JPH0372097B2 - - Google Patents

Info

Publication number
JPH0372097B2
JPH0372097B2 JP57176080A JP17608082A JPH0372097B2 JP H0372097 B2 JPH0372097 B2 JP H0372097B2 JP 57176080 A JP57176080 A JP 57176080A JP 17608082 A JP17608082 A JP 17608082A JP H0372097 B2 JPH0372097 B2 JP H0372097B2
Authority
JP
Japan
Prior art keywords
microparticles
core material
fluorouracil
microcapsules
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57176080A
Other languages
Japanese (ja)
Other versions
JPS5966425A (en
Inventor
Tamotsu Kondo
Makoto Asano
Kyoharu Hasegawa
Hiroshi Takayanagi
Kazunari Nitsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP17608082A priority Critical patent/JPS5966425A/en
Publication of JPS5966425A publication Critical patent/JPS5966425A/en
Publication of JPH0372097B2 publication Critical patent/JPH0372097B2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02T30/34

Landscapes

  • Medicinal Preparation (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

【発明の詳細な説明】 本発明は、生体分解性重合体材料を用いた相分
離法による微小粒子の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing microparticles by a phase separation method using biodegradable polymeric materials.

更に詳細には、生体分解性脂肪族ポリエステル
を重合体材料とし、生理活性物質をコア材料とす
る有機溶液系からの相分離法による改良された徐
放性微小粒子の製造法に関する。
More specifically, the present invention relates to a method for producing improved sustained-release microparticles using a phase separation method from an organic solution system using a biodegradable aliphatic polyester as a polymer material and a physiologically active substance as a core material.

被覆材料である重合体の溶液からなる連続相中
に所望の粒度のコア材料を分散させ、重合体に対
する非溶剤の添加およびまたは溶液の冷却などに
より、重合体をコア材料の周囲に沈澱させる重合
体被覆マイクロカプセルの製法は、有機溶液系か
らの相分離法として知られているが、このような
方法は、通常、カプセル化粒子の不都合な凝集を
生じ、粒度のコントロールされた有用な単独の微
小カプセルが得られなかつた。
The core material of the desired particle size is dispersed in a continuous phase consisting of a solution of the coating material polymer, and the polymer is precipitated around the core material, such as by adding a non-solvent to the polymer and/or cooling the solution. The preparation of coalesced coated microcapsules is known as a phase separation method from organic solution systems, but such methods usually result in unfavorable agglomeration of the encapsulated particles and do not allow useful single particles with controlled particle size. No microcapsules were obtained.

とくに、近年、生体分解性高分子、例えば、ポ
リ−DL−乳酸、ポリ−L−乳酸などのポリ乳酸、
または乳酸とグリコール酸などの共重合体などの
生体分解性脂肪族ポリエステル類はマイクロカプ
セルの被覆物質またはマイクロスフエアのマトリ
ツクス材料として注目されている。しかし、この
ような生体分解性高分子を用いて、前記の方法に
よりマイクロカプセルを製造しようとしても巨大
な軟凝集体を生成し、マイクロカプセルとしては
極めて不十分なものであつた。
In particular, in recent years, biodegradable polymers such as polylactic acid such as poly-DL-lactic acid and poly-L-lactic acid,
Biodegradable aliphatic polyesters such as copolymers of lactic acid and glycolic acid are attracting attention as coating materials for microcapsules or matrix materials for microspheres. However, even when attempts are made to produce microcapsules using such biodegradable polymers by the method described above, giant soft aggregates are produced, which is extremely insufficient as microcapsules.

このような凝集を抑制する方法として、−40℃
〜−100℃の極低温での相分離法が提案されてい
るが(特開昭54−55717)、この方法であつても、
マイクロカプセルまたはマイクロスフエアの凝集
化傾向は完全には解決されず、かつ相対的に低分
子量のポリ乳酸または乳酸共重合体を用いる場合
では、すべて軟凝集体を生じ、所望のマイクロカ
プセルは得られない。
As a method to suppress such aggregation, -40℃
A phase separation method at extremely low temperatures of ~-100℃ has been proposed (Japanese Patent Application Laid-Open No. 54-55717), but even with this method,
The agglomeration tendency of microcapsules or microspheres cannot be completely resolved, and when relatively low molecular weight polylactic acid or lactic acid copolymers are used, soft agglomerates result, making it difficult to obtain the desired microcapsules. I can't do it.

他方、ポリ乳酸または乳酸共重合体を被覆物質
としてまたはコアとの均質混合物として微小粒子
を生成する方法として、ポリ乳酸または乳酸共重
合体を溶解した塩化メチレン、ベンゼンなどの低
沸点溶剤にコア物質を溶解または分散させ、これ
をゼラチン、キトーサンなどの保護コロイド物質
の水溶液中に分散させ、系を昇温させることによ
り、溶剤を揮発させて微小粒子を得る、いわゆる
「液中乾燥法」の応用も考えられる。しかし、こ
の方法では一般的にかなりの程度の水溶性を有す
るコア材料は水層に流出し、ポリ乳酸または乳酸
共重合体でうまく被覆、または混合されず、目的
の微小粒子を得ることが出来なかつた。
On the other hand, as a method for producing microparticles using polylactic acid or lactic acid copolymer as a coating material or as a homogeneous mixture with the core, the core material is dissolved in a low boiling point solvent such as methylene chloride or benzene. This is an application of the so-called "in-liquid drying method" in which microparticles are obtained by dissolving or dispersing a protective colloid such as gelatin or chitosan in an aqueous solution of a protective colloid such as gelatin or chitosan, and then raising the temperature of the system to volatilize the solvent. can also be considered. However, in this method, the core material, which generally has a considerable degree of water solubility, flows into the water layer and is not coated or mixed well with the polylactic acid or lactic acid copolymer, making it impossible to obtain the desired microparticles. Nakatsuta.

本発明者らは、生体分解性重合体を被覆または
マトリツクス材料とし、生理活性物質をコア材料
とする有機溶液系からの相分離法による微小粒子
の製造法について鋭意検討した結果、微小粒子の
析出処理をポリビニルピロリドンの存在下に行な
えば、凝集化傾向を抑制して所望の微小粒子を製
造しうることを見出し、本発明の方法に到達し
た。
The present inventors have conducted intensive studies on a method for producing microparticles using a phase separation method from an organic solution system using a biodegradable polymer as a coating or matrix material and a physiologically active substance as a core material. It has been found that if the treatment is carried out in the presence of polyvinylpyrrolidone, the tendency to agglomerate can be suppressed and desired microparticles can be produced, and the method of the present invention has been achieved.

すなわち、本発明の方法は、生体分解性重合体
を被覆またはマトリツクス材料とし、生理活性物
質をコア材料とする有機溶液系からの相分離法に
よる微小粒子の製造方法において、ポリビニルピ
ロリドンの存在下、−20〜50℃の温度で微小粒子
の析出処理を行なうことを特徴とする生体分解性
重合体を用いる微小粒子の製造方法である。
That is, the method of the present invention is a method for producing microparticles using a phase separation method from an organic solution system using a biodegradable polymer as a coating or matrix material and a physiologically active substance as a core material, in the presence of polyvinylpyrrolidone. This is a method for producing microparticles using a biodegradable polymer, which is characterized in that the microparticles are precipitated at a temperature of -20 to 50°C.

より詳細には、(a)生体分解性重合体を良溶媒に
溶解し、この溶液にコア物質を分散または溶解
し、(b)ついでポリビニルピロリドンを添加し、(c)
さらにコアセルベーシヨンを生起させるための貧
溶媒として、液状油脂類を添加し、−20〜50℃の
温度で微小粒子を析出させ、(d)この析出した微小
粒子を連続相と分離して、微小粒子を得る方法で
ある。
More specifically, (a) the biodegradable polymer is dissolved in a good solvent, the core material is dispersed or dissolved in this solution, (b) polyvinylpyrrolidone is then added, and (c)
Furthermore, liquid oils and fats are added as a poor solvent to cause coacelvation, and microparticles are precipitated at a temperature of -20 to 50℃, and (d) the precipitated microparticles are separated from the continuous phase. , is a method for obtaining microparticles.

このような本発明の方法で得られる微小粒子
は、コア材料の粒子とそれを被覆する重合体材料
の外部層とからなるマイクロカプセル、またはコ
ア材料と重合体との均質混合物であるマイクロス
フエアであつて、その微小粒子は1〜500ミクロ
ン、一般的には、20〜300ミクロンの間に粒度分
布を有する個々のマイクロカプセルまたはマイク
ロスフエアあるいはこれらの凝集体を意味する。
Such microparticles obtained by the method of the present invention are microcapsules consisting of particles of a core material and an outer layer of polymeric material covering them, or microspheres which are a homogeneous mixture of the core material and the polymer. The microparticles mean individual microcapsules or microspheres or aggregates thereof having a particle size distribution between 1 and 500 microns, generally between 20 and 300 microns.

すなわち、本発明の方法は、生体分解性重合体
を良溶媒に溶解し、さらにこの溶液にコア材料を
溶解または分散させた連続相に、相分離剤である
貧溶媒を添加して有機溶媒系から相分離法により
微小粒子を析出させるに際に、ポリビニルピロリ
ドンを存在させることにより、温和な温度条件で
微小粒子を得るところに特徴がある。
That is, in the method of the present invention, a biodegradable polymer is dissolved in a good solvent, and a poor solvent as a phase separation agent is added to a continuous phase in which a core material is dissolved or dispersed in this solution to form an organic solvent system. A feature of this method is that the presence of polyvinylpyrrolidone allows the microparticles to be obtained under mild temperature conditions when the microparticles are precipitated by the phase separation method.

すなわち、本発明の方法は特開昭54−55717号
公報に開示されたような−40〜−100℃の極低温
で相分離剤を添加する方法に比較して、−20〜50
℃程度のおだやかな温度条件で相分離を行なうこ
とができ、かつ広い分子量範囲のポリ乳酸または
乳酸グリコール酸共重合体のような生体分解性重
合体が、相分離時に不都合な巨大凝集粒子をまつ
たく生ずることなく使用できるので、工業的に極
めて有用である。
In other words, the method of the present invention is more effective than the method of adding a phase separating agent at an extremely low temperature of -40 to -100°C as disclosed in JP-A No. 54-55717.
Biodegradable polymers such as polylactic acid or lactic acid-glycolic acid copolymers, which can undergo phase separation under mild temperature conditions of about ℃ degree and have a wide molecular weight range, prevent large aggregated particles that are inconvenient during phase separation. It is extremely useful industrially because it can be used without producing much product.

また、Chem.Pharm.Bull.,29,(11)3363−3368
(1981)に記載されたような親水性コロイド物質、
例えばゼラチン、アルギン酸塩などの水溶液中に
医薬品を溶解または微小粒子として分解させたポ
リ乳酸の低沸点有機溶剤溶液を加えて撹拌乳化さ
せ、昇温、あるいは減圧下に低沸点有機溶剤を気
化留去して、ポリ乳酸のマイクロスフエアまたは
マイクロカプセルを得る方法では、水溶性を有す
るような生理活性物質では、これらが水層に溶出
してしまうため、および凝集体の生成のため不適
切であつた。
Also, Chem.Pharm.Bull., 29 , (11)3363−3368
(1981), hydrophilic colloid substances,
For example, in an aqueous solution of gelatin, alginate, etc., a low-boiling organic solvent solution of polylactic acid (polylactic acid dissolved as microparticles) is added, stirred and emulsified, and the low-boiling organic solvent is vaporized and distilled off at elevated temperature or under reduced pressure. This method of obtaining polylactic acid microspheres or microcapsules is inappropriate for water-soluble physiologically active substances because they elute into the water layer and form aggregates. Ta.

しかしながら、本発明の方法は水を使用するこ
とがないので、相分離を行なうに際し適切な溶剤
を選択して、前記のような水溶性を有する生理活
性物質をも含めて広範な化合物をコア材料とする
マイクロカプセルまたはマイクロスフエアを高収
率で製造することができる。
However, since the method of the present invention does not use water, an appropriate solvent is selected for phase separation, and a wide range of compounds, including the water-soluble biologically active substances mentioned above, are added to the core material. Microcapsules or microspheres can be produced in high yield.

したがつて上記の種々の特徴を有する本発明の
方法は、水溶性を有する医薬剤の微小粒子の製造
に適している。すなわち、得られた微小粒子は生
体内で徐放性を示し、また、使用されるポリビニ
ルピロリドンは、微小粒子にほとんど残存するこ
とはなく、仮りに僅量残存しても、生体に悪影響
を及ぼすことがない。
Therefore, the method of the present invention having the various features described above is suitable for producing microparticles of water-soluble pharmaceutical agents. In other words, the obtained microparticles exhibit sustained release in the living body, and the polyvinylpyrrolidone used hardly remains in the microparticles, and even if a small amount remains, it will have no adverse effect on the living body. Never.

例えば従来より制ガン剤、とくに水溶性を有す
る5−フロロウラシルなどは副作用の強い医薬と
して、知られており、これらを経口投与すると、
急速に血液中の濃度が高くなり副作用が大きく、
一方、薬効を長期間持続することができないもの
である。このような制ガン剤を本発明の方法によ
り製造された微小子粒子の形態で投与(経口、注
射、または外科的療法による局部投与、埋込み)
すれば、制ガン剤の放出が抑制され、重合体の加
水分解とともに徐々に放出され、血中濃度を長時
間にわたつて維持させることができる。
For example, anticancer drugs, especially water-soluble 5-fluorouracil, are known to have strong side effects, and when administered orally,
The concentration in the blood increases rapidly, causing serious side effects.
On the other hand, it is not possible to maintain the medicinal effect for a long period of time. Administration of such anticancer agents in the form of microparticles produced by the method of the invention (oral, injection, or local administration by surgical therapy, implantation)
By doing so, the release of the anticancer agent is suppressed, and it is gradually released along with the hydrolysis of the polymer, allowing its blood concentration to be maintained over a long period of time.

本発明の方法で微小粒子の被覆またはマトリツ
クス材料として用いられる生体分解性重合体と
は、生体内で加水分解し、生体に対し無害で、容
易に代射される乳酸、グリコール酸、ヒドロキシ
酪酸となる生体分解性脂肪族ポリエステル類であ
る。具体的にはポリ乳酸、ポリ−(ε−カプロラ
クトン)、ポリグリコール酸またはポリヒドロキ
シ酪酸、あるいはこれらの共重合体であり、好ま
しくはポリ−L−乳酸、ポリ−D.L−乳酸、およ
び乳酸を50%以上含む乳酸−グリコール酸共重合
体であり、一般的には、固有粘度0.2〜1.5(フエ
ノール10重量部とトリクロロフエノール7重量部
の混合溶媒中30±0.1℃の濃度0.5%で測定)を有
するものが使用される。
The biodegradable polymers used as coatings or matrix materials for microparticles in the method of the present invention include lactic acid, glycolic acid, hydroxybutyric acid, which hydrolyzes in vivo, is harmless to living organisms, and is easily sprayed. It is a biodegradable aliphatic polyester. Specifically, polylactic acid, poly(ε-caprolactone), polyglycolic acid or polyhydroxybutyric acid, or copolymers thereof, preferably poly-L-lactic acid, poly-DL-lactic acid, and lactic acid, are used. % or more, and generally has an intrinsic viscosity of 0.2 to 1.5 (measured at a concentration of 0.5% at 30±0.1°C in a mixed solvent of 10 parts by weight of phenol and 7 parts by weight of trichlorophenol). What you have is used.

このような生体分解性脂肪族ポリエステル類は
例えば、エチルセルロース、アクリル酸重合体、
ポリカーボネートなどの各種の合成樹脂類等の非
生体分解性高分子のように最終的に生体内に代謝
されない異物が残存することもなく、極めて有用
な徐放性薬剤用微小粒子を提供することとなる。
本発明の方法に使用されるコア材料としては各種
の生理活性物質、例えば、各種の医薬品、殺虫
剤、殺苗剤、除草剤、殺ダニ剤、フエロモン、昆
虫ホルモン、植物生長調節剤などの農薬などであ
る。とくに、好ましい態様として用いられるコア
材料は制ガン剤であり、例えば、5−フロロウラ
シル、1−(2−テトラヒドロフリル)−5−フロ
ロウラシル、1−ヘキシルカルバモイル−5−フ
ロロウラシル、マイトマイシンC、アドレアマイ
シン、カルチノフイリン、ブレオマイシン、シタ
ラビン、カルムスチン、ニムスチンなど、さらに
好適なコア材料としては、水溶性が大きく、副作
用も大きな5−フロロウラシル、マイトマイシン
−Cが挙げられる。
Such biodegradable aliphatic polyesters include, for example, ethyl cellulose, acrylic acid polymers,
To provide microparticles for sustained release drugs that are extremely useful and do not leave behind foreign substances that are not ultimately metabolized in the living body, such as non-biodegradable polymers such as various synthetic resins such as polycarbonate. Become.
The core materials used in the method of the present invention include various physiologically active substances, such as various pharmaceuticals, insecticides, seedlings, herbicides, acaricides, pheromones, insect hormones, and agricultural chemicals such as plant growth regulators. etc. In particular, the core material used in a preferred embodiment is an anticancer agent, such as 5-fluorouracil, 1-(2-tetrahydrofuryl)-5-fluorouracil, 1-hexylcarbamoyl-5-fluorouracil, mitomycin C, adreamycin. , carcinophylline, bleomycin, cytarabine, carmustine, nimustine, etc. More suitable core materials include 5-fluorouracil and mitomycin-C, which have high water solubility and have large side effects.

本発明の方法で、相分離誘起剤および得られる
マイクロカプセルまたはマイクロスフエアの凝集
付着防止剤として用いられるポリビニルピロリド
ンはとくに限定はなく、一般的には分子量1〜10
万のものが用いられる。
In the method of the present invention, the polyvinylpyrrolidone used as a phase separation inducer and an agglomeration prevention agent for the obtained microcapsules or microspheres is not particularly limited, and generally has a molecular weight of 1 to 10.
Ten thousand things are used.

本発明の方法で脂肪族ポリエステル類に対する
良溶媒としてはトルエン、キシレン、クロロホル
ム、塩化メチレン、アセトン、酢酸エチル、酢酸
メチル、テトラヒドロフラン、ジオキサン、ヘキ
サフロロイソプロパノールなどの有機溶媒が挙げ
られる。とくに塩化メチレン、クロロホルムが好
ましい。
Examples of good solvents for aliphatic polyesters in the method of the present invention include organic solvents such as toluene, xylene, chloroform, methylene chloride, acetone, ethyl acetate, methyl acetate, tetrahydrofuran, dioxane, and hexafluoroisopropanol. Particularly preferred are methylene chloride and chloroform.

本発明の方法で相分離用の貧溶剤として用いら
れる油脂類とは、植物油脂と動物油脂が包含さ
れ、具体的な植物油脂として大豆油、アマニ油、
キリ油、ゴマ油、綿実油、オリーブ油、ツバキ
油、ヒマシ油、トウモロコシ油、ナタネ油、ヤシ
油、小麦油、大麦油、ケシ油、シイタケ油、エゴ
マ油、ミカン油、レモン油、などの室温で液体の
乾性油、半乾性油または不乾性植物油類、あるい
は室温で液体の動物油脂があげられる。
The oils and fats used as a poor solvent for phase separation in the method of the present invention include vegetable oils and animal oils, and specific examples of vegetable oils include soybean oil, linseed oil,
Liquid at room temperature such as tung oil, sesame oil, cottonseed oil, olive oil, camellia oil, castor oil, corn oil, rapeseed oil, coconut oil, wheat oil, barley oil, poppy oil, shiitake oil, perilla oil, tangerine oil, lemon oil, etc. drying oils, semi-drying oils or non-drying vegetable oils, or animal fats and oils that are liquid at room temperature.

本発明の方法は次のように実施する。 The method of the invention is carried out as follows.

すなわち、(A)生体分解性重合体をその良溶媒に
溶解し、その溶液にコア材料の微小粉体を分散ま
たは溶解させる、(B)ついでポリビニルピロリドン
を加え、(C)更に貧溶媒として常温で液体である油
脂類を添加して−20〜50℃で生体分解性重合体の
コアセルベートをコア材料の周囲またはコア材料
と混合させれた形で析出させ硬化させたのち、(D)
連続相を除去して微小粒子を得、(E)これをコア材
料および、生体分解性重合体に対する共通の貧溶
剤で洗浄して乾燥する。
That is, (A) the biodegradable polymer is dissolved in its good solvent, and the fine powder of the core material is dispersed or dissolved in the solution, (B) polyvinylpyrrolidone is then added, and (C) the biodegradable polymer is further dissolved at room temperature as a poor solvent. (D)
The continuous phase is removed to obtain microparticles, which are (E) washed with the core material and a common poor solvent for biodegradable polymers and dried.

このような方法において、生体分解性重合体は
良溶媒に対して0.5〜10wt%の濃度に予め、溶解
させる。
In such a method, the biodegradable polymer is dissolved in advance at a concentration of 0.5 to 10 wt% in a good solvent.

この溶液にコア材料を添加し、溶解または分散
させる。良溶媒として選択された使用溶媒が、コ
ア材料に対しても良溶媒であるときは、前記溶液
に適宜溶解させる。このようにマトリツクス材
料、コア材料を共に溶解させると両者が均質に混
合したマイクロスフエアを得る。
The core material is added to this solution and dissolved or dispersed. When the solvent selected as a good solvent is also a good solvent for the core material, it is appropriately dissolved in the solution. By melting the matrix material and the core material together in this manner, microspheres in which both are homogeneously mixed are obtained.

一方、コア材料が生体分解性重合体の良溶媒に
不溶であるときは、コア材料は目的とする微小粒
子の大きさに応じて、微粉砕したものを、前記溶
液に分散させる。
On the other hand, when the core material is insoluble in a good solvent for the biodegradable polymer, the core material is finely ground and dispersed in the solution depending on the size of the desired microparticles.

本発明の方法ではこれらの微粒子のコア材料は
巨大凝集化することなく目的の微小粒子を得るこ
とができる。
In the method of the present invention, the desired microparticles can be obtained without the core material of these microparticles forming a large agglomerate.

なお、コア材料は溶解状態と分散状態で共存し
てもよい。コア材料と被覆またはマトリツクスと
なる重合体の比率は生体内の徐放効果および抗ガ
ン剤の必要量を考慮して5:95〜95:5(重量比)
の範囲で、一般に選ばれる。
Note that the core material may coexist in a dissolved state and a dispersed state. The ratio of the core material to the coating or matrix polymer is 5:95 to 95:5 (weight ratio), taking into consideration the sustained release effect in the body and the required amount of anticancer drug.
generally selected within the range of

以上の被覆またはマトリツクス材料を溶解し、
コア材料を溶解または分散した溶液にポリビニル
ピロリドンを添加する。
or more coating or matrix material,
Polyvinylpyrrolidone is added to the solution in which the core material is dissolved or dispersed.

ポリビニルピロリドンの添加量は、被覆または
マトリツクス材料とされる生体分解性脂肪族ポリ
エステル100重量部に対して、10〜1000重量部で
ある。
The amount of polyvinylpyrrolidone added is 10 to 1000 parts by weight per 100 parts by weight of the biodegradable aliphatic polyester used as the coating or matrix material.

また、添加する方法は、とくに限定がなく、一
般には前記溶媒と同一の溶媒に溶解した溶液とし
て添加するのが好ましい。
The method of addition is not particularly limited, and it is generally preferable to add it as a solution dissolved in the same solvent as the above-mentioned solvent.

ついで行なう微小粒子の析出・分離は公知の相
分離法に準じる。例えば相分離剤である前記の貧
溶剤としての油脂類を加えて、生体分解性重合体
をコア材料である生理活性物質の表面に、または
コア材料と均一にコアセルベートとして析出させ
室温ないし−20℃迄冷却して析出したコアセルベ
ートを硬化させたのち上澄みを除去したのち用い
た生体分解性重合体およびコア材料として用いた
生理活性物質に対して溶解性を有しない低沸点の
有機溶剤、例えば、脂肪族炭化水素、n−ヘキサ
ン、ヘプタン、i−オクタン、シクロヘキサン、
などで洗浄したのち、得られたマイクロカプセル
またはマイクロスフエアを乾燥して、乾燥自由流
動性粉体とする。乾燥は公知の方法にしたがい風
乾、減圧乾燥または凍結乾燥などの手段を用いる
ことができる。
The subsequent precipitation and separation of microparticles follows a known phase separation method. For example, a biodegradable polymer is precipitated as a coacervate on the surface of a physiologically active substance as a core material or uniformly with the core material by adding the above-mentioned fats and oils as a phase separating agent as a poor solvent, and depositing the biodegradable polymer as a coacervate at room temperature to -20°C. After cooling to harden the precipitated coacervate and removing the supernatant, the biodegradable polymer used and the bioactive substance used as the core material are treated with a low boiling point organic solvent that has no solubility, such as fat. Group hydrocarbons, n-hexane, heptane, i-octane, cyclohexane,
After washing, the resulting microcapsules or microspheres are dried to form a dry free-flowing powder. Drying can be carried out according to known methods such as air drying, reduced pressure drying, or freeze drying.

以下、本発明を実施例および比較例により具体
的に説明する。
Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples.

実施例 1 予め平均粒子径が100μとなるように粉砕した
5−フロロウラシル(三井東圧化学製)1gを、
ポリ−D.L−乳酸〔固有粘度値〔η〕=0.53…フエ
ノール/トリクロロフエノール=10/7(重量比)
の混合溶剤中30℃に於ける濃度0.5%で測定〕の
3w/v%のジクロルメタン溶液100ml中に撹拌し
ながら分散させた。これに、ポリビニルピロリド
ン〔GAF社製、商品名Plasdone C−30〕の
3w/v%のジクロルメタン溶液100mlを撹拌下に
加えて、5−フロロウラシルのサスペンジヨンを
作成する。撹拌下に、大豆油50mlを徐々に加えた
のち、0℃迄冷却して30分間放置し5−フロロウ
ラシル表面へポリ−D.L−乳酸のコアセルベート
の析出およびコアセルベートの硬化を行なわせ
る。そののち、上澄み液をデカンテーシヨンで除
去し、n−ヘキサン100mlで3回洗浄したのち、
減圧下に溶剤を除去乾燥して自由流動性のポリ−
D.L−乳酸被覆、5−フロロウラシルのマイクロ
カプセルを得る。得られたマイクロカプセルは不
都合な凝集および融着傾向がまつたく認められ
ず、ほぼコア材料として用いた5−フロロウラシ
ルの形状どおりの単分散マイクロカプセルであつ
た。
Example 1 1 g of 5-fluorouracil (manufactured by Mitsui Toatsu Chemicals), which had been crushed in advance to have an average particle size of 100μ, was
Poly-DL-lactic acid [intrinsic viscosity [η] = 0.53...phenol/trichlorophenol = 10/7 (weight ratio)
Measured at a concentration of 0.5% at 30℃ in a mixed solvent of
It was dispersed in 100 ml of a 3 w/v% dichloromethane solution with stirring. To this, polyvinylpyrrolidone [manufactured by GAF, trade name Plasdone C-30]
A suspension of 5-fluorouracil is prepared by adding 100 ml of a 3 w/v % dichloromethane solution under stirring. After gradually adding 50 ml of soybean oil while stirring, the mixture was cooled to 0°C and left for 30 minutes to cause precipitation of coacervate of poly-DL-lactic acid on the surface of 5-fluorouracil and hardening of the coacervate. After that, the supernatant liquid was removed by decantation and washed three times with 100 ml of n-hexane.
Remove the solvent under reduced pressure and dry to form a free-flowing polyurethane.
DL-lactic acid coated 5-fluorouracil microcapsules are obtained. The obtained microcapsules had no undesirable agglomeration and fusion tendency, and were monodispersed microcapsules having almost the same shape as 5-fluorouracil used as the core material.

実施例 2 あらかじめ50μの平均粒子径を有するように粉
砕された1−(2−テトラヒドロフリル)−5−フ
ロロウラシル2gをポリ−D.L−乳酸〔固有粘度
値〔η〕=0.71〕の2.5%ジクロルメタン溶液200
ml中に分散させたのち、ポリビニルピロリドン
〔GAF社製、Plasdone C−15〕のジクロルメタ
ン1w/v%溶液を撹拌下に加えて、1−(2−テ
トラヒドロフリル)−5−フロロウラシルのサス
ペンジヨンを作成した。
Example 2 2 g of 1-(2-tetrahydrofuryl)-5-fluorouracil, which was pre-pulverized to have an average particle size of 50 μ, was added to 2.5% dichloromethane of poly-DL-lactic acid [intrinsic viscosity [η] = 0.71]. solution 200
ml, a 1w/v% dichloromethane solution of polyvinylpyrrolidone (GAF, Plasdone C-15) was added under stirring to form a suspension of 1-(2-tetrahydrofuryl)-5-fluorouracil. It was created.

撹拌下に油200mlをゆつくり添加したのち、系
を−5℃迄徐冷して1時間撹拌放置して1−(2
−テトラヒドロフリル)−5−フロロウラシル表
面へのポリ−D.L−乳酸のコアセルベート析出お
よびコアセルベートの硬化を行なわせた。そのの
ち上澄み液を除去し、n−ヘプタン100mlで3回
洗浄したのち、凍結乾燥して自由流動性のポリ−
D.L−乳酸被覆1−(2−テトラヒドロフリル)−
5−フロロウラシルのマイクロカプセルを得た。
得られたマイクロカプセルは、不都合な凝集およ
び融着等が認められないものであつた。
After slowly adding 200 ml of oil while stirring, the system was slowly cooled to -5℃ and left stirring for 1 hour.
Coacervate precipitation of poly-DL-lactic acid on the surface of -tetrahydrofuryl)-5-fluorouracil and curing of the coacervate were performed. The supernatant was then removed, washed three times with 100 ml of n-heptane, and lyophilized to form a free-flowing polyurethane.
DL-Lactic acid coated 1-(2-tetrahydrofuryl)-
Microcapsules of 5-fluorouracil were obtained.
The obtained microcapsules were free from undesirable aggregation and fusion.

実施例 3 5−フロロウラシルにかえて、マイトマイシン
−C〔協和発酵(株)製〕を用いた以外は実施例−1
と同様に処理して、自由流動性のポリ−D.L−乳
酸で被覆されたマイトマイシン−Cのマイクロカ
プセルが得られた。
Example 3 Example-1 except that mitomycin-C (manufactured by Kyowa Hakko Co., Ltd.) was used instead of 5-fluorouracil.
Microcapsules of mitomycin-C coated with free-flowing poly-DL-lactic acid were obtained in the same manner as above.

比較例 1 50mlのトルエン中に1.0gのポリ−D.L−乳酸
〔固有粘度〔η〕=0.53〕の溶液をドライアイス−
イソプロパノール浴中で約−65℃に冷却した。予
め平均粒子径が100μとなるように微粉砕された、
5−フロロウラシル0.5gを前記重合体溶液中に
160rpmでかきまぜながら分散させた。
Comparative Example 1 A solution of 1.0 g of poly-DL-lactic acid [intrinsic viscosity [η] = 0.53] in 50 ml of toluene was placed on dry ice.
Cooled to about -65°C in an isopropanol bath. Finely ground in advance to an average particle size of 100μ,
0.5 g of 5-fluorouracil was added to the polymer solution.
Dispersion was performed while stirring at 160 rpm.

イソプロパノール(150ml)を分散液に最初の
50mlに対して1時間、残りの100mlに対して0.5時
間を要して滴下したところ、5−フロロウラシル
の周囲にポリ−D.L−乳酸のコアセルベートが析
出した。しかしながら、ドライアイス浴を除去し
て系を徐々に室温に戻す段階で、コアセルベート
同志が軟化凝集をはじめ、室温に戻したところで
は完全に軟凝集体となり目的とする5−フロロウ
ラシルのマイクロカプセルを得ることはできなか
つた。
Add isopropanol (150ml) to the dispersion first.
When the solution was added dropwise for 1 hour for 50 ml and 0.5 hour for the remaining 100 ml, coacervate of poly-DL-lactic acid precipitated around 5-fluorouracil. However, when the dry ice bath is removed and the system is gradually returned to room temperature, the coacervates begin to soften and aggregate, and when the temperature is returned to room temperature, they completely become soft aggregates and form the desired 5-fluorouracil microcapsules. I couldn't get it.

比較例 2 ポリ−D.L−乳酸1.8gを塩化メチレン40gに撹
拌しながら溶解したのち予め平均粒子径が50μと
なるように粉砕された1−(2−テトラヒドロフ
リル)−5−フロロウラシル0.2gを加えて撹拌下
に分散させた。
Comparative Example 2 1.8 g of poly-DL-lactic acid was dissolved in 40 g of methylene chloride with stirring, and then 0.2 g of 1-(2-tetrahydrofuryl)-5-fluorouracil, which had been ground to an average particle size of 50 μ, was added. The mixture was added and dispersed under stirring.

別に酸処理ゼラチン〔宮城化学製、ゼリー強度
250ブルーム〕2gを198gの水に加え50℃で加温
溶解して1%水溶液を作成し室温迄冷却した。ビ
ーカー中に該ゼラチン水溶液を移し、撹拌下に1
−(2−テトラヒドロフリル)−5−フロロウラシ
ルを分散した塩化メチレン溶液を加え300vpmの
速度で撹拌乳化した。外部より徐々に加温するこ
とにより塩化メチレンを蒸発させたのち、上層の
若干の凝集物を除去し、更に、温水で洗浄、風乾
することにより、粒子径30〜200μの球状粒子を
得た。
Separately, acid-treated gelatin [manufactured by Miyagi Chemical, jelly strength]
250 Bloom] was added to 198 g of water and dissolved by heating at 50°C to prepare a 1% aqueous solution, which was then cooled to room temperature. Transfer the gelatin aqueous solution into a beaker and stir for 1 hour.
A methylene chloride solution in which -(2-tetrahydrofuryl)-5-fluorouracil was dispersed was added and emulsified by stirring at a speed of 300 vpm. After methylene chloride was evaporated by gradually heating from the outside, some aggregates in the upper layer were removed, and the mixture was further washed with warm water and air-dried to obtain spherical particles with a particle size of 30 to 200 μm.

しかしながら、このような球状粒子中には、元
素分析の結果、わずか0.1%の1−(2−テトラヒ
ドロフリル)−5−フロロウラシル、を含有して
いるにすぎず、1−(2−テトラヒドロフリル)−
5−フロロウラシルはそれ自身の有するる水溶性
(1.60g/100mlwater at24℃)の由に過半量が水
層に溶出してしまい、目的とする徐放性を有する
微小粒子を得ることができなかつた。
However, as a result of elemental analysis, such spherical particles contain only 0.1% of 1-(2-tetrahydrofuryl)-5-fluorouracil, and 1-(2-tetrahydrofuryl)-5-fluorouracil. )−
Due to its own water solubility (1.60 g/100 ml water at 24°C), the majority of 5-fluorouracil was eluted into the water layer, making it impossible to obtain microparticles with the desired sustained release properties. Ta.

Claims (1)

【特許請求の範囲】[Claims] 1 生理活性物質をコア材料とし、生体分解性重
合体を被覆またはマトリツクス材料とする、有機
溶液系からの相分離法による微小粒子の製造方法
において、ポリビニルピロリドンの存在下、−20
〜50℃の温度で微小粒子の析出処理を行うことを
特徴とする生体分解性重合体を用いた微小粒子の
製造方法。
1. A method for producing microparticles using a phase separation method from an organic solution system, in which a physiologically active substance is used as a core material and a biodegradable polymer is used as a coating or matrix material, in the presence of polyvinylpyrrolidone, -20
A method for producing microparticles using a biodegradable polymer, characterized by performing a precipitation treatment of microparticles at a temperature of ~50°C.
JP17608082A 1982-10-08 1982-10-08 Preparation of fine particle using biodegradable polymer Granted JPS5966425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17608082A JPS5966425A (en) 1982-10-08 1982-10-08 Preparation of fine particle using biodegradable polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17608082A JPS5966425A (en) 1982-10-08 1982-10-08 Preparation of fine particle using biodegradable polymer

Publications (2)

Publication Number Publication Date
JPS5966425A JPS5966425A (en) 1984-04-14
JPH0372097B2 true JPH0372097B2 (en) 1991-11-15

Family

ID=16007365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17608082A Granted JPS5966425A (en) 1982-10-08 1982-10-08 Preparation of fine particle using biodegradable polymer

Country Status (1)

Country Link
JP (1) JPS5966425A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3701625A1 (en) * 1987-01-21 1988-08-04 Boehringer Ingelheim Kg PERORAL DRUG PREPARATION WITH DELAYED ACTIVE RELEASE
JPH01123626A (en) * 1987-11-06 1989-05-16 Terumo Corp Coated microcapsule and its production
WO2001003738A1 (en) * 1999-07-07 2001-01-18 Hiroshi Maeda Polymer-type agents for preventing metastasis and recurrence of cancer and method for preventing metastasis and recurrence
FR2797784B1 (en) * 1999-08-27 2001-11-30 Mainelab PROCESS FOR THE ENCAPSULATION OF ACTIVE MATERIALS BY COACERVATION OF POLYMERS IN NON-CHLORINE ORGANIC SOLVENT
KR20030067867A (en) * 2002-02-08 2003-08-19 주식회사 효성 The Manufacturing Method Of Globular Fine Grain Of Polybutylene Succinate
AU2009250453B2 (en) 2008-05-21 2014-07-10 Toray Industries, Inc. Method for producing polymer fine particle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171432A (en) * 1981-04-10 1982-10-22 Shionogi & Co Ltd Micro-encapsulating method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171432A (en) * 1981-04-10 1982-10-22 Shionogi & Co Ltd Micro-encapsulating method

Also Published As

Publication number Publication date
JPS5966425A (en) 1984-04-14

Similar Documents

Publication Publication Date Title
DE69736888T2 (en) METHOD AND COMPOSITIONS FOR IMPROVING THE BIOADHESIVE PROPERTIES OF POLYMERS
DE69534780T2 (en) Liquid compositions for drug delivery
Sinha et al. Chitosan microspheres as a potential carrier for drugs
DE69818295T2 (en) EINHÜLLUNGSSVERFAHREN
DE68904326T2 (en) MICROSPHERES CONTAINING PHYSIOLOGICALLY ACTIVE SUBSTANCES OF THE POLYMOLCHAIC ACID TYPE AND METHOD FOR THE PRODUCTION THEREOF.
JP2571874B2 (en) Protein microsphere composition
US5718922A (en) Intravitreal microsphere drug delivery and method of preparation
DE69220317T2 (en) Microparticle summary for extended release and manufacture of the same
EP0605933B1 (en) Process for preparing pseudo-latices and micro- or nanoparticles and compositions containing them
EP1951314B1 (en) Drug-delivery systems
Dhanaraju et al. Preparation and characterization of injectable microspheres of contraceptive hormones
CN100352427C (en) Biodegradable microparticles for controlled release administration, with purified amylopectin-based starch of reduced molecular weight
JPH05178740A (en) Sustained release composition and preparation thereof
DE2207635A1 (en) Pharmaceutical preparations containing polylactide
JP2003522188A (en) Powder material for electrostatic application to substrate and electrostatic application of powder material to substrate
AU2113795A (en) Apparatus and method for preparing solid forms with controlled release of the active ingredient
JP2006514698A5 (en)
JP2001517615A (en) Method for producing controlled release formulations based on polymers
Mahale et al. Microsphere: a review
CN104224753B (en) Small molecule hydrophilic drug-embedded sustained-release capsule and preparation method thereof
Singh et al. Biodegradable polymeric microspheres as drug carriers; A review
Rasekh et al. Hollow-layered nanoparticles for therapeutic delivery of peptide prepared using electrospraying
WO2005061095A9 (en) Process for producing microsphere and apparatus for producing the same
JPH0372097B2 (en)
JP3139913B2 (en) Method for producing dry-processed particles, dry-processed particles produced by the method, and pharmaceutical composition containing the particles