JPH0373326B2 - - Google Patents

Info

Publication number
JPH0373326B2
JPH0373326B2 JP59252232A JP25223284A JPH0373326B2 JP H0373326 B2 JPH0373326 B2 JP H0373326B2 JP 59252232 A JP59252232 A JP 59252232A JP 25223284 A JP25223284 A JP 25223284A JP H0373326 B2 JPH0373326 B2 JP H0373326B2
Authority
JP
Japan
Prior art keywords
gas
adsorbent
acidic
nitrogen dioxide
packed bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59252232A
Other languages
Japanese (ja)
Other versions
JPS61129027A (en
Inventor
Yoshimi Matsumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RODOSHO SANGYO IGAKU SOGO KENKYUSHOCHO
Original Assignee
RODOSHO SANGYO IGAKU SOGO KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RODOSHO SANGYO IGAKU SOGO KENKYUSHOCHO filed Critical RODOSHO SANGYO IGAKU SOGO KENKYUSHOCHO
Priority to JP59252232A priority Critical patent/JPS61129027A/en
Publication of JPS61129027A publication Critical patent/JPS61129027A/en
Publication of JPH0373326B2 publication Critical patent/JPH0373326B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

発明の目的 Purpose of invention

【産業䞊の利甚分野】[Industrial application field]

本発明は、匷酞性の二酞化窒玠ず匱酞性の炭酞
ガスおよびたたは非酞性ガスずの混合ガス䞭
の二酞化窒玠、たずえば空気䞭に存圚する二酞化
窒玠を遞択的に吞着分離する方法に関する。本発
明はたた、二酞化窒玠、炭酞ガスおよび非酞性ガ
スの混合ガス䞭の二酞化窒玠および炭酞ガスを、
遞択的に逐次吞着分離する方法に関する。
The present invention relates to a method for selectively adsorbing and separating nitrogen dioxide in a mixed gas of strongly acidic nitrogen dioxide and weakly acidic carbon dioxide and/or non-acidic gas, such as nitrogen dioxide present in air. The present invention also allows nitrogen dioxide and carbon dioxide in a mixed gas of nitrogen dioxide, carbon dioxide and non-acidic gas to be
This invention relates to a method for selectively sequential adsorption separation.

【埓来の技術】[Conventional technology]

埓来、酞性ガスに察する分離吞着剀ずしおは、
゜ヌダラむム化孊組成CaO・NaOH、カ性゜
ヌダ、重炭酞゜ヌダNaHCO3などの匷塩基
性吞着剀やれオラむト、掻性炭などの倚孔性吞着
剀が甚いられおいる。 ずころが、匷塩基性吞着剀は、匷酞性の二酞化
窒玠や二酞化硫黄だけでなく、匱酞性の二酞化炭
玠を含むすべおの酞性ガスを吞着する。したが぀
お、匷塩基性吞着剀では、匱酞性ガスず匷酞性ガ
スずを分離するこずができない。そのために、た
ずえば硝酞プラントや有機化合物のニトロ化工皋
などの排ガス䞭に含たれる二酞化窒玠のみを陀
去、分離するこずが目的の堎合でも、共存する二
酞化炭玠が同時に吞着されるので、二酞化窒玠に
察する吞着量が枛少する。たた、゜ヌダラむムや
重炭酞ナトリりムで酞性ガスを吞着したのちは、
吞着したガスの脱着による回収ず吞着剀の再生は
困難なので、それを行なわずに、吞着剀はそのた
た廃棄するか、倚の甚途に向けるしかない。この
ように、匷酞性ガスの吞着分離剀ずしお匷塩基性
吞着剀を甚いるず、その䜿甚効率が䜎く、たた、
吞着したガスの回収による再利甚の可胜性が乏し
いずいう問題があ぀た。 䞀方、れオラむトなどの倚孔性吞着剀では、酞
性ガスに察する吞着剀単䜍重量圓りの吞着容量が
塩基性吞着剀より小さい。たた、これらの吞着剀
は、ガスを非特異的な物理吞着の機構で吞着する
ために、その现孔構造の䞭に凝瞮するこずのでき
るガスはすべお吞着しおしたう。そのために、倚
孔性吞着剀では酞性ガスのみを遞択的に吞着する
こずができず、加熱により脱着しおも耇数のガス
が共存する混合ガスずなるので、有効な利甚が困
難であるずい぀た問題があ぀た。
Conventionally, as a separation adsorbent for acidic gas,
Strongly basic adsorbents such as soda lime (chemical composition: CaO/NaOH), caustic soda, and bicarbonate of soda (NaHCO 3 ), and porous adsorbents such as zeolite and activated carbon are used. However, strongly basic adsorbents adsorb not only strongly acidic nitrogen dioxide and sulfur dioxide, but also all acidic gases including weakly acidic carbon dioxide. Therefore, a strongly basic adsorbent cannot separate weakly acidic gas and strongly acidic gas. For this reason, even if the purpose is to remove and separate only nitrogen dioxide contained in the exhaust gas from a nitric acid plant or the nitration process of organic compounds, the adsorption of nitrogen dioxide quantity decreases. In addition, after adsorbing acid gas with soda lime or sodium bicarbonate,
Since it is difficult to recover the adsorbed gas by desorption and regenerate the adsorbent, the only option is to dispose of the adsorbent as it is or to use it for various purposes. In this way, when a strong basic adsorbent is used as an adsorption/separation agent for strongly acidic gases, its usage efficiency is low, and
There was a problem that there was little possibility of reusing the adsorbed gas by recovering it. On the other hand, porous adsorbents such as zeolites have a smaller adsorption capacity per unit weight of acidic gas than basic adsorbents. Furthermore, since these adsorbents adsorb gases by a non-specific physical adsorption mechanism, all gases that can be condensed into their pore structures are adsorbed. For this reason, porous adsorbents cannot selectively adsorb only acidic gases, and even when desorbed by heating, a mixture of multiple gases coexists, making it difficult to use them effectively. There was a problem.

【解決しようずする問題点】[Problems to be solved]

本発明のひず぀の目的は、䞊蚘の問題点を解決
し、匷酞性ガスである二酞化窒玠ず、匱酞性ガス
およびたたは非酞性ガスずの混合ガスから二
酞化窒玠を遞択的に分離するこずができ、たた、
吞着分離したガスの脱着回収および吞着剀の再利
甚が容易な吞着分離法を提䟛するこずにある。 本発明のいたひず぀の目的は、二酞化窒玠、炭
酞ガスおよび非酞性ガスの混合ガス䞭の二酞化窒
玠および炭酞ガスを、遞択的に逐次吞着分離する
方法を提䟛するこずにある。 発明の構成
One object of the present invention is to solve the above problems and to selectively separate nitrogen dioxide from a mixed gas of strongly acidic nitrogen dioxide and weakly acidic gas and/or non-acidic gas. I can do it, and also.
An object of the present invention is to provide an adsorption separation method that allows easy desorption recovery of adsorbed and separated gases and reuse of adsorbents. Another object of the present invention is to provide a method for selectively and sequentially adsorbing and separating nitrogen dioxide and carbon dioxide in a mixed gas of nitrogen dioxide, carbon dioxide, and non-acidic gas. Composition of the invention

【問題点を解決するための手段】 䞀般に、塩基吞着剀は酞性ガスを吞着するが、
発明者は、塩基性吞着性剀の䞭でも塩基性匷床の
匱い吞着剀、ずくに酞化マグネシりム、酞化亜鉛
および酞化ベリリりムが、匷酞性の二酞化窒玠は
吞着するが匱酞性の炭酞ガスは吞着しないこずを
芋出した。 䞊蚘のような知芋に基づいお完成された本発明
は、その基本的な態様ずしお、匷酞性ガスである
二酞化窒玠ず、匱酞性ガスである炭酞ガスおよび
たたは非酞性ガスずの混合ガスを、MgO、
ZnOおよびBeOの皮たたは皮以䞊からなる匱
塩基性金属酞化物を䞻䜓ずする吞着剀に接觊さ
せ、二酞化窒玠を遞択的に吞着するこずを特城ず
する。 本発明の別の態様は、匷酞性ガスである二酞化
窒玠ず、匱酞性ガスである炭酞ガスおよび非酞性
ガスずの混合ガスを、MgO、ZnOおよびBeOの
皮たたは皮以䞊からなる匱塩基性金属酞化物
を䞻䜓ずする吞着剀を充填した第充填局に導入
しおこの混合ガス䞭の二酞化窒玠を遞択的に吞着
分離し、぀いで第充填局から流出した混合ガス
を匷塩基性金属酞化物を䞻䜓ずする吞着剀を充填
した第充填局に導入し、混合ガス䞭の炭酞ガス
を遞択的に吞着分離し、非酞性ガスを第充填局
から流出させるこずを特城ずする。
[Means for solving the problem] Generally, base adsorbents adsorb acidic gases, but
The inventor discovered that among basic adsorbents, adsorbents with weak basic strength, particularly magnesium oxide, zinc oxide, and beryllium oxide, adsorb strongly acidic nitrogen dioxide but not weakly acidic carbon dioxide. Ta. The basic aspect of the present invention, which was completed based on the above findings, is to use a mixed gas of nitrogen dioxide, which is a strongly acidic gas, and carbon dioxide, which is a weakly acidic gas, and/or a non-acidic gas. , MgO,
It is characterized by selectively adsorbing nitrogen dioxide by contacting with an adsorbent mainly composed of a weakly basic metal oxide consisting of one or more of ZnO and BeO. Another aspect of the present invention is to use a mixed gas of nitrogen dioxide, which is a strongly acidic gas, and carbon dioxide, which is a weakly acidic gas, and a non-acidic gas, with a weak base consisting of one or more of MgO, ZnO, and BeO. Nitrogen dioxide in this mixed gas is selectively adsorbed and separated by introducing it into a first packed bed filled with an adsorbent mainly composed of oxidized metal oxides, and then the mixed gas flowing out from the first packed bed is treated with a strong base. It is characterized by introducing the gas into a second packed bed filled with an adsorbent mainly composed of metal oxides, selectively adsorbing and separating carbon dioxide gas in the mixed gas, and causing non-acidic gas to flow out from the second packed bed. .

【䜜甚】[Effect]

この発明では、匱塩基性金属酞化物を䞻䜓ずす
る吞着剀を甚いるこずにより、垞枩で混合ガスの
䞭から二酞化窒玠を遞択的に分離たたは陀去する
こずができる。それに加えお、二参加窒玠の吞着
捕集埌に吞着局を加熱するこずにより、吞着され
おいた二酞化窒玠を攟出させお回収し、同時に吞
着剀を再生するこずができる。したが぀お、省゚
ネルギヌ的、省資源的なガスの分離が実珟する。
この利点は、埓来、空気䞭の二酞化窒玠陀去法の
ひず぀ずしお行なわれおいる接觊還元法では、接
觊還元甚觊媒の充填局を垞時350℃前埌の高枩に
保぀必芁があるこず比范すれば、容易に理解され
るであろう。 たた、接觊還元法では二酞化窒玠を100陀去
するこずが困難であるのに察し、本発明では、吞
着剀充填局が酞性ガスの飜和吞着による吞着砎過
が起るたでの期間は、完党に二酞化窒玠を分離す
るこずができる。 さらに、垞枩吞着を利甚しお可動性、携垯性の
よい装眮ずしお蚭蚈するこずができるので、小芏
暡の非定垞的な甚途ぞの応甚が可胜ずなる。
In this invention, by using an adsorbent mainly composed of a weakly basic metal oxide, nitrogen dioxide can be selectively separated or removed from a mixed gas at room temperature. In addition, by heating the adsorption layer after the adsorption and collection of the divalent nitrogen, the adsorbed nitrogen dioxide can be released and recovered, and the adsorbent can be regenerated at the same time. Therefore, energy-saving and resource-saving gas separation is realized.
This advantage is simple compared to the conventional catalytic reduction method used as a method for removing nitrogen dioxide from the air, which requires the packed bed of catalyst for catalytic reduction to be kept at a high temperature of around 350°C at all times. will be understood. In addition, while it is difficult to remove 100% of nitrogen dioxide with the catalytic reduction method, in the present invention, the adsorbent packed bed completely removes nitrogen dioxide during the period until adsorption breakthrough occurs due to saturated adsorption of acidic gas. Nitrogen dioxide can be separated. Furthermore, since it can be designed as a highly mobile and portable device by utilizing room-temperature adsorption, it can be applied to small-scale, unsteady applications.

【実斜態様】[Embodiment]

本発明で吞着剀に甚いる匱塩基性金属酞化物ず
しおは、酞化マグネシりム、酞化亜鉛および酞化
ベリリりムの皮たたは皮以䞊からえらぶ。 䞋蚘の衚は、皮々の金属酞化物、金属むオン亀
換䜓および倚孔性吞着剀の二酞化窒玠NO2
に察する吞着特性を枬定した結果を瀺す。たた、
第図は、その枬定装眮の䟋を瀺し、窒玠ボン
ベから窒玠ガスN2を、流量調節装眮
を通しお10ml分の䞀定流速で抜き出し、その
䞀方を二酞化窒玠発生噚に通した埌、恒枩槜
25℃で䞡者を混合しお、NO2濃床0.49
ずし、これを槜内の吞着剀充填局に
導入し、充填局から流出した気流はオヌトサン
プラヌを備えたガスクロマトグラフに導入
し、分間隔でNO2挏掩濃床を枬定するように
したもので、吞着剀はそれぞれ100mgを内埄mm
のガラス管に充填しお甚いた。
The weakly basic metal oxide used in the adsorbent in the present invention is selected from one or more of magnesium oxide, zinc oxide, and beryllium oxide. The table below shows the nitrogen dioxide (NO 2 ) concentration of various metal oxides, metal ion exchangers and porous adsorbents.
The results of measuring the adsorption characteristics of Also,
FIG. 1 shows an example of the measuring device, in which nitrogen gas N 2 is supplied from a nitrogen cylinder 1 to flow rate adjusting devices 2A and 2.
B through B at a constant flow rate of 10 ml/min, and after passing one side through nitrogen dioxide generator 3,
Mix both at (25℃) to obtain a NO 2 concentration of 0.49%.
(v/v) and introduced into the adsorbent packed bed 5 in the tank, and the airflow flowing out from the packed bed 5 was introduced into a gas chromatograph 7 equipped with an autosampler 6, and the NO 2 leakage concentration was measured at 6 minute intervals. It was designed to measure 100 mg of adsorbent each with an inner diameter of 4 mm.
It was used by filling it into a glass tube.

【衚】【table】

【衚】 衚から明らかなように、皮々の金属酞化物の䞭
で、匱塩基性酞化物である酞化マグネシりム
MgOず酞化亜鉛ZnOに、特異的に倧きい
NO2の吞着量がみられ、酞化ベリリりムBeO
もこれに次いで倧きな吞着量を瀺す。 これらの金属酞化物は、比衚面積が小さいこ
ず、NO2の吞着分子数がこれらの固䜓䞭で金属
原子数より倧きいこずから、NO2は衚面に吞着
するだけでなく、内郚ぞも吞収されるものず考え
られる。 これに察し、他の遷移金属酞化物MnO2、
V2O5、CuO、Fe2O3、TiO2などもNO2吞着を瀺
すが、その吞着量は少ない。たた、掻性炭、シリ
カゲル、れオラむトなどの倚孔性吞着剀のNO2
吞着量は、その比衚面積の倧きさから予想される
よりもはるかに少なく、匱塩基性金属酞化物の15
〜30皋床にすぎない。さらに、金属担持の陜む
オン亀換暹脂の堎合も、䞊蚘の遷移金属酞化物ず
同様に顕著な効果がみられない。 本発明で䜿甚する塩基性金属酞化物の圢態は、
垂販の粉末状の詊薬あるいは工業甚補品をそのた
た䜿甚しおも差支えないが、酞性ガスや氎蒞気を
倧量に吞着するず朮解珟象に䌌た倉化が起き、充
填䜿甚したずきに目詰りを起したり、再生が困難
になるおそれがある。そこで、塩基性金属酞化物
を単独で造粒せずに、その担䜓ずなるような匷固
な担䜓、造粒甚のバむンダ、造粒した金属酞化物
に倚孔性を賊䞎するための賊掻剀などを添加し
お、球状、円柱状、ペレツトなどに造粒し、加熱
などの熱凊理によ぀お熟成するのが奜たしい。こ
のような担䜓ずしおは、酞化チタン、シリカゲ
ル、アルミナ、シリコンカヌバむド、軜石など䞀
般に䜿甚されおいるものを挙げるこずができる。 次に、この発明による酞性ガスの吞着分離法を
図面を参照しお具䜓的に説明する。 第図はこの発明による、MgO、ZnOおよび
BeOの皮たたは皮以䞊からなる匱塩基性金
属酞化物を䞻䜓ずする吞着剀以䞋、「匱塩基性
吞着剀」ずいう。のみを甚いた方法を瀺す。す
なわち、匱塩基性吞着剀ずしおペレツト状の酞化
亜鉛を充填した充填局の䞀端から二酞化炭玠
CO2ず二酞化窒玠NO2を含む空気を流入
させるず、匷酞性ガスである二酞化窒玠は充填局
により吞着捕集され、匱酞性ガスである二酞化炭
玠は吞着されずに他端から空気ずずもに攟出され
る。二酞化窒玠を吞着した酞化亜鉛は、混合空気
の流入停止埌、450℃皋床に加熱しお枅浄な空気
を通すず、二酞化窒玠を攟出し、吞着剀ずしお再
生するこずができる。 第図は塩基匷床の異なる二皮類の吞着剀を甚
いた方法を瀺す。すなわち、䞊蚘ず同様に匱塩基
性吞着剀ずしお酞化亜鉛を充填した第充填局
に、匷塩基性吞着剀ずし゜ヌダラむムを充填した
第充填局が盎列に接続されおいる。第充填局
の入口偎から二酞化炭玠ず二酞化窒玠を含む空気
を流入させるず、第充填局では二酞化窒玠を、
第充填局では二酞化炭玠をそれぞれ遞択的に吞
着分離し、第充填局からは酞性ガスを含たない
空気が流出する。 第図は第図の第、第充填局に脱氎剀ず
倚孔性吞着剀を組合せた方法を瀺す。すなわち、
盎列に接続した第充填局の入口偎には粒状硫酞
ナトリりムなどの脱氎剀を充填した脱氎局を、第
充填局の出口偎には掻性炭のような非遞択性の
倚孔性吞着剀を充填した局を、それぞれ接続しお
甚いる。 この堎合には、脱氎局偎から、二酞化窒玠、二
酞化炭玠および氎蒞気のほか炭化氎玠やハロゲン
化炭化氎玠などの非酞性有機化合物の蒞気を含む
空気を導入するず、最初に脱氎局で氎分が陀去さ
れ、第および第充填局で二酞化窒玠、二酞化
炭玠が順次吞着陀去されたのち、倚孔性吞着局に
おいお有機物蒞気が吞着陀去され、最埌の局から
は酞性ガスや有機物蒞気を含たない枅浄な空気が
流出する。このようにしお、酞性ガスや有機物蒞
気が、順次遞択的に吞着分離される。 この堎合にも、第充填局においお䞀定量の二
酞化窒玠を吞着したのち、混合空気の流入を止め
お第充填局を加熱し、枅浄な空気を導入するこ
ずにより、二酞化窒玠を脱着し、吞着剀を再生す
るこずができる。たた、第充填局および倚孔性
吞着剀局に぀いおは、䞊蚘ず同様に脱着再生でき
る堎合ず、䜿甚枈の吞着剀を充填局から取り出
し、新しい吞着剀ず亀換する堎合がある。
[Table] As is clear from the table, among various metal oxides, magnesium oxide (MgO) and zinc oxide (ZnO), which are weakly basic oxides, have a particularly large
Adsorption amount of NO 2 is observed, and beryllium oxide (BeO)
Also shows the second largest amount of adsorption. Because these metal oxides have a small specific surface area and the number of NO 2 adsorbed molecules is greater than the number of metal atoms in these solids, NO 2 is not only adsorbed on the surface but also absorbed into the interior. considered to be a thing. In contrast, other transition metal oxides MnO 2 ,
V 2 O 5 , CuO, Fe 2 O 3 , TiO 2 and the like also exhibit NO 2 adsorption, but the amount of adsorption is small. Also, porous adsorbents such as activated carbon, silica gel, and zeolite can reduce NO2
The amount of adsorption is much lower than expected from its large specific surface area, and is
It is only about ~30%. Furthermore, in the case of metal-supported cation exchange resins, no remarkable effect is observed, as in the case of the above-mentioned transition metal oxides. The form of the basic metal oxide used in the present invention is:
Commercially available powdered reagents or industrial products can be used as they are, but if they absorb a large amount of acidic gas or water vapor, a change similar to deliquescence will occur, which may cause clogging when filled and used. Playback may become difficult. Therefore, instead of granulating the basic metal oxide alone, we use a strong carrier, a binder for granulation, an activator to impart porosity to the granulated metal oxide, etc. It is preferable to add it, granulate it into spheres, cylinders, pellets, etc., and ripen it by heat treatment such as heating. Examples of such carriers include commonly used carriers such as titanium oxide, silica gel, alumina, silicon carbide, and pumice. Next, the acid gas adsorption separation method according to the present invention will be specifically explained with reference to the drawings. Figure 2 shows MgO, ZnO and
A method using only an adsorbent (hereinafter referred to as "weakly basic adsorbent") mainly composed of a weakly basic metal oxide consisting of one or more types of BeO is shown. In other words, when air containing carbon dioxide (CO 2 ) and nitrogen dioxide (NO 2 ) is introduced from one end of a packed bed filled with zinc oxide pellets as a weakly basic adsorbent, nitrogen dioxide, a strongly acidic gas, is released. The packed bed adsorbs and collects carbon dioxide, which is a weakly acidic gas, and is released from the other end along with air without being adsorbed. Zinc oxide that has adsorbed nitrogen dioxide can be heated to about 450°C after the inflow of mixed air is stopped and clean air is passed through it to release nitrogen dioxide and regenerate it as an adsorbent. Figure 3 shows a method using two types of adsorbents with different base strengths. That is, similarly to the above, a second packed bed filled with soda lime as a strong basic adsorbent is connected in series to a first packed bed filled with zinc oxide as a weak basic adsorbent. When air containing carbon dioxide and nitrogen dioxide is introduced from the inlet side of the first packed bed, nitrogen dioxide is
In the second packed bed, carbon dioxide is selectively adsorbed and separated, and air containing no acid gas flows out from the second packed bed. FIG. 4 shows a method in which a dehydrating agent and a porous adsorbent are combined in the first and second packed beds shown in FIG. That is,
The inlet side of the first packed bed connected in series is filled with a dehydrating layer filled with a dehydrating agent such as granular sodium sulfate, and the outlet side of the second packed bed is filled with a non-selective porous adsorbent such as activated carbon. The layers are connected and used. In this case, if air containing vapors of non-acidic organic compounds such as hydrocarbons and halogenated hydrocarbons in addition to nitrogen dioxide, carbon dioxide, and water vapor is introduced from the dehydration layer side, water is first removed in the dehydration layer. After nitrogen dioxide and carbon dioxide are sequentially adsorbed and removed in the first and second packed beds, organic vapors are adsorbed and removed in the porous adsorption layer, and from the last layer, clean air containing no acid gas or organic vapors is produced. flows out. In this way, acidic gases and organic vapors are sequentially and selectively adsorbed and separated. In this case as well, after adsorbing a certain amount of nitrogen dioxide in the first packed bed, the inflow of mixed air is stopped, the first packed bed is heated, and clean air is introduced to desorb nitrogen dioxide. The adsorbent can be regenerated. Further, regarding the second packed bed and the porous adsorbent layer, there are cases where desorption and regeneration can be performed in the same manner as described above, and cases where the used adsorbent is taken out from the packed bed and replaced with a new adsorbent.

【実斜䟋】【Example】

次に、この発明を実斜䟋により具䜓的に説明す
る。なお、以䞋の説明においお、郚は重量郚を衚
わす。 実斜䟋  酞化亜鉛20郚、氎酞化アルミニりム10郚、ブド
り糖郚を混合し、次に、党䜓がケヌキ状になる
たで10皀硝酞玄10郚を加え、さらに
45分間混合した。これをペレツト抌出機でペレツ
トずし、空気䞭で550℃たで昇枩し、550℃〜600
℃の間で時間焌成した。これをそのたた自然に
冷华し、酞化亜鉛を䞻䜓ずする吞着剀を調補し
た。 このペレツト状の吞着剀を、内埄20mmのガラス
管に長さ40mmに充填し、二酞化窒玠NO20.49
を含む空気を流速を倉えお導入し、その流出ガス
の䞀郚を第図に枬定装眮に接続し、二酞化窒玠
の挏掩濃床を枬定した結果、぀ぎのような結果を
埗た。 混合空気の流速 NO2の挏掩濃床 ml分 ppm 250 怜出されない 500 〃 1000 50 2000 350 䞊の結果から明らかなように、流速250〜2000
ml分の範囲では、NO2の挏掩濃床は〜
350ppmであり、吞着分離率は原濃床4900ppm
に察し、93以䞊に達し、実甚的䟡倀のきわめお
高いこずがわかる。 実斜䟋  塩基性炭酞亜鉛40郚、氎酞化アルミニりム10郚
および粉末状れオラむト10郚を混合し、党䜓がケ
ヌキ状になるたで10皀硝酞を加えお、さ
らに混合した。これを抌出し成圢機で円筒状粒子
ずし、ロヌタリヌキルンの䞭で550℃たでゆ぀く
り昇枩した。次に550℃〜600℃の間で玄時間焌
成したのち、自然に冷华し、酞化亜鉛を䞻䜓ずす
る吞着剀を調補した。 この円筒状粒子からなる吞着剀を、実斜䟋ず
同様に、内埄20mmのガラス管に40mmに充填し、二
酞化窒玠の濃床を倉えお䞀定流速500ml分
で導入し、その流出ガス䞭の二酞化窒玠の挏掩濃
床を枬定し、぀ぎの結果を埗た。 混合ガス䞭の二酞化窒玠 NO2の挏掩濃床 の濃床 ppm 0.01 怜出されない 0.1 〃 0.5 〃 このデヌタか明らかなように、0.01〜0.5の広
い濃床範囲にわた぀お、NO2の初期挏掩濃床は
怜出されないほど䜎く、その吞着分離特性は安定
しおいる。 発明の効果 この発明によれば、以䞊説明したように、垞枩
で二酞化窒玠を遞択的に吞着分離するこずがで
き、吞着分離された二酞化窒玠は加熱などにより
脱着回収が可胜であり、、吞収剀も再生、再利甚
できるので、省゚ネルギヌおよび省資源の面でも
実甚的䟡倀が高い。 たた、垞枩で吞着分離されるこずから、可動
性、携垯性のよい装眮ずしお蚭蚈するこずがで
き、分析装眮などの小芏暡な甚途にも圹立぀。
Next, the present invention will be specifically explained using examples. In addition, in the following description, parts represent parts by weight. Example 1 Mix 20 parts of zinc oxide, 10 parts of aluminum hydroxide, and 1 part of glucose, then add dilute nitric acid (approximately 10 parts) until the whole becomes cake-like (1:10), and then
Mixed for 45 minutes. This is made into pellets using a pellet extruder, heated to 550℃ in air, and then heated to 550℃~600℃.
It was baked for 2 hours at ℃. This was naturally cooled as it was to prepare an adsorbent mainly composed of zinc oxide. This pellet-like adsorbent was filled in a glass tube with an inner diameter of 20 mm to a length of 40 mm, and nitrogen dioxide NO 2 (0.49%) was filled.
The leaked nitrogen dioxide concentration was measured by introducing air containing nitrogen dioxide at different flow rates and by connecting a portion of the effluent gas to the measuring device shown in Figure 1.The following results were obtained. Mixed air flow rate NO 2 leakage concentration (ml/min) (ppm) 250 Not detected 500 〃 1000 50 2000 350 As is clear from the above results, the flow rate is 250 to 2000
In the ml/min range, the leakage concentration of NO2 is 0~
350ppm, and the adsorption separation rate is the original concentration (4900ppm)
However, it reached over 93%, which shows that it has extremely high practical value. Example 2 40 parts of basic zinc carbonate, 10 parts of aluminum hydroxide and 10 parts of powdered zeolite were mixed, and dilute nitric acid was added and further mixed until the whole became cake-like (1:10). This was formed into cylindrical particles using an extruder, and the temperature was slowly raised to 550°C in a rotary kiln. Next, the mixture was calcined at 550°C to 600°C for about 2 hours, and then naturally cooled to prepare an adsorbent mainly composed of zinc oxide. Similar to Example 1, this adsorbent made of cylindrical particles was filled to a depth of 40 mm in a glass tube with an inner diameter of 20 mm, and the concentration of nitrogen dioxide was varied at a constant flow rate (500 ml/min).
The leaked concentration of nitrogen dioxide in the effluent gas was measured, and the following results were obtained. Concentration of leakage concentration of nitrogen dioxide NO 2 in mixed gas (%) (ppm) 0.01 Not detected 0.1 〃 0.5 〃 As is clear from this data, the initial leakage of NO 2 over a wide concentration range of 0.01 to 0.5 The concentration is so low as to be undetectable, and its adsorption and separation properties are stable. Effects of the Invention According to the present invention, as explained above, nitrogen dioxide can be selectively adsorbed and separated at room temperature, and the adsorbed and separated nitrogen dioxide can be desorbed and recovered by heating, etc. Since it can also be recycled and reused, it has high practical value in terms of energy and resource conservation. In addition, since adsorption separation occurs at room temperature, it can be designed as a device with good mobility and portability, and is useful for small-scale applications such as analytical devices.

【図面の簡単な説明】[Brief explanation of drawings]

第図は皮々の固䜓による二酞化窒玠の吞着特
性を枬定する装眮の説明図である。第図、第
図および第図は、それぞれ本発明の方法の実斜
態様を瀺す説明図である。   窒玠ボンベ、  流量調節装
眮、  二酞化窒玠発生噚、  恒枩槜、
  吞着剀充填局、  オヌトサンプラヌ、
  ガスクロマトグラフ。
FIG. 1 is an explanatory diagram of an apparatus for measuring the adsorption characteristics of nitrogen dioxide by various solids. Figures 2 and 3
FIG. 4 is an explanatory diagram showing an embodiment of the method of the present invention, respectively. 1... Nitrogen cylinder, 2A, 2B... Flow rate adjustment device, 3... Nitrogen dioxide generator, 4... Constant temperature bath, 5
... Adsorbent packed bed, 6 ... Auto sampler, 7


Gas chromatograph.

Claims (1)

【特蚱請求の範囲】  匷酞性ガスである二酞化窒玠ず、匱酞性ガス
である炭酞ガスおよびたたは非酞性ガスずの
混合ガスを、MgO、ZnOおよびBeOの皮たた
は皮以䞊からなる匱塩基性金属酞化物を䞻䜓ず
する吞着剀に接觊させ、二酞化窒玠を遞択的に吞
着するこずを特城ずする酞性ガスの吞着分離法。  匱塩基性金属酞化物を、アルミナ、シリカゲ
ル、酞化チタン、シリコンカヌバむドおよび軜石
の皮たたは皮以䞊の担䜓に担持しおなる吞着
剀を甚いる特蚱請求の範囲第項に蚘茉の酞性ガ
スの吞着分離法。  匷酞性ガスである二酞化窒玠ず、匱酞性ガス
である炭酞ガスおよび非酞性ガスずの混合ガス
を、MgO、ZnOおよびBeOの皮たたは皮以
䞊からなる匱塩基性金属酞化物を䞻䜓ずする吞着
剀を充填した第充填局に導入しおこの混合ガス
䞭の二酞化窒玠を遞択的に吞着分離し、぀いで第
充填局から流出した混合ガスを匷塩基性金属酞
化物を䞻䜓ずする吞着剀を充填した第充填局に
導入し、混合ガス䞭の炭酞ガスを遞択的に吞着分
離し、非酞性ガスを第充填局から流出させるこ
ずを特城ずする酞性ガスの遞択的逐次吞着分離
法。  前蚘第充填局ぞの導入に先立぀お、混合ガ
スを脱氎剀を充填した脱氎局を通し、ガス䞭の氎
分を陀去する工皋を含む特蚱請求の範囲第項に
蚘茉の酞性ガスの遞択的逐次吞着分離法。  前蚘第充填局から流出した混合ガスを、掻
性炭、れオラむトなどの倚孔性吞着剀を充填した
局に導入しお有機物を吞着陀去する工皋を含む特
蚱請求の範囲第項たたは第項に蚘茉の酞性ガ
スの遞択的逐次吞着分離法。
[Claims] 1. A mixed gas of nitrogen dioxide, which is a strongly acidic gas, and carbon dioxide, which is a weakly acidic gas, and/or a non-acidic gas, is made of one or more of MgO, ZnO, and BeO. An adsorption separation method for acidic gases, which is characterized by selectively adsorbing nitrogen dioxide by bringing it into contact with an adsorbent mainly composed of weakly basic metal oxides. 2. Acidic gas according to claim 1 using an adsorbent in which a weakly basic metal oxide is supported on one or more carriers of alumina, silica gel, titanium oxide, silicon carbide, and pumice. adsorption separation method. 3 A mixed gas of nitrogen dioxide, which is a strongly acidic gas, and carbon dioxide gas, which is a weakly acidic gas, and a non-acidic gas is mixed with a weakly basic metal oxide mainly consisting of one or more of MgO, ZnO, and BeO. Nitrogen dioxide in this mixed gas is selectively adsorbed and separated by introducing it into a first packed bed filled with an adsorbent, and then the mixed gas flowing out from the first packed bed is made into a mixture containing mainly strong basic metal oxides. Selective sequential adsorption of acidic gas, which is characterized by introducing the adsorbent into a second packed bed, selectively adsorbing and separating carbon dioxide gas in the mixed gas, and causing non-acidic gas to flow out from the second packed bed. Separation method. 4. Selection of the acidic gas according to claim 3, which includes the step of passing the mixed gas through a dehydration layer filled with a dehydrating agent to remove moisture in the gas prior to introduction into the first packed bed. sequential adsorption separation method. 5. Claim 3 or 4 includes a step of introducing the mixed gas flowing out from the second packed bed into a bed filled with a porous adsorbent such as activated carbon or zeolite to adsorb and remove organic matter. The selective sequential adsorption separation method for acidic gases described.
JP59252232A 1984-11-28 1984-11-28 Adsorptive separation of acidic gas Granted JPS61129027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59252232A JPS61129027A (en) 1984-11-28 1984-11-28 Adsorptive separation of acidic gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59252232A JPS61129027A (en) 1984-11-28 1984-11-28 Adsorptive separation of acidic gas

Publications (2)

Publication Number Publication Date
JPS61129027A JPS61129027A (en) 1986-06-17
JPH0373326B2 true JPH0373326B2 (en) 1991-11-21

Family

ID=17234352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59252232A Granted JPS61129027A (en) 1984-11-28 1984-11-28 Adsorptive separation of acidic gas

Country Status (1)

Country Link
JP (1) JPS61129027A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2741743B2 (en) * 1994-11-17 1998-04-22 工業技術院長 High temperature separation of carbon dioxide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5077293A (en) * 1973-09-14 1975-06-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5077293A (en) * 1973-09-14 1975-06-24

Also Published As

Publication number Publication date
JPS61129027A (en) 1986-06-17

Similar Documents

Publication Publication Date Title
JP4315666B2 (en) Syngas purification method
JP5608184B2 (en) Zeolite adsorbent, process for obtaining it and use for removing carbonate from gas streams
US7455718B2 (en) Silver-exchanged zeolites and methods of manufacture therefor
JP2000033218A (en) Method and apparatus for psa device using mixture of adsorbent
US20050000357A1 (en) Method of removing mecury from exhaust gases
JPH10263392A (en) Adsorption of carbon dioxide and water and adsorbent
US5414201A (en) Combined sorbent/catalyst system
Chang et al. A high effective adsorbent of NOx: Preparation, characterization and performance of Ca-beta zeolites
Cho et al. LiOH-embedded zeolite for carbon dioxide capture under ambient conditions
CN105026313A (en) Purification of argon through liquid phase cryogenic adsorption
US3363401A (en) Process for the recovery of gaseous sulphuric compounds present in small quantities in residual gases
FI111245B (en) A process for separating ammonia from a gas mixture and using an adsorbent composition for this separation
JPS59160534A (en) Adsorbent for mercury vapor and treatment of mercury vapor-containing gas
JP6671204B2 (en) Gas separation equipment
KR100941399B1 (en) Apparatus and method for processing exhaust gas
JPH0549918A (en) Carbon dioxide adsorbent
JP2019512384A (en) Temperature swing adsorption method
JPH0373326B2 (en)
WO2010113173A2 (en) A barium and potassium exchanged zeolite-x adsorbents for co2 removal from a gas mixture and preparation thereof
JPH06296858A (en) Acid gas absorbent
GB2238489A (en) Adsorption method and apparatus
RU2288209C1 (en) Method of producing methanol
JP4438145B2 (en) Carbon monoxide adsorption separation method
RU2040312C1 (en) Method and apparatus to purify drainage gasses from nitrogen oxides
RU2288026C1 (en) Method of removing methanol vapors from gas mixtures

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term