JPH0371675B2 - - Google Patents

Info

Publication number
JPH0371675B2
JPH0371675B2 JP57202943A JP20294382A JPH0371675B2 JP H0371675 B2 JPH0371675 B2 JP H0371675B2 JP 57202943 A JP57202943 A JP 57202943A JP 20294382 A JP20294382 A JP 20294382A JP H0371675 B2 JPH0371675 B2 JP H0371675B2
Authority
JP
Japan
Prior art keywords
fuel
water
core
moderator
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57202943A
Other languages
Japanese (ja)
Other versions
JPS5992389A (en
Inventor
Jiro Ootsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57202943A priority Critical patent/JPS5992389A/en
Publication of JPS5992389A publication Critical patent/JPS5992389A/en
Publication of JPH0371675B2 publication Critical patent/JPH0371675B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 〔発明の技術的分野〕 本発明は沸騰水形原子炉に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to boiling water nuclear reactors.

〔発明の技術的背景〕[Technical background of the invention]

沸騰水形原子炉の燃料集合体は第1図に示す如
く燃料棒1……およびウオータロツドを8行8列
の格子状に配列して燃料バンドルを形成し、この
燃料バンドルをチヤンネルボツクス2……内に収
容して構成されている。そして、これら燃料集合
体3……を断面十字形の制御棒4の周囲に4体装
荷して第1図に示す如き単位格子を構成し、この
単位格子をさらに多数格子状に配列して第2図に
示す如き炉心が構成される。そして、減速材を兼
用した冷却材すなわち軽水は上記チヤンネルボツ
クス2……内を上方に流れ、燃料棒1……内に収
容されている核燃料の核反応による熱によつて加
熱され、沸騰するように構成されている。
As shown in Fig. 1, the fuel assembly of a boiling water reactor consists of fuel rods 1... and water rods arranged in a grid of 8 rows and 8 columns to form a fuel bundle, and this fuel bundle is divided into channel boxes 2... It is constructed by being housed inside. Then, four of these fuel assemblies 3... are loaded around a control rod 4 having a cross-shaped cross section to form a unit cell as shown in FIG. The core is constructed as shown in Figure 2. The coolant that also serves as a moderator, that is, light water, flows upward in the channel box 2... and is heated by the heat generated by the nuclear reaction of the nuclear fuel housed in the fuel rod 1... until it boils. It is composed of

上記制御棒4……は制御棒駆動機構(図示せ
ず)によつて炉心内に挿入あるいは引抜され、炉
心の反応度等を制御するように構成されている。
また、上記炉心を通つて流れる冷却材の流量を制
御することによつて炉心内の蒸気と水との比すな
わちボイド率を変え、炉心の出力を制御するよう
に構成されている。
The control rods 4 are inserted into or withdrawn from the reactor core by a control rod drive mechanism (not shown), and are configured to control the reactivity of the reactor core.
Further, by controlling the flow rate of the coolant flowing through the reactor core, the ratio of steam to water, that is, the void ratio, in the reactor core is changed, and the output of the reactor core is controlled.

上記冷却材(軽水)は中性子の減速材を兼用し
ており、この冷却材すなわち水によつて核分裂反
応によつて生じた高速中性子を熱中性子まで減速
し、次の核分裂反応を生起させるように構成され
ている。ところで、上記減速材たる水は温度が変
化するとその密度、中性子との反応断面積等が変
化し、減速材としての特性が変化し、炉心の反応
度すなわち実効増倍率が変化する。そして、減速
材たる水の温度TがΔTだけ上昇した場合の実効
増倍率の変化率を減速材温度反応度係数と称し、
また、減速材温度反応度係数は減速材の温度によ
つても変化する。そして、減速材の温度がTの場
合における減速材温度反応度係数ρt(T)は ρt(T)=1/keff(T)× lim 〓T0keff(T+ΔT)−keff(T)/ΔT ……(1) で表される。
The above-mentioned coolant (light water) also serves as a neutron moderator, and this coolant, that is, water, slows down the fast neutrons generated by the nuclear fission reaction to thermal neutrons, so that the next nuclear fission reaction can occur. It is configured. By the way, when the temperature of the moderator water changes, its density, reaction cross section with neutrons, etc. change, the characteristics as a moderator change, and the reactivity of the core, that is, the effective multiplication factor changes. The rate of change in the effective multiplication factor when the temperature T of the moderator water increases by ΔT is called the moderator temperature reactivity coefficient,
Furthermore, the moderator temperature reactivity coefficient also changes depending on the temperature of the moderator. Then, the moderator temperature reactivity coefficient ρ t (T) when the temperature of the moderator is T is ρ t (T) = 1/k eff (T) × lim 〓 T0 k eff (T + ΔT) − k eff It is expressed as (T)/ΔT...(1).

また、減速材の温度が変化すると炉心内におけ
る減速材すなわち冷却材の沸騰の状態が変化し、
ボイド率が変化するので炉心の反応度すなわち実
効増倍率が変化し、この変化率をボイド反応度係
数と称している。そして、ボイド率がV(%)の
場合におけるこのボイド反応度係数ρv(V)は ρv(V)=1/keff(V)× lim 〓V0keff(V+ΔV)−keff(V)/ΔV ……(2) で表される。
Additionally, when the temperature of the moderator changes, the boiling state of the moderator, or coolant, in the core changes.
As the void fraction changes, the reactivity of the core, that is, the effective multiplication factor changes, and this rate of change is called the void reactivity coefficient. Then, this void reactivity coefficient ρ v (V) when the void fraction is V (%) is ρ v (V) = 1/k eff (V) × lim 〓 V0 k eff (V + ΔV) − k eff It is expressed as (V)/ΔV...(2).

ところで、これら減速材温度反応度係数および
ボイド反応度係数は燃料集合体……を炉心に装
荷した場合における減速材つまり水に対する燃料
の体積比すなわち水対燃料比によつても変化す
る。そして、この水対燃料比と無限増倍率との関
係は第3図に示す如き関係がある。この第3図か
ら明らかなように一般に無限増倍率は水対燃料比
が3〜4の領域で最大となるので、この無限増倍
率が最大となる領域に水対燃料比を設定すれば燃
料を最も効率的に燃焼させることができる。しか
し、この領域では前記の減速材温度反応度係数あ
るいはボイド反応度係数が正の値となる。したが
つて、このように水対燃料比を設定すると何らか
の原因で炉心の出力が上昇すると減速材の温度が
上昇し、実効増倍率が増大して出力が上昇し、減
速材の温度が上昇して実効増倍率がさらに上昇
し、炉心の制御が不安定となる。そして、一般に
沸騰水形原子炉に用いられる濃縮度2〜3%の燃
料を装荷した場合には冷温時における水対燃料比
が約3.5以上の領域では減速材温度反応係数およ
びボイド反応度係数が正の値となる。したがつ
て、従来のものは各燃料集合体の水対燃料を約
2.8程度とし、冷温状態から定格運転状態に到る
温度範囲について減速材温度反応度係数およびボ
イド反応度係数が充分に大きな負の値となるよう
に構成し、充分な安定性の余裕が得られるように
構成されていた。
By the way, these moderator temperature reactivity coefficient and void reactivity coefficient also change depending on the volume ratio of fuel to moderator, that is, water, that is, the water-to-fuel ratio when the fuel assemblies 3 are loaded into the reactor core. The relationship between this water-to-fuel ratio and the infinite multiplication factor is as shown in FIG. As is clear from Fig. 3, the infinite multiplication factor is generally maximum in the range where the water-to-fuel ratio is 3 to 4, so if the water-to-fuel ratio is set in the region where the infinite multiplication factor is maximum, the fuel It can be burned most efficiently. However, in this region, the moderator temperature reactivity coefficient or void reactivity coefficient takes a positive value. Therefore, if the water-to-fuel ratio is set in this way, if the core output increases for some reason, the moderator temperature will rise, the effective multiplication factor will increase, the output will increase, and the moderator temperature will rise. As a result, the effective multiplication factor increases further, making core control unstable. When loading fuel with an enrichment of 2 to 3%, which is generally used in boiling water reactors, the moderator temperature response coefficient and void reactivity coefficient are It becomes a positive value. Therefore, the conventional method reduces water to fuel in each fuel assembly to approximately
2.8, and the moderator temperature reactivity coefficient and void reactivity coefficient are configured to have sufficiently large negative values in the temperature range from the cold state to the rated operating state, and a sufficient stability margin can be obtained. It was structured like this.

〔背景技術の問題点〕[Problems with background technology]

前記従来のものは第3図に示す如く冷温状態に
おける水対燃料比aから定格運転状bに到るまで
の範囲R1の水対燃料比で燃料が燃焼される。こ
の範囲R1は前述した如く減速材温度反応度係数
およびボイド反応度係数を負の値とするため、水
対燃料比の小さな領域に設定されており、第3図
から明らかなように無限増倍率の小さな領域にあ
る。このため燃料の燃焼効率が低下する不具合が
あつた。
In the conventional combustion engine, as shown in FIG. 3, fuel is combusted at a water-to-fuel ratio in a range R1 from a water-to-fuel ratio a in a cold state to a rated operating state b. As mentioned above, this range R1 is set in a region where the water-to-fuel ratio is small in order to make the moderator temperature reactivity coefficient and void reactivity coefficient negative values, and as is clear from Fig. It is in the area of small magnification. As a result, there was a problem that the fuel combustion efficiency decreased.

〔発明の目的〕[Purpose of the invention]

本発明は以上の事情にもとづいてなされたもの
で、その目的とするところは一部の燃料集合体の
水対燃料比を大きくし、全体の燃料の燃焼効率を
上げることができ、しかも充分な安定性を得るこ
とができる沸騰水形原子炉を提供することにあ
る。
The present invention has been made based on the above circumstances, and its purpose is to increase the water-to-fuel ratio of some fuel assemblies, to increase the overall fuel combustion efficiency, and to achieve sufficient The object of the present invention is to provide a boiling water reactor that can achieve stability.

〔発明の概要〕[Summary of the invention]

本発明は、炉心の反応度を調整する調整棒の周
囲に、水対燃料比が比較的大きい燃料集合体を4
体ずつ配置し、前記調整棒は前記燃料集合体の減
速材温度反応係数およびボイド反応度係数が負の
値になつたとき炉心から引き抜かれるものであ
る。したがつて、本発明では調整棒の周囲に水対
燃料比が比較的大きい燃料集合体を4体ずつ配置
することにより炉心全体の水対燃料比が大きくな
るので、高温時の無限増倍率が増大し、燃料の燃
焼効率を向上させることができる。また、調整棒
の周囲に装荷された燃料集合体の減速材温度反応
度係数およびボイド反応度係数が負の値になつた
とき調整棒を炉心から引き抜くので、冷温状態か
ら定格出力状態までの全域にわたつて十分な安定
性を確保することができるものである。
The present invention provides four fuel assemblies with a relatively large water-to-fuel ratio around adjustment rods that adjust the reactivity of the core.
The adjustment rod is pulled out from the core when the moderator temperature response coefficient and void reactivity coefficient of the fuel assembly become negative values. Therefore, in the present invention, by arranging four fuel assemblies each having a relatively large water-to-fuel ratio around the adjustment rods, the water-to-fuel ratio of the entire reactor core becomes large, so that the infinite multiplication factor at high temperatures increases. This increases fuel combustion efficiency. In addition, since the adjustment rod is pulled out from the core when the moderator temperature reactivity coefficient and void reactivity coefficient of the fuel assembly loaded around the adjustment rod become negative values, the adjustment rod is pulled out from the core, so the entire range from the cold state to the rated power state is It is possible to ensure sufficient stability over a period of time.

〔発明の実施例〕[Embodiments of the invention]

以下第4図ないし第7図を参照して本発明の一
実施例を説明する。図中11……は燃料集合体で
あつて、燃料ペレツトを収容した燃料棒12……
およびウオータロツドを8行8列の格子状に配列
して燃料バンドルを構成し、この燃料バンドルを
断面略正方形のチヤンネルボツクス13……内に
収容して構成されている。そして、これら燃料集
合体11……を断面十字状の制御棒14……の周
囲に4体装荷して第4図に示す如き単位格子を構
成し、これら単位格子をさらに多数格子状に配列
して第5図に示す如き炉心が構成されている。そ
して、減速材を兼用した冷却材すなわち軽水は上
記チヤンネルボツクス13……内を上方に流れ、
燃料棒12……内に収容されている核燃料の核反
応による熱によつて加熱され、沸騰するように構
成されている。そして、上記燃料集合体11……
は例えばウオータロツドの本数が従来の燃料集合
体より多いA燃料集合体11a……と、ウオータ
ロツドの本数がA燃料集合体11aより少なく従
来の燃料集合体と同程度のB燃料集合体11b…
…とに分けられており、第5図中A燃料集合体1
1a……には斜線を附して示す。
An embodiment of the present invention will be described below with reference to FIGS. 4 to 7. In the figure, 11 ... is a fuel assembly, and fuel rods 12... contain fuel pellets.
The fuel bundle is constructed by arranging the water rods in a grid of 8 rows and 8 columns, and this fuel bundle is housed in a channel box 13 having a substantially square cross section. Then, four of these fuel assemblies 11 are loaded around a control rod 14 having a cross-shaped cross section to form a unit lattice as shown in FIG. 4, and many more of these unit lattices are arranged in a lattice. The reactor core is constructed as shown in FIG. Then, the coolant that also serves as a moderator, that is, light water, flows upward in the channel box 13...
The fuel rods 12 are configured to be heated and boiled by the heat generated by the nuclear reaction of the nuclear fuel contained therein. And the fuel assembly 11 ...
For example, fuel assembly A 11a has more waterrods than the conventional fuel assembly, and fuel assembly B 11b has fewer waterrods than the conventional fuel assembly 11a than the conventional fuel assembly.
...A fuel assembly 1 in Figure 5.
1a... are shown with diagonal lines.

そして、上記A燃料集合体11a……は炉心に
装荷した場合にその水対燃料比が高く、無限増倍
率が最大となる領域R2にあり、かつ冷却材すな
わち減速材の温度が冷温状態から定格運転状態ま
での温度範囲のうちの低温領域たとえば冷温状態
から30%定格出力状態までの範囲では減速材温度
反応度係数またはボイド反応度係数のうち少なく
ともいずれか一方が正であり、また高温領域たと
えば30%定格出力状態から100%定格出力状態ま
での範囲では減速材温度反応度係数およびボイド
反応度係数がいずれも負となるように構成されて
いる。したがつて、このA燃料集合体11a……
では第6図に示す如く水対燃料比が冷温状態a′か
ら100%定格出力状態b′までの間の領域R2で変化
し、この領域R2は無限増倍率が最大である点
knaxを含む。そして、これらA燃料集合体11a
……は一部の制御棒14……たとえば原子炉運転
中において炉心に挿入され、炉心の反応度等を制
御するためのいわゆる調整棒の周囲にそれぞれ4
体ずつ装荷されている。
When loaded into the reactor core, the A fuel assembly 11a... has a high water-to-fuel ratio, is in the region R2 where the infinite multiplication factor is maximum, and the temperature of the coolant, that is, the moderator, is in a cold state. In the low temperature range of the temperature range up to the rated operating state, for example from the cold state to the 30% rated output state, at least one of the moderator temperature reactivity coefficient or the void reactivity coefficient is positive, and in the high temperature range For example, the moderator temperature reactivity coefficient and void reactivity coefficient are both negative in the range from 30% rated output state to 100% rated output state. Therefore, this A fuel assembly 11a...
Then, as shown in Figure 6, the water-to-fuel ratio changes in the region R 2 from the cold temperature state a' to the 100% rated output state b', and this region R 2 is the point where the infinite multiplication factor is maximum.
Contains knax . And these A fuel assemblies 11a
... are some of the control rods 14...For example, 4 control rods are inserted around the so-called adjustment rods that are inserted into the reactor core during reactor operation to control the reactivity of the reactor core, etc.
Each body is loaded.

また、前記B燃料集合体11b……は従来の燃
料集合体と同様に水対燃料比が比較的小さくなる
ように構成され冷温状態から100%定格出力状態
に到るまでの全温度範囲について減速材温度反応
度係数およびボイド反応度係数がいずれも負とな
るように構成されている。したがつてこのB燃料
集合体11b……は第6図に示す如く水対燃料比
が冷温状態aから100%定格出力状態bまでの領
域R1にわたつて変化する。そして、この領域R1
においては無限増倍率は比較的小さい。そしてこ
れらB燃料集合体11b……は他の制御棒14…
…すなわち停止時のみ炉心内に挿入されるいわゆ
る安全棒の周囲に4体ずつ装荷され、また炉心の
周辺部にも装荷されている。
In addition, the B fuel assembly 11b... is configured to have a relatively small water-to-fuel ratio, similar to conventional fuel assemblies, and is decelerated over the entire temperature range from a cold state to a 100% rated output state. The material temperature reactivity coefficient and the void reactivity coefficient are both negative. Therefore, in this B fuel assembly 11b..., the water-to-fuel ratio changes over a region R1 from a cold temperature state a to a 100% rated output state b, as shown in FIG. And this area R 1
, the infinite multiplication factor is relatively small. These B fuel assemblies 11b... are connected to other control rods 14...
...In other words, four safety rods are loaded around the so-called safety rods that are inserted into the core only during shutdown, and they are also loaded around the periphery of the core.

以上の如く構成された本発明の一実施例は一部
の燃料集合体に水対燃料比の大きなA燃料集合体
11a……を用いているので炉心全体の水対燃料
比が大きくなり、燃料の燃焼効率が向上する。
One embodiment of the present invention configured as described above uses A fuel assemblies 11a, which have a large water-to-fuel ratio, as some of the fuel assemblies, so the water-to-fuel ratio of the entire reactor core becomes large, and the fuel combustion efficiency is improved.

そして、原子炉を冷温状態から起動するにはま
ず周囲にB燃料集合体11b……が装荷されてい
る制御棒14……すなわち安全棒を引抜いて原子
炉を起動する。そして、冷却材すなわち減速材の
温度が第7図に示す如く冷温状態P0からたとえ
ば30%定格出力状態まで上昇する間、B燃料集合
体11b……は減速材温度反応度係数およびボイ
ド反応度係数がいずれも負であるから、これらB
燃料集合体11b……の無限増倍率はB1に示す
如く低下してゆく。なお、このP0からP30までの
領域ではA燃料集合体11a……の減速材温度反
応度係数またはボイド反応度係数は正であるが、
これらA燃料集合体11a……が周囲に装荷され
ている制御棒14……すなわち調整棒は炉心内に
挿入されており、これらA燃料集合体11a……
は反応に寄与していないので不安定さが生じるこ
とはない。そして、減速材温度が30%定格出力状
態P30に達したら調整棒の引抜を開始する。そし
て、この30%定格出力状態P30以上ではこのA燃
料集合体11a……もその減速材温度反応度係数
およびボイド反応度係数がともに負になるのでA
に示す如くその無限増倍率は低下してゆく。また
B燃料集合体11b……もB2に示す如く無限増
倍率が低下してゆく。
To start the reactor from a cold state, the reactor is started by first pulling out the control rods 14, ie, the safety rods around which the B fuel assemblies 11b are loaded. Then, while the temperature of the coolant, that is, the moderator increases from the cold temperature state P 0 to, for example, 30% rated output state as shown in FIG. 7, the B fuel assembly 11b... Since the coefficients are all negative, these B
The infinite multiplication factor of the fuel assembly 11b... decreases as shown by B1 . Note that in this region from P 0 to P 30 , the moderator temperature reactivity coefficient or void reactivity coefficient of the A fuel assembly 11a is positive, but
These A fuel assemblies 11a... are loaded around the control rods 14...that is, the adjustment rods are inserted into the reactor core, and these A fuel assemblies 11a...
does not contribute to the reaction, so no instability occurs. Then, when the moderator temperature reaches the 30% rated output state P30 , the adjustment rod starts to be pulled out. In this 30% rated output state P 30 or higher, both the moderator temperature reactivity coefficient and void reactivity coefficient of this A fuel assembly 11a... are negative, so A
As shown in , the infinite multiplication factor decreases. Further, the infinite multiplication factor of the B fuel assembly 11b also decreases as shown in B2 .

よつてこのようなA燃料集合体11a……を用
いても冷温状態P0から100%定格出力状態P100
での全域にわたつて充分な安定性を確保すること
ができる。
Therefore, even if such A fuel assembly 11a is used, sufficient stability can be ensured over the entire range from cold temperature state P 0 to 100% rated output state P 100 .

〔発明の効果〕〔Effect of the invention〕

上述の如く本発明は、炉心の反応度を調整する
調整棒の周囲に、水対燃料比が比較的大きい燃料
集合対を4体ずつ配置し、前記調整棒は前記燃料
集合体の減速材温度反応係数およびボイド反応度
係数が負の値になつたとき炉心から引き抜かれる
ものである。したがつて、本発明では炉心全体の
水対燃料比が大きくなり、高温時の無限増倍率が
高くなるので、燃料の燃焼効率を向上させること
ができる。また、調整棒の周囲に装荷された燃料
集合体の減速材温度反応度係数およびボイド反応
度係数が負の値になつたとき調整棒を炉心から引
き抜くので、冷温状態から定格出力状態までの全
域にわたつて十分な安定性を確保することができ
る等その効果は大である。
As described above, the present invention arranges four pairs of fuel assemblies each having a relatively large water-to-fuel ratio around adjustment rods that adjust the reactivity of the core, and the adjustment rods adjust the moderator temperature of the fuel assemblies. It is extracted from the core when the reaction coefficient and void reactivity coefficient become negative values. Therefore, in the present invention, the water-to-fuel ratio of the entire core becomes large, and the infinite multiplication factor at high temperatures becomes high, so that the fuel combustion efficiency can be improved. In addition, since the adjustment rod is pulled out from the core when the moderator temperature reactivity coefficient and void reactivity coefficient of the fuel assembly loaded around the adjustment rod become negative values, the adjustment rod is pulled out from the core, so the entire range from the cold state to the rated power state is This has great effects, such as ensuring sufficient stability over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は従来例を示し、第1図は
単位格子の概略的な平面図、第2図は炉心の概略
的な平面図、第3図は水対燃料比と無限増倍率と
の関係を示す線図である。第4図ないし第7図は
本発明の一実施例を示し、第4図は単位格子の概
略的な平面図、第5図は炉心の概略的な平面図、
第6図は水対燃料比と無限増倍率との関係を示す
線図、第7図は減速材温度と無限増倍率との関係
を示す線図である。 11……燃料集合体、11a……A燃料集合
体、11b……B燃料集合体、12……燃料棒、
13……チヤンネルボツクス、14……制御棒。
Figures 1 to 3 show conventional examples, where Figure 1 is a schematic plan view of the unit cell, Figure 2 is a schematic plan view of the core, and Figure 3 is the water-to-fuel ratio and infinite multiplication factor. FIG. 4 to 7 show an embodiment of the present invention, FIG. 4 is a schematic plan view of a unit cell, FIG. 5 is a schematic plan view of the core,
FIG. 6 is a diagram showing the relationship between water-to-fuel ratio and infinite multiplication factor, and FIG. 7 is a diagram showing the relationship between moderator temperature and infinite multiplication factor. 11 ...fuel assembly, 11a...A fuel assembly, 11b...B fuel assembly, 12...fuel rod,
13... Channel box, 14... Control rod.

Claims (1)

【特許請求の範囲】[Claims] 1 炉心の反応度を調整する調整棒の周囲に、水
対燃料比が比較的大きい燃料集合対を4体ずつ配
置し、前記調整棒は前記燃料集合体の減速材温度
反応度係数およびボイド反応度係数が負の値にな
つたとき炉心から引き抜かれることを特徴とする
沸騰水形原子炉。
1 Four pairs of fuel assemblies each having a relatively large water-to-fuel ratio are arranged around adjustment rods that adjust the reactivity of the core, and the adjustment rods adjust the moderator temperature reactivity coefficient and void reaction of the fuel assemblies. A boiling water reactor characterized by being withdrawn from the core when the degree coefficient reaches a negative value.
JP57202943A 1982-11-19 1982-11-19 Bwr type reactor Granted JPS5992389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57202943A JPS5992389A (en) 1982-11-19 1982-11-19 Bwr type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57202943A JPS5992389A (en) 1982-11-19 1982-11-19 Bwr type reactor

Publications (2)

Publication Number Publication Date
JPS5992389A JPS5992389A (en) 1984-05-28
JPH0371675B2 true JPH0371675B2 (en) 1991-11-14

Family

ID=16465726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57202943A Granted JPS5992389A (en) 1982-11-19 1982-11-19 Bwr type reactor

Country Status (1)

Country Link
JP (1) JPS5992389A (en)

Also Published As

Publication number Publication date
JPS5992389A (en) 1984-05-28

Similar Documents

Publication Publication Date Title
JPH058797B2 (en)
JPH06138275A (en) Control rod for use in reactor, reactor core structure and operating method thereof
JPH0371675B2 (en)
JPH0415436B2 (en)
JPS6228437B2 (en)
JPS59147295A (en) Fuel assembly
JP2001124884A (en) Fuel assembly for boiling water reactor and initially charged reactor core
JP2966877B2 (en) Fuel assembly
JP3117207B2 (en) Fuel assembly for boiling water reactor
JP3318193B2 (en) Fuel loading method
JP3070756B2 (en) Fuel assembly
JPH026786A (en) Fuel rod and fuel assembly for boiling water reactor
JP2963712B2 (en) Fuel assembly for boiling water reactor
JP2625404B2 (en) Fuel assembly
JP2811597B2 (en) Fuel assembly for boiling water reactor
JPH07234295A (en) Reactor core
JPS6258193A (en) Operation control rod for nuclear reactor
JPS59102188A (en) Fuel assembly
JPS5814080A (en) Fuel assembly
JPS6044637B2 (en) fuel assembly
JPH01193693A (en) Controlling of nuclear reactor
JPH06118188A (en) Fuel assembly and core for boiling water reactor
JPS61240193A (en) Fuel aggregate and nuclear reactor
JPS60238784A (en) Fuel aggregate
JPS62299790A (en) Fuel aggregate