16.
Output. The functions f, ft, and f2 are configured to be switched depending on the cause of the abnormality, such as during normal operation, when the reactor trip signal 15 is output, and when the ATWS signal 16 is output.

次に作用を説明する。Next, the action will be explained.

原子炉の通常運転時にあっては、可変電圧・可変周波数
電源装置9は、プラント制御系からの流量指令信号10
を受けて必要な、電圧および周波数に調整した電流を電
磁ポンプ1および同期機3に与え、冷却材の流量制御を
行う。また冷却材循環ポンプとしての電磁ポンプ1に並
列に接続された同期機3は励磁電流制御器7によって選
択された関数f に従って過励磁運転される。同期機3
を過励磁運転することにより、同期機3に進み電流が流
れ、調相機動作が実行され、電磁ポンプ1に流れる遅れ
電流が補償される。その結果、電磁ポンプ1の見掛は上
の負荷力率が改善され、電磁ポンプ1の電源容量を大幅
に低減することができる。
During normal operation of the nuclear reactor, the variable voltage/variable frequency power supply device 9 receives a flow rate command signal 10 from the plant control system.
In response to this, a current adjusted to the required voltage and frequency is applied to the electromagnetic pump 1 and the synchronous machine 3 to control the flow rate of the coolant. Further, the synchronous machine 3 connected in parallel to the electromagnetic pump 1 as a coolant circulation pump is overexcited in accordance with a function f selected by the excitation current controller 7. Synchronous machine 3
By overexciting the pump, a current flows through the synchronous machine 3, a phase changer operation is performed, and the delayed current flowing through the electromagnetic pump 1 is compensated for. As a result, the apparent load power factor of the electromagnetic pump 1 is improved, and the power capacity of the electromagnetic pump 1 can be significantly reduced.

すなわち一般に電源装置としては流量制御を容易とする
ために可変電圧・可変周波数電源装置9が使用されるが
、この電源装置9は、大流量で、かつ低力率負荷の電磁
ポンプ1を対象としているため、その無効電力をも補償
する必要があり、その結果、物理的容量も、従来の機械
式ナトリウムポンプの場合と比較して格段に大型化して
しまう。
That is, a variable voltage/variable frequency power supply device 9 is generally used as a power supply device to facilitate flow control, but this power supply device 9 is intended for the electromagnetic pump 1 with a large flow rate and a low power factor load. Therefore, it is necessary to compensate for the reactive power as well, and as a result, the physical capacity becomes significantly larger than that of a conventional mechanical sodium pump.

しかしながら、同期機3の調相機動作により、理論的に
は力率をほぼ1の負荷とすることも可能であり、その結
果、可変電圧・可変周波数電源装置9の設備容量を極め
て小型にすることが可能ととなる。
However, due to the phase modifier operation of the synchronous machine 3, it is theoretically possible to make the power factor almost 1 as a load, and as a result, the installed capacity of the variable voltage/variable frequency power supply device 9 can be made extremely small. becomes possible.

一方、原子炉スクラム時にあっては原子炉トリップ信号
15によって、電源主回路2の遮断器15が開動作する
とともに、励磁電流制御器7において通常運転時の関数
f から関数flに自動的に切換えがなされる。このと
き電磁ポンプ1と並列運転され調相機として動作してい
た同期機3は、それ自身が保有する慣性力によって回転
を続行する。そして同期機3はその回転エネルギを電気
エネルギに変換し関数flに従って励磁電流を回生じ電
磁ポンプ1に供給する。その結果、電磁ポンプ1は、所
要流量の冷却材を流し続け、フローコーストダウン特性
を発揮することができる。
On the other hand, during reactor scram, the reactor trip signal 15 causes the circuit breaker 15 of the main power circuit 2 to open, and the excitation current controller 7 automatically switches from the function f during normal operation to the function fl. will be done. At this time, the synchronous machine 3, which was operated in parallel with the electromagnetic pump 1 and operated as a phase adjuster, continues to rotate due to its own inertia force. The synchronous machine 3 converts the rotational energy into electrical energy, regenerates an exciting current according to the function fl, and supplies it to the electromagnetic pump 1. As a result, the electromagnetic pump 1 can continue to flow the required flow rate of coolant and exhibit flow coast down characteristics.

ここで、上記冷却材流量のフローコーストダウン特性は
同期機3の励磁電流を変化させることにより、可能とな
るが、この励磁電流の変化率の制御は励磁電流制御器7
によって実行される。すなわち、原子炉スクラム時にお
いては、励磁電流制御器7が原子炉トリップ信号15に
基づいて関数flを選択することにより、比較的に急峻
な変化率を有する冷却材流量フローコーストダウン特性
が冷却材循環系に付与される。
Here, the flow coast down characteristic of the coolant flow rate can be achieved by changing the excitation current of the synchronous machine 3, but the rate of change of this excitation current can be controlled by the excitation current controller 7.
executed by That is, during a reactor scram, the excitation current controller 7 selects the function fl based on the reactor trip signal 15, so that the flow coast down characteristic of the coolant flow rate having a relatively steep rate of change is controlled by the coolant flow rate. Provided to the circulatory system.

また制御棒挿入失敗等の事故発生時にATWS信号16
が出力されると、励磁電流制御器7は、関数f2を選択
するので、電磁ポンプ1は比較的に緩慢な変化率を有す
る励磁電流を受け、緩慢な冷却材流量フローコーストダ
ウン特性を冷却材循環系に付与する。
In addition, in the event of an accident such as control rod insertion failure, the ATWS signal 16
is output, the excitation current controller 7 selects the function f2, so that the electromagnetic pump 1 receives an excitation current having a relatively slow rate of change, and changes the slow coolant flow coast down characteristic to the coolant flow rate. Gives to the circulatory system.

なお第1図において、同期機3の起動時の励磁電源は交
流コントロールセンタ(C/C)11から供給され、同
期機3が同期運転に入ってから以後は遮断器12は開放
される一方、遮断器13が閉動作し自己励磁運転に切換
えられる。
In FIG. 1, excitation power at the time of starting the synchronous machine 3 is supplied from an AC control center (C/C) 11, and after the synchronous machine 3 enters synchronous operation, the circuit breaker 12 is opened. The circuit breaker 13 is closed and switched to self-excitation operation.

このように本実施例に係る電磁ポンプ制御装置によれば
、電磁ポンプ1の力率改善機能および冷却材流量フロー
コーストダウン特性補償機能という2つの機能を兼ね備
えた同期機3を設けているため、電磁ポンプ1の電源容
量を小型化することができる上に、電磁ポンプ1に見掛
は上の慣性力を蓄積する機能をももたせることが可能と
なり、原子炉の熱過渡を大幅に緩和することができる。
As described above, the electromagnetic pump control device according to the present embodiment is provided with the synchronous machine 3 that has two functions: the power factor improvement function of the electromagnetic pump 1 and the coolant flow rate flow coast down characteristic compensation function. In addition to being able to downsize the power supply capacity of the electromagnetic pump 1, it is also possible to give the electromagnetic pump 1 the function of accumulating an apparent inertial force, thereby significantly alleviating thermal transients in the reactor. I can do it.

また励磁電流制御器7内の関数発生器4,5゜6のプロ
グラムを適宜切換えるように構成したことにより、原子
炉スクラム時、制御棒挿入失敗(ATWS)時等の異常
原因別に励磁電流の変化率を任意に設定することが可能
となり、異常原因別に最適な冷却材流量フローコースト
ダウン特性を付与することができる。
In addition, by configuring the program of the function generators 4, 5, 6 in the excitation current controller 7 to be switched as appropriate, the excitation current changes depending on the cause of abnormality, such as during reactor scram or control rod insertion failure (ATWS). It becomes possible to set the rate arbitrarily, and it is possible to provide the optimum coolant flow rate flow coast down characteristic for each cause of abnormality.

すなわち制御棒挿入失敗(ATWS)時においては、電
磁ポンプ1のフローコーストダウン特性は、プログラム
された関数f2に比例して比較的に緩慢となり、原子炉
炉心の熱膨張によって炉心は未臨界となる。
In other words, in the event of control rod insertion failure (ATWS), the flow coast down characteristic of the electromagnetic pump 1 becomes relatively slow in proportion to the programmed function f2, and the reactor core becomes subcritical due to thermal expansion of the reactor core. .

一方原子炉スクラム時には、比較的に急峻な変化率でフ
ローコーストダウン特性が得られ、炉心構造材に対する
過渡的変化が補償される結果、炉心構造物の健全性を維
持することができる。
On the other hand, during a reactor scram, a flow coast down characteristic is obtained with a relatively steep rate of change, and as a result of compensating for transient changes in the core structural materials, the integrity of the core structure can be maintained.

このように冷却材流量を調節する機能に加えて電磁ポン
プにフローコーストダウン特性を付与できる電磁ポンプ
制御装置が得られ、安全性および経済性に優れたナトリ
ウム冷却型高速増殖炉を提供することが可能となる。
In this way, an electromagnetic pump control device that can provide a flow coast down characteristic to the electromagnetic pump in addition to the function of adjusting the coolant flow rate can be obtained, making it possible to provide a sodium-cooled fast breeder reactor with excellent safety and economic efficiency. It becomes possible.

以上の実施例においては、ナトリウム冷却型高速増殖炉
の冷却材を循環させる電磁ポンプに適用した例で示して
いるが、本発明装置は上記用途に限定されず、例えば製
鉄プラントにおける銑鉄移送用の電磁ポンプなど、過渡
時における熱衝撃を緩和することが必要なプラントに使
用される電磁ポンプにも適用することができる。
In the above embodiments, an example is shown in which the device is applied to an electromagnetic pump that circulates coolant in a sodium-cooled fast breeder reactor, but the device of the present invention is not limited to the above-mentioned applications, and is, for example, used for transferring pig iron in a steel manufacturing plant. It can also be applied to electromagnetic pumps used in plants that require mitigation of thermal shock during transient times, such as electromagnetic pumps.

〔発明の効果〕〔Effect of the invention〕

以上説明の通り本発明に係る電磁ポンプ制御装置によれ
ば、プラントの正常運転時においては、同期機を過励磁
運転することにより、同期機は進み電流を電源からとり
電磁ポンプに流し調相機動作を行う。従って電磁ポンプ
の力率が改善され、付設する電源設備を大幅に小型化す
ることができる。
As explained above, according to the electromagnetic pump control device according to the present invention, during normal operation of the plant, by overexciting the synchronous machine, the synchronous machine advances by taking current from the power source and flowing it to the electromagnetic pump to operate the phase adjuster. I do. Therefore, the power factor of the electromagnetic pump is improved, and the attached power supply equipment can be significantly downsized.

また電磁ポンプに接続する電源回路が遮断されるような
異常が発生した場合には、同期機が回転子に蓄積された
回転エネルギを、電磁ポンプに励磁電流として供給し、
必要なフローコーストダウン特性を付与するため、熱過
渡現象などが効果的に抑制される。このとき励磁電流制
御器は、予め異常原因別にプログラムされた関数発生器
の出力信号に対応して最適な励磁電流を電磁ポンプに送
給する。従って異常原因別に最適なフローコーストダウ
ン特性を与えることが可能となり、プラント系内の安全
性を効果的に維持することができる。
In addition, if an abnormality occurs such as the power circuit connected to the electromagnetic pump being cut off, the synchronous machine supplies the rotational energy stored in the rotor to the electromagnetic pump as excitation current.
Since it provides the necessary flow coast down characteristics, thermal transient phenomena etc. are effectively suppressed. At this time, the excitation current controller supplies the optimum excitation current to the electromagnetic pump in accordance with the output signal of the function generator programmed in advance for each abnormality cause. Therefore, it is possible to provide optimal flow coast down characteristics for each cause of abnormality, and safety within the plant system can be effectively maintained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る電磁ポンプ制御装置の一実施例を
高速増殖炉の冷却材循環系に適用した例を示す系統図で
ある。 1・・・電磁ポンプ、2・・・電源主回路、3・・・同
期機、4. 5. 6・・・関数発生器、7・・・励磁
電流制御器、8・・・高圧母線、9・・・可変電圧・可
変周波数電源装置(VVVF) 、10・・・流量指令
信号、11・・・交流コントロールセンタ(C/C) 
、12,13.14・・・遮断器、15・・・原子炉ト
リップ信号、16・・・ATWS信号。
FIG. 1 is a system diagram showing an example in which an embodiment of the electromagnetic pump control device according to the present invention is applied to a coolant circulation system of a fast breeder reactor. 1... Electromagnetic pump, 2... Main power circuit, 3... Synchronous machine, 4. 5. 6...Function generator, 7...Exciting current controller, 8...High voltage bus, 9...Variable voltage/variable frequency power supply (VVVF), 10...Flow rate command signal, 11...・AC control center (C/C)
, 12, 13. 14... Circuit breaker, 15... Reactor trip signal, 16... ATWS signal.

Claims (1)

【特許請求の範囲】[Claims] プラントの正常運転時において、冷却材等を循環させる
電磁ポンプと並列に運転され、電磁ポンプの電源回路が
遮断されるような異常発生時において回転エネルギから
励磁電流を回生し、その励磁電流を上記電磁ポンプに送
給する同期機と、上記励磁電流値の変化率を、異常原因
別にプログラムした複数の関数発生器を内蔵し、異常原
因別に特定の関数発生器に切換えることにより、電磁ポ
ンプに送給する励磁電流を制御する励磁電流制御器とを
備えたことを特徴とする電磁ポンプ制御装置。
During normal operation of the plant, it is operated in parallel with the electromagnetic pump that circulates coolant, etc., and when an abnormality occurs such as the power circuit of the electromagnetic pump being cut off, the excitation current is regenerated from the rotational energy, and the excitation current is used as described above. It has a built-in synchronous machine that feeds the electromagnetic pump, and multiple function generators that program the rate of change of the excitation current value for each abnormality cause.By switching to a specific function generator for each abnormality cause, the rate of change of the excitation current value is sent to the electromagnetic pump. An electromagnetic pump control device comprising: an excitation current controller that controls a supplied excitation current.
JP1209534A 1989-08-15 1989-08-15 Electromagnetic pump controller Expired - Fee Related JP2664778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1209534A JP2664778B2 (en) 1989-08-15 1989-08-15 Electromagnetic pump controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1209534A JP2664778B2 (en) 1989-08-15 1989-08-15 Electromagnetic pump controller

Publications (2)

Publication Number Publication Date
JPH0373891A true JPH0373891A (en) 1991-03-28
JP2664778B2 JP2664778B2 (en) 1997-10-22

Family

ID=16574391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1209534A Expired - Fee Related JP2664778B2 (en) 1989-08-15 1989-08-15 Electromagnetic pump controller

Country Status (1)

Country Link
JP (1) JP2664778B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148400A (en) * 2000-11-15 2002-05-22 Sukegawa Electric Co Ltd Inverter type nucleus crushing target system
WO2013001768A1 (en) 2011-06-27 2013-01-03 株式会社 東芝 Electromagnetic pump compensation power supply apparatus and electromagnetic pump system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148400A (en) * 2000-11-15 2002-05-22 Sukegawa Electric Co Ltd Inverter type nucleus crushing target system
JP4568850B2 (en) * 2000-11-15 2010-10-27 助川電気工業株式会社 Inverter spallation target system
WO2013001768A1 (en) 2011-06-27 2013-01-03 株式会社 東芝 Electromagnetic pump compensation power supply apparatus and electromagnetic pump system
JPWO2013001768A1 (en) * 2011-06-27 2015-02-23 株式会社東芝 Electromagnetic pump compensation power supply device and electromagnetic pump system
US9397544B2 (en) 2011-06-27 2016-07-19 Kabushiki Kaisha Toshiba Electromagnetic pump compensation power supply apparatus and electromagnetic pump system

Also Published As

Publication number Publication date
JP2664778B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
Nunes et al. Influence of the variable-speed wind generators in transient stability margin of the conventional generators integrated in electrical grids
CN102055207B (en) Intelligent power control unit for low voltage ride through and application thereof
CN103683318A (en) System and method for controlling dual-fed induction generator in response to high-voltage grid events
CN104578060B (en) Method for selecting black-start diesel engine of SFC self-start gas turbine set
US9397544B2 (en) Electromagnetic pump compensation power supply apparatus and electromagnetic pump system
CA2550884A1 (en) Electric power network
AU2018206230B2 (en) Power grid stabilising system
JPH0585880B2 (en)
JPH0373891A (en) Electromagnetic pump control device
Samoylenko et al. Semiconductor power electronics for synchronous distributed generation
Bose Ore-grinding cycloconverter drive operation and fault: My experience with an australian grid
CN201966629U (en) Low voltage ride through intelligent power control unit
Nailen Watts from waste heat-induction generators for the process industries
JPH05142382A (en) Solenoid pump control device
CN113922400B (en) New energy support machine with energy storage device arranged through electrical connection and control method
CN216774577U (en) Double-stator multi-winding permanent magnet synchronous motor
RU2064081C1 (en) Power unit
JP3378325B2 (en) Control device for electromagnetic pump
CN219827030U (en) Auxiliary band-type brake equipment of variable-pitch motor and wind generating set
Lipo The potential for high temperature superconducting ac and dc motors
JP7475048B2 (en) Method and apparatus for paralleling induction generators
Mishra et al. Inrush current limitation in wind generators by SCR Based Soft-starter during grid connection
JPH05284796A (en) Power source controller for electromangetic pump
Runcos et al. New electric drive for car shredder
JPH04125056A (en) Power generation facility

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees