JPH0371515A - Coaxial cable - Google Patents

Coaxial cable

Info

Publication number
JPH0371515A
JPH0371515A JP1206909A JP20690989A JPH0371515A JP H0371515 A JPH0371515 A JP H0371515A JP 1206909 A JP1206909 A JP 1206909A JP 20690989 A JP20690989 A JP 20690989A JP H0371515 A JPH0371515 A JP H0371515A
Authority
JP
Japan
Prior art keywords
polyimide
conductor
insulating layer
sheath conductor
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1206909A
Other languages
Japanese (ja)
Inventor
Hiroichi Karasawa
博一 唐沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1206909A priority Critical patent/JPH0371515A/en
Publication of JPH0371515A publication Critical patent/JPH0371515A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation

Landscapes

  • Insulated Conductors (AREA)

Abstract

PURPOSE:To achieve excellent radio active ray resistance and heat resistance, and to improve mechanical durability and packaging density by using a polyimide synthetic resin for an insulating layer and for a coating layer. CONSTITUTION:A polyimide resinous insulating layer 5 is adhered around a center conductor 4. A polyimide synthetic resin has performance of 10<7> rad or more of radio active ray resistance and 300-400 deg.C of heat resistance. Around the polyimide resinous insulating layer 5, a sheath conductor 6 is provided. The sheath conductor 6 is a metal layer for which a metal such as copper is deposited or a metallic thin film tape is wound. Around the sheath conductor 6, a polyimide resinous coating layer 7 is provided. The sheath conductor 6 is fixed by the resinous coating layer 7, insulated electrically from the outside, and mechanically protected.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はたとえば液体金属冷却型高速増殖炉の原子炉容
器内の探査などの監視システムに使用される耐放射性高
温用同軸ケーブルに関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to a radiation-resistant high-temperature coaxial system used in a monitoring system such as the exploration of the inside of a reactor vessel of a liquid metal cooled fast breeder reactor. Regarding cables.

(従来の技術) 液体ナトリウムなどの液体金属を冷却材に使用する高速
増殖炉では高温または高放射線の環境下に曝されるため
、原子炉容器内の探査を行う監視システムに使用される
同軸ケーブルは第3図に示したように無機絶縁ケーブル
つまりM I (Mine「alInsulation
)ケーブルが使用されている。
(Prior technology) Fast breeder reactors that use liquid metal such as liquid sodium as a coolant are exposed to high temperature or high radiation environments, so coaxial cables are used in monitoring systems to explore the inside of the reactor vessel. As shown in Figure 3, the inorganic insulated cable, ie, M
) cable is used.

すなわち、Mlケーブルは銅製単線からなる中心導体1
と、この中心導体1の周囲に無機絶縁物として酸化マグ
ネシウム(MgO)などの粉末で満たされた絶縁層2と
、この絶縁層2を包囲した銅製チューブのシース導体3
とから構成されている。
In other words, the Ml cable has a central conductor 1 made of a single copper wire.
Around this central conductor 1, there is an insulating layer 2 filled with powder such as magnesium oxide (MgO) as an inorganic insulator, and a sheath conductor 3 made of a copper tube surrounding this insulating layer 2.
It is composed of.

(発明が解決しようとする課題) 従来のMIケーブルは上述したように無機絶縁物の粉末
と金属シースとから構成されているため耐放射線性にす
ぐれ、高温での電気的2機械的特性も安定している。
(Problem to be solved by the invention) As mentioned above, conventional MI cables are composed of inorganic insulating powder and a metal sheath, so they have excellent radiation resistance and stable electrical and mechanical properties at high temperatures. are doing.

しかしながら、柔軟性および耐久性については十分とは
いえず、特に原子炉容器内に据え付けられた駆動機器な
どの中に配線した場合、繰り返しの曲げ応力に対しては
耐久性が十分でない課題がある。
However, flexibility and durability are not sufficient, especially when wiring is installed in drive equipment installed inside the reactor vessel. .

また、製造時に一体で引き延ばし加工を必要とするため
、原子炉容器内という狭い領域で使用するために不可欠
なケーブルの小型化つまり、細線化が困難であり、特に
多芯化することはほとんど不可能な課題がある。
In addition, since the cable must be stretched in one piece during manufacturing, it is difficult to make the cable smaller and thinner, which is essential for use in the narrow area inside the reactor vessel, and it is almost impossible to make it multi-core. There are possible challenges.

本発明は上記課題を解決するためになされたもので、耐
放射線性、耐熱性にすぐれ、機械的な繰り返し応力に対
する耐久性が良好で、実装密度の高い同軸ケーブルを提
供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a coaxial cable that has excellent radiation resistance and heat resistance, good durability against repeated mechanical stress, and high packaging density.

[発明の構成] (課題を解決するための手段) 本発明は中心導体と、この中心導体の周囲に密着された
ポリイミド系の樹脂絶縁層と、この樹脂絶縁層の周囲に
設けられたシース導体と、このシース導体の周囲に設け
られたポリイミド系の樹脂被覆層とからなることを特徴
とする。
[Structure of the Invention] (Means for Solving the Problems) The present invention comprises a central conductor, a polyimide resin insulating layer closely adhered around the central conductor, and a sheath conductor provided around the resin insulating layer. and a polyimide-based resin coating layer provided around the sheath conductor.

(作 用) 樹脂絶縁層および樹脂被覆層として使用するポリイミド
系合成樹脂は107ラド(rad)以上でも放射線に耐
え、また300℃から400℃の温度に耐え、かつ連続
使用にも耐え得る性質を有しているだけでなく、加工性
1機械的な強度および柔軟性に富んでいる。
(Function) The polyimide-based synthetic resin used as the resin insulation layer and the resin coating layer has properties that can withstand radiation of 107 rad or more, withstand temperatures of 300°C to 400°C, and can withstand continuous use. It not only has excellent processability, mechanical strength and flexibility.

なお、イミドはイミノとも称され、2価の置換基−NH
,同一炭素原子と二重結合で結合している場合>C=N
Hと、2個の別々の炭素原子と結合している場合C−N
H−Cとがあり、ポリイミドはこれらが多数結合した有
機合成化合物の樹脂を指している。
In addition, imide is also called imino, and has a divalent substituent -NH
, when bonded to the same carbon atom with a double bond>C=N
H and C-N when bonded to two separate carbon atoms
There are H-C, and polyimide refers to a resin of an organic synthetic compound in which a large number of these are bonded together.

また、シース導体を樹脂絶縁層の表面に金属蒸着または
金属薄膜テープを密着させて巻回させ、さらにこのシー
ス導体の表面に樹脂被覆層を設けることによってシース
導体を安定して固定できる。
Further, the sheath conductor can be stably fixed by winding the sheath conductor with metal vapor deposition or metal thin film tape closely attached to the surface of the resin insulating layer, and further providing a resin coating layer on the surface of the sheath conductor.

このようにして同軸ケーブルの外径を小型化でき、実装
密度を高め、柔軟性を付与することができる。
In this way, the outer diameter of the coaxial cable can be reduced, the packaging density can be increased, and flexibility can be imparted.

(実施例) 第1図を参照しながら本発明に係る同軸ケーブルの1の
実施例を説明する。
(Embodiment) One embodiment of the coaxial cable according to the present invention will be described with reference to FIG.

第1図において、符号4は中心導体で、この中心導体4
は銅などの良好な導電性を有する単線または多線の金属
線からなっている。この中心導体4の周囲にはポリイミ
ド系の樹脂絶縁層5が密着されている。このポリイミド
系の合成樹脂は耐放射線性が107ラド以上、耐熱性3
00〜400℃以上の性能を有している。
In FIG. 1, reference numeral 4 is the center conductor, and this center conductor
consists of a single or multi-wire metal wire with good electrical conductivity, such as copper. A polyimide resin insulating layer 5 is tightly adhered around the center conductor 4. This polyimide-based synthetic resin has a radiation resistance of 107 rad or more and a heat resistance of 3.
It has performance of 00 to 400°C or higher.

ポリイミド系の樹脂絶縁層5の周囲にはシース導体6が
設けられている。このシース導体6は銅などの金属を蒸
着するかまたは金属の薄膜テープを巻回した金属層であ
る。シース導体6の周囲にはポリイミド系の樹脂被覆層
7が設けられている。
A sheath conductor 6 is provided around the polyimide resin insulating layer 5. The sheath conductor 6 is a metal layer on which a metal such as copper is deposited or a thin metal film tape is wound around it. A polyimide resin coating layer 7 is provided around the sheath conductor 6.

この樹脂被覆層7はシース導体6を固定し、また外部か
ら電気的に絶縁し、機械的に保護するためのものである
This resin coating layer 7 is for fixing the sheath conductor 6, electrically insulating it from the outside, and mechanically protecting it.

以上のように構成された同軸ケーブルはポリイミド系の
樹脂絶縁層5と樹脂被覆層7を有しているため、ポリイ
ミド系樹脂自体が適度な柔軟性と弾性を有し、機械的な
繰り返しの応力に対して中心導体4およびシース導体6
を保護することができ、耐久性を向上させることができ
る。
Since the coaxial cable configured as described above has a polyimide-based resin insulation layer 5 and a resin coating layer 7, the polyimide-based resin itself has appropriate flexibility and elasticity, and can withstand repeated mechanical stress. against the center conductor 4 and sheath conductor 6
can be protected and durability can be improved.

第2図は本発明の第2の実施例を示したもので、この実
施例は第1の実施例で構成した同軸ケーブルを横列状態
で連結してフラットケーブル状に構成したことにある。
FIG. 2 shows a second embodiment of the present invention, in which the coaxial cables constructed in the first embodiment are connected in rows to form a flat cable.

すなわち、中心導体4の周囲にポリイミド系の樹脂絶縁
層5が密着され、この樹脂絶縁層5の外周にシース導体
6が設けられ、シース導体6の外周囲にポリイミド系の
樹脂被覆層7から構成された同軸ケーブルを同一平面状
に配置し各樹脂被覆層7間に連結部8を有して結合しフ
ラットケーブルに形成したことにある。この実施例によ
れば被覆層7を一体で成形することによって機械的な強
度を確保することができる。
That is, a polyimide resin insulating layer 5 is tightly adhered around the center conductor 4, a sheath conductor 6 is provided around the outer periphery of the resin insulating layer 5, and a polyimide resin coating layer 7 is provided around the outer periphery of the sheath conductor 6. The coaxial cables are arranged on the same plane and connected by connecting portions 8 between each resin coating layer 7 to form a flat cable. According to this embodiment, mechanical strength can be ensured by integrally molding the covering layer 7.

[発明の効果コ 本発明によれば耐放射線性、耐熱性のみならず、柔軟性
および加工性に優れ、また適度な弾性を有するポリイミ
ド系合成樹脂を絶縁層および被覆層として用いることに
よって小形で実装密度の高い耐久性に優れた耐放射線高
温用同軸ケーブルを提供することができる。
[Effects of the Invention] According to the present invention, a polyimide synthetic resin having not only radiation resistance and heat resistance, but also excellent flexibility and processability, and appropriate elasticity is used as an insulating layer and a covering layer. It is possible to provide a radiation-resistant high-temperature coaxial cable with high packaging density and excellent durability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る同軸ケーブルの第1の実施例を示
す横断面図、第2図は同じく本発明の第2の実施例を示
す横断面図、第3図は従来の同軸ケーブルを示す横断面
図である。 1・・・中心導体 2・・・絶縁層 3・・・シース導体 4・・・中心導体 6・・・樹脂絶縁層 6・・・シース導体 7・・・樹脂被覆層 8・・・連結部
FIG. 1 is a cross-sectional view showing a first embodiment of a coaxial cable according to the present invention, FIG. 2 is a cross-sectional view showing a second embodiment of the present invention, and FIG. 3 is a cross-sectional view of a conventional coaxial cable. FIG. 1... Center conductor 2... Insulating layer 3... Sheath conductor 4... Center conductor 6... Resin insulating layer 6... Sheath conductor 7... Resin coating layer 8... Connection portion

Claims (1)

【特許請求の範囲】[Claims] 中心導体と、この中心導体の周囲に密着されたポリイミ
ド系の樹脂絶縁層と、この樹脂絶縁層の周囲に設けられ
たシース導体と、このシース導体の周囲に設けられたポ
リイミド系の樹脂被覆層とからなることを特徴とする同
軸ケーブル。
A center conductor, a polyimide-based resin insulating layer tightly attached around this center conductor, a sheath conductor provided around this resin insulating layer, and a polyimide-based resin coating layer provided around this sheath conductor. A coaxial cable characterized by consisting of.
JP1206909A 1989-08-11 1989-08-11 Coaxial cable Pending JPH0371515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1206909A JPH0371515A (en) 1989-08-11 1989-08-11 Coaxial cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1206909A JPH0371515A (en) 1989-08-11 1989-08-11 Coaxial cable

Publications (1)

Publication Number Publication Date
JPH0371515A true JPH0371515A (en) 1991-03-27

Family

ID=16531084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1206909A Pending JPH0371515A (en) 1989-08-11 1989-08-11 Coaxial cable

Country Status (1)

Country Link
JP (1) JPH0371515A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146247A (en) * 2005-11-29 2007-06-14 Hitachi Cable Ltd Composite material made from metal and resin, production method therefor and product using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57103209A (en) * 1980-10-27 1982-06-26 Cise Spa Non-impregnating single-conductor or plural-conductor cable used in corrosive environment at high temperature
JPS57168410A (en) * 1981-04-10 1982-10-16 Japan Atomic Energy Res Inst Radiation resistant and heat resistant cable
JPS605014B2 (en) * 1980-11-20 1985-02-07 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン diagnostic system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57103209A (en) * 1980-10-27 1982-06-26 Cise Spa Non-impregnating single-conductor or plural-conductor cable used in corrosive environment at high temperature
JPS605014B2 (en) * 1980-11-20 1985-02-07 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン diagnostic system
JPS57168410A (en) * 1981-04-10 1982-10-16 Japan Atomic Energy Res Inst Radiation resistant and heat resistant cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146247A (en) * 2005-11-29 2007-06-14 Hitachi Cable Ltd Composite material made from metal and resin, production method therefor and product using the same

Similar Documents

Publication Publication Date Title
JP2863631B2 (en) Coaxial cable with conductive jacket
US4970352A (en) Multiple core coaxial cable
US7166804B2 (en) Terminal structure of superconducting cable and superconducting cable line therewith
WO2002078015A1 (en) Parallel two-core shielding wire and method for producing the same
US4868565A (en) Shielded cable
JPH02253517A (en) Superconducting wire
JP2923988B2 (en) Superconducting conductor
JPH0371515A (en) Coaxial cable
WO2011129245A1 (en) Superconducting wire material, superconducting coil, and superconducting protective device
CN215988148U (en) Aerospace fluorinated ethylene propylene insulating installation wire
US4782316A (en) Core winding with inorganic insulation between the inner conductor and outer metal sheath
JP2017062982A (en) Superconductive cable heat insulation tube and superconductive cable
CN108346491A (en) A kind of high-cooling property cable
JPH0714620A (en) Structure of current supply terminal for oxide superconductor
US3668297A (en) Low-temperature electrical cable arrangement
TW202046344A (en) Cable and A Combined Cable
JP2018129888A (en) Normal conductive connecting member and terminal structure of superconducting cable
JP2530165B2 (en) Oxide superconductor cable
GB2095459A (en) A high-current cable for medium-frequency three-phase current
JPH05282924A (en) Covered conductor
CN218181855U (en) Radiation-resistant three-coaxial low-noise cable
CN214253963U (en) Electromagnetic cable for medical instrument
CN217214213U (en) Power supply and temperature sensing composite cable for linear motor
CN216435502U (en) Radiation-resistant composite cable
CN220509732U (en) Low-noise cable for aerospace