JPH0373132A - Nuclear magnetic resonance image information leading out device - Google Patents

Nuclear magnetic resonance image information leading out device

Info

Publication number
JPH0373132A
JPH0373132A JP2104601A JP10460190A JPH0373132A JP H0373132 A JPH0373132 A JP H0373132A JP 2104601 A JP2104601 A JP 2104601A JP 10460190 A JP10460190 A JP 10460190A JP H0373132 A JPH0373132 A JP H0373132A
Authority
JP
Japan
Prior art keywords
magnetic field
coil
static magnetic
main static
solenoid coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2104601A
Other languages
Japanese (ja)
Other versions
JPH0410815B2 (en
Inventor
Hideo Toyoshima
豊島 日出夫
Masaya Yamashita
昌哉 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2104601A priority Critical patent/JPH0373132A/en
Publication of JPH0373132A publication Critical patent/JPH0373132A/en
Publication of JPH0410815B2 publication Critical patent/JPH0410815B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To allow the selective use of an RF coil always adequate in an inspection section with a high detection sensitivity by allowing the selection of a solenoid coil in a horizontal direction where the axial direction intersects nearly orthogonally with the main static magnetic field and a surface coil for a high-frequency magnetic field to be applied with the coil plane. CONSTITUTION:Opposite magnetic poles 31, 32 are disposed on the right and left of a human body 28 and the direction of the main static magnetic field 33 is set horizontal and is further set perpendicular to the body axis of a body 28 to be inspected. The solenoid coil 26 for RF is disposed in this main static magnetic field 33. The axial direction of the solenoid coil 26 is horizontal. In addition, this direction intersects perpendicularly with the direction of the main static magnetic field 33. The solenoid coil 26 which allows RF detection with a high sensitivity is usable when the entire part of the tomographic image of the head, body or other parts of the body 28 to be inspected is going to be uniformly photographed. The plane of the surface coil 35 is placed under the body 28 to be inspected or placed thereon and the RF detection is similarly executable with the high sensitivity when the narrow range is to be preponderantly inspected.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は核磁気共鳴信号を用いて被験体から画像情報
を導出する装置に関し、特にその静磁場と、高周波磁場
と、被験体との関係配置に係わる。
[Detailed Description of the Invention] "Industrial Application Field" This invention relates to a device for deriving image information from a subject using nuclear magnetic resonance signals, and in particular the relationship between its static magnetic field, high-frequency magnetic field, and the subject. Related to placement.

「従来の技術」 核磁気共鳴(以下、NMRと記す)信号を用いて被験体
から画像情報を導出する装置(以下、NMR−CTと記
す〉については、例えば特開昭57−6347号公報、
昭和57年秀潤社発行雑誌「画像診断」2巻1号20〜
42頁などに示されている。
"Prior Art" Regarding a device (hereinafter referred to as NMR-CT) that derives image information from a subject using nuclear magnetic resonance (hereinafter referred to as NMR) signals, for example, Japanese Patent Laid-Open No. 57-6347,
Magazine “Image Diagnosis” published by Shujunsha in 1981, Vol. 2, No. 1, 20~
It is shown on page 42, etc.

そもそもNMR現象は、ある原子核を静磁場中に置いた
とき、これらが静磁場の強さに比例した特定の周波数を
持つ高周波磁場(以下、RFと記す)の、静磁場と垂直
な成分と共鳴し、原子核が静磁場の印加方向を軸として
そのまわりを前記周波数(共鳴周波数)で歳差運動する
事により、そのエネルギーを吸収して励起され、さらに
RFによる励起が終わると、吸収したRFエネルギーの
一部をNMR信号として放出しながら緩和するという事
実に依るものである。この共鳴周波数は、ラーモアの周
波数として知られており、ω。−T・+(、により与え
られる。ただし、γは原t′−核の磁気回転比、H8は
静磁場の強きである。
In the first place, the NMR phenomenon is that when certain atomic nuclei are placed in a static magnetic field, they resonate with a component perpendicular to the static magnetic field of a radio frequency magnetic field (hereinafter referred to as RF) that has a specific frequency proportional to the strength of the static magnetic field. When the atomic nucleus precesses around the applied direction of the static magnetic field at the frequency (resonance frequency), it absorbs that energy and is excited, and when the excitation by RF ends, the absorbed RF energy This is due to the fact that it relaxes while emitting a part of it as an NMR signal. This resonant frequency is known as the Larmor frequency and is ω. -T.+(, where γ is the gyromagnetic ratio of the original t'-nucleus, and H8 is the strength of the static magnetic field.

そこで方向は主静磁場と同しであり、かつ、ある特定の
方向に沿って強さが変化する磁場、いわゆる傾斜磁場を
、空間的に均一な生酔るR場に重畳して印加すると、R
Fにより前記特性方向の各座標にある原子核(以下、核
スピンど紀す)は異なった周波数で歳差運動をする事に
なる。
Therefore, when a magnetic field whose direction is the same as the main static magnetic field and whose strength changes along a certain direction, a so-called gradient magnetic field, is applied superimposed on the spatially uniform raw R field, R
Due to F, the atomic nuclei at each coordinate in the characteristic direction (hereinafter referred to as nuclear spin displacement) precess at different frequencies.

この性質を工5みに利用する事で、N M R信号に含
まれている情報(核スピンの密度・緩和時間等)の空間
分布を求めるのが、N M R−CTであると言ってよ
い。第3図は、N M R−CTの構成要素をブlコッ
ク図によって具体的に示り、たものである。
It can be said that NMR-CT uses this property to obtain the spatial distribution of information (nuclear spin density, relaxation time, etc.) contained in the NMR signal. good. FIG. 3 specifically shows the constituent elements of NMR-CT using a Brookcock diagram.

主静磁場発生磁石11により被験体(図、I夫セず)に
主静磁場が与えられ、さらに傾斜磁場発生コイル12に
より傾斜磁場が被験体にりえられる。この傾斜磁場の向
きは前記主静磁場と1Til〜・方向であり、かつ互い
に交差した三つの方向において強さが傾斜したものであ
り、この+i場構構成より被験体の空間情報を弁別でき
るようにされる。送信機13から共鳴周波数帯域のPF
電力がRFコイル14に供給され、RFコイル14から
前記to磁場と垂直なRF磁場を被験体に印加し、その
結果、発生した被験体からのNMR(、djはRFコイ
ル14で受信されて受信機15へ供給される。受(3機
15でNMR信号は増幅検波された後、A / I)変
)?Rit16°でデジタルイス1号に変換される。そ
のデジタル悟性は計算m17に人力されて画像再構成等
の計算がされ、この剖算で映像化された画像は表711
器18に表示される。主静磁場発生手段11は静磁場発
生f段19より励磁され、また傾斜磁場発生コイル12
は傾斜VA場発生手段21により励磁される。
A main static magnetic field is applied to the subject (not shown in the figure) by the main static magnetic field generating magnet 11, and a gradient magnetic field is applied to the subject by the gradient magnetic field generating coil 12. The direction of this gradient magnetic field is 1Til ~ · direction with respect to the main static magnetic field, and the strength is gradient in three mutually intersecting directions, so that the spatial information of the subject can be discriminated from this +i field structure. be made into PF in the resonant frequency band from the transmitter 13
Power is supplied to the RF coil 14, which applies an RF magnetic field perpendicular to the to magnetic field to the subject, so that the generated NMR (, dj) from the subject is received by the RF coil 14. Supplied to machine 15. Reception (after the NMR signal is amplified and detected by three machines 15, A/I) is changed)? Converted to digital chair No. 1 with Rit 16°. The digital intelligence is manually input to the calculation m17 to perform calculations such as image reconstruction, and the image visualized by this autopsy is shown in Table 711.
displayed on the display 18. The main static magnetic field generating means 11 is excited by the static magnetic field generating f stage 19, and the gradient magnetic field generating coil 12
is excited by the gradient VA field generating means 21.

主静磁場発生磁石11及び傾斜磁場発生コイル12より
それぞれ発生ずる磁場の方fil] (以下、2静磁場
方向己記す)がRFコイルI4で発生または検出するR
F[場の方向(以)’、RF方向と記す)と直交する様
な磁場発生構造のときに、最も効率よ< RFの印加及
び検出が可能となる。この条件を満た寸゛ために、NM
R−C′rは1.磁場発生構造上から二つのグループに
大別される。グループlは、主静磁場発生手段(f11
石)による+0磁場方向と被験体をその主静磁場内に導
入導出する方向とが乗直な場合であり、グループ2はこ
れら両方向が写、いに平行な場合である。
The direction of the magnetic field generated by the main static magnetic field generating magnet 11 and the gradient magnetic field generating coil 12 (hereinafter referred to as two static magnetic field directions) is generated or detected by the RF coil I4.
The most efficient RF application and detection is possible when the magnetic field generation structure is perpendicular to F [field direction (hereinafter referred to as RF direction)]. In order to satisfy this condition, NM
R−C′r is 1. They are roughly divided into two groups based on their magnetic field generation structure. Group l is the main static magnetic field generating means (f11
This is a case in which the direction of the +0 magnetic field caused by the magnetic field (Group 2) is perpendicular to the direction in which the subject is introduced into the main static magnetic field, and Group 2 is a case in which these two directions are almost parallel.

現在NMR−CT用として考えられる主静磁場発生手段
(磁石)を分iすると、第4図に示す様になる。この内
、永久磁【Iた鉄心電磁イiとはその構造1−グループ
1になり、超電導磁石(形状がコイル状になっている)
はグループ2にならざるを得ないと言われている。この
点、常電71!磁而は設計上、グループlにもグループ
2にもなり得る。
If the main static magnetic field generating means (magnet) currently considered for NMR-CT is divided, it becomes as shown in FIG. Among these, the permanent magnet [I iron core electromagnetic I] is the structure 1-Group 1, and is a superconducting magnet (the shape is coil-like).
It is said that there is no choice but to fall into Group 2. On this point, regular electricity 71! Magnets can be in group I or group 2 by design.

これに対しRFコイルは、先に述べた様に+0磁場方向
とRF力方向の直交条件があるため、使用する磁石がグ
ループ1の場合ソレノイドコイルを用い、グループ2の
場合鞍(くら)型コイルを用いる事が多い。
On the other hand, with RF coils, as mentioned earlier, there is a condition that the +0 magnetic field direction and the RF force direction are orthogonal, so if the magnet used is Group 1, a solenoid coil is used, and if the magnet is Group 2, a saddle type coil is used. is often used.

NMR信号を検出するl’?Fコイルの感度は、当然N
MR−CTのS/Nを決める重要な要素の一つである6
NMII−CTにおけるS/Nを決める他の要素として
は、例えば、磁場強度、イメージング方式等が挙げられ
る。ソレノイドコイルは鞍型コイルより、RF検出感度
の面で約3倍優れているが、最近さらに高い検出感度を
求める要求が強<3.検査部位(体表面に近い部位に限
る)によっては、−ICにす・−フェスコイルと呼ばれ
るR F検出用のコイルを用いる事が多くなってきてい
る。
l'? to detect the NMR signal? The sensitivity of the F coil is naturally N
It is one of the important factors that determines the S/N of MR-CT6
Other factors that determine the S/N in NMII-CT include, for example, magnetic field strength, imaging method, and the like. Solenoid coils are about three times better in RF detection sensitivity than saddle-shaped coils, but recently there has been a strong demand for even higher detection sensitivity. Depending on the area to be examined (limited to areas close to the body surface), an RF detection coil called an IC face coil is increasingly being used.

このザー°ノ1丁スコイルは通常第5図に示す様に、X
I−簡約で渦巻状の形をしており、サーフェスご2イル
により検出するR Fの方1ii1はそのコイル平面に
対して垂直力1i+1である。従ってlJ′−フ五スコ
イルは、通常このコイル平面を検査部位の表面に対し゛
C並行にあてがうような形で用いられる。
This coil is normally used as shown in Figure 5.
I-reduced and has a spiral shape, the RF direction 1ii1 detected by the surface of the coil is a force 1i+1 normal to the plane of the coil. Therefore, the lJ'-fiber coil is normally used in such a way that the plane of the coil is placed parallel to the surface of the test site.

NMR−CTにおける被験体は、そのはとんとか人体で
ある。サーフェスコイルを用いて人体を検査する場合1
.その主な検査部位は、眼、乳房、を椎、心臓、肝藏、
腎臓等である。人体は横断面において前後力向より左右
方向の寸法が大きい楕円型であり、かつこの横断面の寸
法より身長方向の寸法が圧倒的に大きいという形状であ
る。また、NMR−CTでは、被験者が水平にあおむけ
、またはうつぶせになって横たわった状態で検査を受け
るのが普通である。これらの事を考え合わせると、サー
フェスコイルはそのコイル平面を前記のように横たわっ
た人体の前面または背面に並行にあてがい、検出するR
F力方向鉛直になるようにして使用することが好ましい
The subject in NMR-CT is a human body. When inspecting the human body using a surface coil 1
.. The main areas examined are the eyes, breasts, vertebrae, heart, liver,
Kidneys, etc. The human body has an elliptical cross-sectional shape in which the dimension in the left-right direction is larger than in the front-rear force direction, and the dimension in the height direction is overwhelmingly larger than the dimension in the cross-section. Furthermore, in NMR-CT, the test subject is usually examined while lying horizontally on his or her back or stomach. Taking these things into consideration, surface coils detect R by applying the coil plane parallel to the front or back of a lying human body as described above.
It is preferable to use it so that it is perpendicular to the F force direction.

「発明が解決しようとする課題」 サーフェスコイルの検出するRF力方向鉛直とするには
、先に述べた静VjL場方向と該RF力方向直交条件に
より、静磁場方向を水平にしなくてはならない。
"Problem to be Solved by the Invention" In order to make the direction of RF force detected by the surface coil vertical, the direction of the static magnetic field must be made horizontal according to the above-mentioned condition of perpendicularity to the direction of the static VjL field and the direction of the RF force. .

主静磁場と、それと同一方向でかつ互いに交差した三つ
の方向において強さが傾斜した傾斜磁場を用いた磁場勾
配法によるNMR−CTにおいては、グループ2の磁石
系における主静磁場方向は、横たわった人体の体軸と並
行であっても、もともと水平方向である。しかしながら
、グループ1の磁石系の場合、従来主静磁場方向が鉛直
方向の物しか造られていない、すなわち永久磁石を用い
た主静磁場発生手段は第6図に示すように永久磁石の異
なる磁極22.23は互いに対向して上下に配されると
共に磁気ヨーク24で互いに連結され、磁極22.23
の対向面間に鉛直方向の主静磁場25が形成される。こ
の主静磁場25内に例えばRFFソレノイドコイル26
が配され、ソレノイドコイル26は軸心は水平でかつ主
静磁場25に車面とされている。ソレノイドコイル26
内に台板27がソレノイドコイル26の軸心と平行に出
入自在に水平に配され、台板27上に被験体28が配さ
れる。また常電導磁石を用いた主静磁場発生手段は第7
図に示すように主静磁場コイル31゜32が上下に対向
して配され、これら主静磁場コイル31.32の軸心は
鉛直でかつ同一線上にあり、これらコイル31.32間
に図に示してないが例えばRFソレノイドコイルが配さ
れ、また台板27が配される。
In NMR-CT using the magnetic field gradient method, which uses a main static magnetic field and gradient magnetic fields with gradient strengths in the same direction as the main static magnetic field and in three directions that cross each other, the main static magnetic field direction in the group 2 magnet system is horizontal. Even if it is parallel to the body axis of the human body, it is originally horizontal. However, in the case of Group 1 magnet systems, conventionally only those with the main static magnetic field direction in the vertical direction have been manufactured.In other words, the main static magnetic field generating means using a permanent magnet has different magnetic poles of the permanent magnet as shown in Figure 6. 22 and 23 are arranged above and below to face each other and are connected to each other by a magnetic yoke 24, and the magnetic poles 22 and 23
A main static magnetic field 25 in the vertical direction is formed between the opposing surfaces. For example, an RFF solenoid coil 26 is placed within this main static magnetic field 25.
The axis of the solenoid coil 26 is horizontal, and the main static magnetic field 25 faces the vehicle surface. Solenoid coil 26
A bed plate 27 is arranged horizontally in parallel with the axis of the solenoid coil 26 so as to be freely removable and removable, and a subject 28 is placed on the bed plate 27. In addition, the main static magnetic field generating means using a normal conducting magnet is the seventh
As shown in the figure, main static magnetic field coils 31 and 32 are arranged vertically and oppositely, and the axes of these main static magnetic field coils 31 and 32 are vertical and on the same line. Although not shown, for example, an RF solenoid coil and a base plate 27 are provided.

このように従来のグループ1の磁石系では、静磁場方向
が鉛直方向であるため、サーフェスコイルのR,F方向
を鉛直にして用いる事ができず、その特性を有効に発揮
することができないと言う問題があった。
In this way, in conventional Group 1 magnet systems, the direction of the static magnetic field is vertical, so the R and F directions of the surface coil cannot be used vertically, and the characteristics cannot be effectively demonstrated. There was a problem.

この発明の目的は、鞍型コイルよりRFF出感度が約3
倍優れているソレノイドコイルを使う事ができるグルー
プ1の磁石系において、該ソレノイドコイルと人体表面
近くの検査に有効なサーフェスコイルを高い検出感度で
選択使用可能なNMR−CTを提供する事にある。
The purpose of this invention is to increase the RFF output sensitivity by about 3% compared to the saddle type coil.
To provide an NMR-CT that can selectively use the solenoid coil and a surface coil effective for inspection near the human body surface with high detection sensitivity in a Group 1 magnet system that can use a solenoid coil that is twice as superior. .

「課題を解法するための手段」 前記目的を達成するための本発明の核磁気共鳴画像情報
導出装置は、主静磁場を形成する主静磁場発生手段と、
主静磁場と同一方向でかつ互いに交差した三つの方向に
おいて傾斜した傾斜磁場を形成する傾斜磁場形成手段と
、高周波磁場用ソレノイドコイルとを備えた核磁気共鳴
画像導出装置において、 前記主静磁場発生手段の主静磁場は水平方向に形成され
、前記ソレノイドコイルは前記主静磁場内に配置される
と共に、その軸方向が前記主静磁場とはX垂直に交差し
た水平方向とされ、画像情報を導出する際に、前記ソレ
ノイドコイルと該ソレノイドコイル内に導入される被験
体の水平表面にコイル平面をあてがって使用するための
高周波磁場用のサーフェスコイルとを選択できるように
構成したことを特徴とする核磁気共鳴画像導出装置。
"Means for Solving the Problem" A nuclear magnetic resonance image information deriving device of the present invention for achieving the above object includes main static magnetic field generating means for forming a main static magnetic field;
In a nuclear magnetic resonance image derivation apparatus comprising a gradient magnetic field forming means for forming gradient magnetic fields tilted in three directions that are the same as the main static magnetic field and intersect with each other, and a high-frequency magnetic field solenoid coil, the main static magnetic field generation The main static magnetic field of the means is formed in the horizontal direction, and the solenoid coil is disposed within the main static magnetic field, and its axial direction is in the horizontal direction that intersects the main static magnetic field perpendicularly to the main static magnetic field. When deriving the magnetic field, the solenoid coil and a surface coil for high-frequency magnetic field, which is used by applying the coil plane to the horizontal surface of the subject introduced into the solenoid coil, are configured so as to be selectable. Nuclear magnetic resonance image derivation device.

本発明における主静磁場発生手段としては永久磁石、電
磁石のいずれも使用することができる。
As the main static magnetic field generating means in the present invention, either a permanent magnet or an electromagnet can be used.

傾斜磁場形成手段としては一般にコイルが使用される。A coil is generally used as the gradient magnetic field forming means.

NMR信号を検出するRFコイルとしては、前述のよう
に検出感度の高いソレノイドコイルが使用される。この
ソレノイドコイルは通常RF発発生上しても共用される
。ただし、RF光発生限れば検出感度を問題にする必要
はないので鞍型コイル等でもよい。
As the RF coil for detecting the NMR signal, a solenoid coil with high detection sensitivity is used as described above. This solenoid coil is usually shared even when RF generation occurs. However, as long as RF light is generated, there is no need to worry about detection sensitivity, so a saddle-shaped coil or the like may be used.

サーフェスコイルとしては、第5図に示したような平面
的で渦巻状の形をしたものが好適に用いられる、一般に
サーフェスコイルは被験体の表向局部を検査するための
比較的小さな一4法のコイルであるから、通常はNMR
信号を検出するために用いられる。従っC、サーフェス
コイルを使用するときはRF発生用にはml記ソレノイ
ドコイル等が用いられる。
As the surface coil, a flat, spiral-shaped one as shown in Fig. 5 is suitably used.Surface coils are generally used for relatively small scales for inspecting superficially local parts of a subject. Since it is a coil of
Used to detect signals. Therefore, when using a surface coil, a solenoid coil or the like is used for RF generation.

NMR信号を検出し、画像情報を導出する際に、前記ソ
レノイドコイルとサーフェスコイルをm 択するには、
ソレノイドコイルの出力と別途用意されるサーフェスコ
イルの出力の配線替えを象ることによって容易に行える
。また、その配線替えを切換スイッチで行ってもよい。
To select the solenoid coil and the surface coil when detecting an NMR signal and deriving image information,
This can be easily done by rewiring the solenoid coil output and the separately prepared surface coil output. Further, the wiring may be changed using a changeover switch.

「実施例1j 第1図はこの発明に、↓、るNMR−CTにおいて永久
磁石による主静磁場形成手段によって、主静磁場を形成
する例を示す。(WCお、幀斜磁陽形成手段は別途コイ
ルを使用するが図中省絡され°ζいる。)この実施例で
は永久磁石の異なる磁極31゜32が7g−いに対向し
て水平方向に配列し、て設けられ、磁極31.32の対
向面間に水平方向の主静磁場33が形成される。この主
静磁場33内にR1パ用ソレノイドコイル26が配され
る。ソレノイドコイル26の軸方向は水平力向であり、
かつ主静磁場33の方向と垂直に交差している。ソレノ
イドコイル26内の台板27がその軸プJ向と平行な方
向に出入自在に配され、台板27上に被験体28が配さ
れる。つまり被験体28は水平力向から主静磁場33と
垂直にその主静磁場33内に環入、導出される。磁極3
1.32は磁気ヨーク34で互いに連結されている。つ
まり対向する磁極31.32が人体(被験体)28に対
し°ζhも′に配置され、主静磁場33の方向が水平と
され、さらに被験体28の体軸に対し、て垂直とされて
いる。
Embodiment 1j Figure 1 shows an example in which a main static magnetic field is formed by a main static magnetic field forming means using a permanent magnet in NMR-CT according to the present invention. (Although a separate coil is used, the circuit is omitted in the figure.) In this embodiment, different magnetic poles 31 and 32 of the permanent magnet are arranged horizontally, facing each other at 7g. A main static magnetic field 33 in the horizontal direction is formed between the opposing surfaces of the R1 pa solenoid coil 26 is arranged within this main static magnetic field 33.The axial direction of the solenoid coil 26 is the horizontal force direction,
And it intersects perpendicularly with the direction of the main static magnetic field 33. A base plate 27 within the solenoid coil 26 is disposed so as to be movable in and out in a direction parallel to the axis of the solenoid coil 26, and a subject 28 is disposed on the base plate 27. That is, the subject 28 is introduced into and led out of the main static magnetic field 33 perpendicularly to the main static magnetic field 33 from the horizontal force direction. magnetic pole 3
1.32 are connected to each other by a magnetic yoke 34. In other words, the opposing magnetic poles 31 and 32 are placed at an angle of °ζh with respect to the human body (subject) 28, and the direction of the main static magnetic field 33 is horizontal and perpendicular to the body axis of the subject 28. There is.

この構成であるため1.′fJj1.!!!体280頭
と力1司2=かの断層像全体を均一に撮影する場合は、
高感度でRF検出のできるソレノイドコイル26を用い
る事ができ、また狭い範囲を重点的に検査する場合には
、サーフェスコイル35の平面を被験体2))の下にひ
いたり正に乗セて、同様に高感度でR1−’検出をする
ことができる。
Because of this configuration, 1. 'fJj1. ! ! ! If you want to uniformly image the entire tomographic image of 280 bodies and 1 force and 2 forces,
A solenoid coil 26 capable of highly sensitive RF detection can be used, and when inspecting a narrow area, the plane of the surface coil 35 can be placed below or directly above the subject 2). , similarly, R1-' can be detected with high sensitivity.

「実施例2」 主静磁場形成手段として常電導磁Ziを用いる場合は、
例えば第2図にホずように静磁場コイル36.37は水
平力間にtJ 1i11 して配列され、その軸心は水
′1Lとされて水平ノノ向に主静磁場が形成され、これ
ら静磁場コイル36.37開にRF用ソレノイド:1イ
ル26、台板27が配される。1]静磁場コイル36.
37は電源38により励磁される。
"Example 2" When using normally conductive magnetic Zi as the main static magnetic field forming means,
For example, as shown in Fig. 2, the static magnetic field coils 36 and 37 are arranged with tJ 1i11 between the horizontal forces, and their axis is set to water '1L, so that a main static magnetic field is formed in the horizontal direction. An RF solenoid: 1 coil 26 and a base plate 27 are arranged at the opening of the magnetic field coils 36 and 37. 1] Static magnetic field coil 36.
37 is excited by a power source 38.

なお、X、”I/、Z方向のそれぞれの傾斜磁場形成手
段としては、図示されていない三つのコイ5し及びそれ
らの電源等によって横1戊されている。
The gradient magnetic field forming means in the X, I/, and Z directions are horizontally connected by three coils 5 (not shown) and their power supplies.

「発明の効果」 以J:述べたように、この発明のNMR−CTにおいて
は、検出感度が高いソレノイドコイル及びサーフェスコ
イルの両者のいずれの特性も有効に発揮させて用いる事
ができる。従って常に検査部位にR適なRFコイルを選
択して使用する事が可能である。
"Effects of the Invention" As stated above, in the NMR-CT of the present invention, the characteristics of both the solenoid coil and the surface coil, both of which have high detection sensitivity, can be effectively utilized. Therefore, it is possible to always select and use an RF coil suitable for the inspection site.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は永久磁石を用いた場合のこの発明のNM R−
CTの要部を示ず図、第2図は常電導磁11を用いた場
合のこの発明のN M R−Ci”の要部を;Jkず図
、第3図はN M R−、、−CTの一例を示すブUノ
ク図、第4図は静fti場発11ミ丁・段(磁石)の分
類を示す図、第5図はサーフェスコイルの形状を示す図
、第6図は従来のN M R−CT用永久磁石をホず図
、第7図は従来のN M R−CT用常電導磁イ1を示
す図である。
Figure 1 shows the NMR- of this invention when a permanent magnet is used.
The main part of the CT is not shown, and Fig. 2 shows the main part of the NMR-Ci'' of this invention when a normal conductive magnet 11 is used; - Figure 4 is a diagram showing an example of CT, Figure 4 is a diagram showing the classification of 11 stages (magnets) from the static fti field, Figure 5 is a diagram showing the shape of a surface coil, Figure 6 is a diagram showing the conventional FIG. 7 is a diagram showing a conventional normal conductive magnet for NMR-CT.

Claims (1)

【特許請求の範囲】[Claims] (1)主静磁場を形成する主静磁場形成手段と、その主
静磁場と同一方向でかつ互いに交差した三つの方向にお
いて傾斜した傾斜磁場を形成する傾斜磁場形成手段と、
高周波磁場用ソレノイドコイルとを備えた核磁気共鳴画
像情報導出装置において、 前記主静磁場形成手段の主静磁場は水平方向に形成され
、前記ソレノイドコイルは前記主静磁場内に配置される
と共に、その軸方向が前記主静磁場とほゞ垂直に交差し
た水平方向とされ、画像情報を導出する際に、前記ソレ
ノイドコイルと該ソレノイドコイル内に導入される被験
体の水平表面にコイル平面をあてがって使用するための
高周波磁場用のサーフェスコイルとを選択できるように
構成したことを特徴とする核磁気共鳴画像導出装置。
(1) a main static magnetic field forming means for forming a main static magnetic field; a gradient magnetic field forming means for forming gradient magnetic fields tilted in three directions that are the same direction as the main static magnetic field and intersect with each other;
In a nuclear magnetic resonance image information deriving device comprising a solenoid coil for a high frequency magnetic field, the main static magnetic field of the main static magnetic field forming means is formed in a horizontal direction, the solenoid coil is disposed within the main static magnetic field, and Its axial direction is a horizontal direction that intersects the main static magnetic field almost perpendicularly, and when deriving image information, the plane of the coil is applied to the horizontal surface of the solenoid coil and the subject introduced into the solenoid coil. A nuclear magnetic resonance image deriving device characterized in that it is configured such that a surface coil for a high frequency magnetic field can be selected for use in a nuclear magnetic resonance image deriving device.
JP2104601A 1990-04-20 1990-04-20 Nuclear magnetic resonance image information leading out device Granted JPH0373132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2104601A JPH0373132A (en) 1990-04-20 1990-04-20 Nuclear magnetic resonance image information leading out device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2104601A JPH0373132A (en) 1990-04-20 1990-04-20 Nuclear magnetic resonance image information leading out device

Publications (2)

Publication Number Publication Date
JPH0373132A true JPH0373132A (en) 1991-03-28
JPH0410815B2 JPH0410815B2 (en) 1992-02-26

Family

ID=14384941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2104601A Granted JPH0373132A (en) 1990-04-20 1990-04-20 Nuclear magnetic resonance image information leading out device

Country Status (1)

Country Link
JP (1) JPH0373132A (en)

Also Published As

Publication number Publication date
JPH0410815B2 (en) 1992-02-26

Similar Documents

Publication Publication Date Title
JP4749417B2 (en) Inspection apparatus using magnetic resonance and coil for receiving nuclear magnetic resonance signal
US4486711A (en) Gradient field coil system for nuclear spin tomography
US7759938B2 (en) Apparatus and method for varying magnetic field strength in magnetic resonance measurements
US5600245A (en) Inspection apparatus using magnetic resonance
US8929626B2 (en) RF antenna arrangement and method for multi nuclei MR image reconstruction involving parallel MRI
US4656423A (en) Nuclear magnetic resonance diagnostic apparatus
US4468622A (en) Gradient coil system for nuclear magnetic resonance apparatus
JPS5848839A (en) Testing device using nuclear magnetic resonance
JP2005515051A (en) Coil system for MR apparatus and MR apparatus provided with the coil system
JPS5940843A (en) Nuclear magnetic resonance apparatus for diagnosis
GB2128746A (en) Method of scanning specifying magnetic field region for nuclear magnetic resonance imaging
JPH04332531A (en) Inspecting device using nuclear magnetic resonance
JPH01128411A (en) Magnet system
US6147495A (en) Magnetic resonance imaging with integrated poleface features
JPS60376A (en) Rf coil device of nuclear magnetic resonance imaging device
JPH0373132A (en) Nuclear magnetic resonance image information leading out device
US4556848A (en) Point sensitive NMR imaging system using a magnetic field configuration with a spatial minimum
JPH05261081A (en) Inspecting system using nuclear magnetic resonance
JPH0248251B2 (en)
US20080214924A1 (en) Magnetic Resonance Spectroscopy
JP3372098B2 (en) Static magnetic field generator for magnetic resonance imaging
JP3748657B2 (en) Magnetic resonance inspection equipment
JPS63311945A (en) Nuclear magnetic resonance tomographic imaging apparatus
JPH05253207A (en) Mri device for medical diagnostic image
JPH04288138A (en) Magnetic resonance device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees