JPH0371437B2 - - Google Patents

Info

Publication number
JPH0371437B2
JPH0371437B2 JP19769085A JP19769085A JPH0371437B2 JP H0371437 B2 JPH0371437 B2 JP H0371437B2 JP 19769085 A JP19769085 A JP 19769085A JP 19769085 A JP19769085 A JP 19769085A JP H0371437 B2 JPH0371437 B2 JP H0371437B2
Authority
JP
Japan
Prior art keywords
formula
fluorescent
integer
general formula
nucleotide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19769085A
Other languages
Japanese (ja)
Other versions
JPS6259293A (en
Inventor
Hideo Inoe
Eiko Ootsuka
Akihiro Imura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP19769085A priority Critical patent/JPS6259293A/en
Publication of JPS6259293A publication Critical patent/JPS6259293A/en
Priority to JP3144090A priority patent/JPH0798834B2/en
Publication of JPH0371437B2 publication Critical patent/JPH0371437B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、蛍光を発するヌクレオシド又はヌク
レオチドに関する。 生体高分子、特に蛋白質や核酸における構造と
機能の相関を明らかにするために、蛍光プローブ
を利用した研究が広く行なわれている。そして核
酸の研究において、核酸中に存在する蛍光性の微
量塩基をプローブとして用いる方法や、核酸へ蛍
光分子を化学的に導入してこれをプローブとして
用いる方法がある。蛍光性塩基を有するヌクレオ
シドの例としては、アデノシン類やシチジン類を
クロルアセトアルデヒドで化学修飾して得られ
る、下記式で示されるような蛍光性のエテノ誘導
体がある。
The present invention relates to fluorescent nucleosides or nucleotides. Research using fluorescent probes has been widely conducted to clarify the relationship between structure and function in biological macromolecules, especially proteins and nucleic acids. In research on nucleic acids, there are methods that use a small amount of fluorescent bases present in nucleic acids as probes, and methods that chemically introduce fluorescent molecules into nucleic acids and use them as probes. Examples of nucleosides having fluorescent bases include fluorescent etheno derivatives shown by the following formula, which are obtained by chemically modifying adenosines and cytidines with chloroacetaldehyde.

【式】1,N6−エテノアデノシン[Formula] 1,N 6 -ethenoadenosine

【式】3,N4−エテノシチジン 特に、エテノアデノシン類は、中性で強く蛍光
を発することから、これをプローブとして用いて
種々の研究が行なわれてきた。しかし、これらは
塩基対形成能を有しない。 本発明者らは、蛍光性を有しグアニンあるいは
アデニンとの塩基対形成が可能な、ビリミジンヌ
クレオシド又はヌクレオチド誘導体を得るべく鋭
意研究を行ない、本発明に到達した。 即ち、本発明は、 一般式()で表わされる蛍光性ヌクレオシド
又はヌクレオチドである。 〔式()において、X1とY1は各々
[Formula] 3,N 4 -ethenocytidine In particular, ethenoadenosine is neutral and emits strong fluorescence, so various studies have been conducted using it as a probe. However, these do not have base pairing ability. The present inventors have conducted extensive research to obtain pyrimidine nucleoside or nucleotide derivatives that have fluorescence and are capable of forming base pairs with guanine or adenine, and have arrived at the present invention. That is, the present invention is a fluorescent nucleoside or nucleotide represented by the general formula (). [In formula (), X 1 and Y 1 are each

【式】を表わす(nは0,1,2又は 3の整数を示す)。Z1はH−又は
[Formula] (n represents an integer of 0, 1, 2, or 3). Z 1 is H- or

【式】を表わす(mは0,1,2又は 3の整数を示す)。W1はH−又はHO−を表わ
す。〕 一般式()において特に好ましいのは、X1
とY1が共にHO−でZ1がH−又はHO−でW1がH
−の化合物、あるいはX1及び/又はY1
[Formula] (m represents an integer of 0, 1, 2, or 3). W 1 represents H- or HO-. ] In the general formula (), particularly preferred is X 1
and Y 1 are both HO- and Z 1 is H- or HO- and W 1 is H
- or X 1 and/or Y 1 are

【式】(nは1,2又は3の整数を示 す)でZ1がH−又はHO−でW1がH−である。
水酸基が公知の適当な保護基で保護されているも
のも、本発明の範囲に含まれる。 一般式()の化合物の製造法を、X1とY1
共にHO−で、Z1とW1が共にH−の場合を例に
とつて説明する。 一つの方法は、糖部の水酸基を保護した5−ヨ
ードデオキシシチジンにO−ヨードベンゾイルク
ロライドを作用させ、得られた化合物をDMF中
で、2価のPdの存在下に加熱処理し、次いで保
護基を除去する方法である。 他の方法は、デオキシシチジンから容易に得ら
れるN4−ベンゾイルデオキシシチジン誘導体を、
メタノール中でヨウ素の存在下で光照射し、次い
で常法により脱保護を行なう方法である。 上記の如くして得られた蛍光性ヌクレオシド
は、その3′位又は5′位に後述の如き方法でリン酸
基を導入しヌクレオチドとすることができる。 かくして得らた一般式()の化合物は、蛍光
性でありかつ核酸塩基のグアニンあるいはアデニ
ンと塩基対を形成する能力があるので、これを分
子中又は分子末端に有するオリゴ又はポリヌクレ
オチドは、蛍光プローブとして利用できる。ある
いは、これらの化合物は、DNA二重らせん中に
組み入れた際に、塩基部分は空間的に適合してお
り、塩基間の水素結合形成能力やスタツキング作
用を増強する可能性も考えられる。 従つて、本発明により、分子中又は分子末端
に、一般式()で表わされる蛍光性ヌクレオチ
ドを、少なくとも1個有するオリゴ又はポリヌク
レオチドを得ることができる。 〔式()において、X2
In the formula (n is an integer of 1, 2 or 3), Z 1 is H- or HO- and W 1 is H-.
Those in which the hydroxyl group is protected with a known appropriate protecting group are also included within the scope of the present invention. The method for producing the compound of general formula () will be explained by taking as an example the case where both X 1 and Y 1 are HO-, and both Z 1 and W 1 are H-. One method is to allow O-iodobenzoyl chloride to act on 5-iododeoxycytidine with the hydroxyl group of the sugar moiety protected, heat-treat the resulting compound in DMF in the presence of divalent Pd, and then protect This is a method of removing groups. Another method uses N4 -benzoyldeoxycytidine derivatives, which are easily obtained from deoxycytidine, to
This method involves irradiation with light in methanol in the presence of iodine, followed by deprotection using a conventional method. The fluorescent nucleoside obtained as described above can be converted into a nucleotide by introducing a phosphate group into the 3' or 5' position by the method described below. The compound of the general formula () thus obtained is fluorescent and has the ability to form base pairs with the nucleic acid base guanine or adenine, so oligos or polynucleotides having this in the molecule or at the end of the molecule are fluorescent. Can be used as a probe. Alternatively, when these compounds are incorporated into a DNA double helix, the base moieties are spatially compatible, and it is possible that they enhance the ability to form hydrogen bonds between bases and the stacking effect. Therefore, according to the present invention, it is possible to obtain an oligo or polynucleotide having at least one fluorescent nucleotide represented by the general formula () in the molecule or at the end of the molecule. [In formula (), X 2 is

【式】又 は【Formula】Also teeth

【式】を表わし、X2[Formula] is represented, and X 2 is

【式】 のときY2又はZ2は−O−を表わし(但し他方は
H−又はHO−を表わす), X2
[Formula] When Y 2 or Z 2 represents -O- (however, the other represents H- or HO-), and X 2

【式】のときY2又はZ2は−O−又 はWhen [Formula], Y 2 or Z 2 is -O- or

【式】を表わす(但し他方はH−又 はHO−を表わす)(rは0,1,2又は3の整
数を示し、sは1,2又は3の整数を示す)。W2
はH−又はHO−を表わす。〕 一般式()において特に好ましいのは、X2
(wherein the other represents H- or HO-) (r represents an integer of 0, 1, 2 or 3, and s represents an integer of 1, 2 or 3). W 2
represents H- or HO-. ] In the general formula (), particularly preferred is X 2
but

【式】であり、Y2が−O−でW2がH− である、オリゴ又はポリヌクレオチドである。 蛍光性ヌクレオシド又はヌクレオチドをDNA
オリゴマーあるはポリマーへ導入するには、有機
化学的に合成する方法と、酵素化学的に導入する
2通りの方法がとられる。 有機化学的に合成する方法は、蛍光性ヌクレオ
シド(F)を含むオリゴヌクレオチドを直接合成する
方法である。Itakuraらが開発した、固相リン酸
トリエステル法を用いて、第1図に示すサイクル
に従つて合成を行なつた。 すなわちステツプ1として、ベンゼンスルホン
酸(BSA)で、5′−水酸基のジメトキシトリチル
基(DNTr基)を除去し、ステツプ2で、ダイマ
ーブロツクをメシチレンスルホン酸ニトロトリア
ゾール(MSNT)で縮合し、固相に担持され
F含有オリゴマーの鎖を伸長した。また、目的と
異なる配列のオリゴマー生成を防ぐために、縮合
反応において未反応の5′−水酸基は、4−ジメチ
ルアミノピリジン(DMAP)存在下無水酢酸
(Ac2O)でキヤツピングを行なつた。 このサイクルをくり返すことによつて、目的と
するオリゴマーを合成した。オリゴマヌクレオチ
ドのポリマー支持体からの切り出しとリン酸の保
護基の除去は、室温でアンモニア水で処理するこ
とにより行なつた。 更にアンモニア水で加熱処理することにより、
塩基部のアシル基を除去した。次いで逆層のシリ
カゲルカラムクロマトグラフイーで精製し、必要
なフラクシヨンを分取し、5′末端のDMTr基を除
去し、更に高速液体クロマトグラフイーで精製し
た。 蛍光性ヌクレオシド又はヌクレオチドをDNA
オリゴマーあるいはポリマーに酵素化学的に導入
する方法としては、例えば、 () DNAポリメラーゼを用いるニツクトラ
ンスレーシヨン (Rigby,P.W.ら,J.Mol.Biol.,113,237
(1977)参照) () 末端デオキシヌクレオチドトランスフエ
ラーゼを用いる3′−末端付加反応 (F.J.Bollum,The Enzymes,(P.D.
Boyer,ed.),3rd Ed.Vol.10,pp.145−171,
Academic Press,New York,N.Y.(1974)
参照) の2つが、通常用いられる。 いずれの酵素を用いる場合にも、基質として
は、好ましくは、ヌクレオシド5′−トリリン酸が
用いられる。蛍光性ヌクレオシドの5′−モノリン
酸の合成は、Yoshikawaら(Tetrahedron
Lett.,5065(1967))の方法に従つて合成できる。
また、5′−モノリン酸をイミダゾリドとした後ジ
リン酸と反応させる、5′−トリリン酸の合成は、
Ottoらの方法(J.An.Chem.Soc.,87,1785−
1788(1965))に従つて行なうことができる。 次に合成した5′−トリリン酸を基質として用
い、DNAポリメラーゼを用いて、ニツク・トラ
ンスレーシヨンを行なうと、シチジンの代りに、
蛍光性ヌクレオチドが導入され蛍光標識されたオ
リゴマーあるいはポリマーを調整することができ
る。また、末端デオキシヌクレオチドトランスフ
エラーゼを用いると、3′−末端に蛍光性ヌクレオ
チドポリマーを付加することができる。 以下、実施例、参考例により本発明を詳述す
る。 実施例 1 (1) 5−ヨードデオキシシチジン(a)500mgを無水
ピリジン10mlに、懸濁させ、これに1,1,
3,3−テトライソプロピル−1,3−ジクロ
ルジシロキサン0.57ml(1.2当量)を氷冷下で
加え、その後室温で2時間反応させた。 氷冷下で、水2mlを加えて反応を停止し、10
分間放置した後、溶媒を減圧下留去した。残渣
を水−クロロホルム系で抽出し、クロロホルム
層を無水硫酸ナトリウムで乾燥した。クロロホ
ルムを留去した後、シリカゲルクロマトグラフ
イーにより精製し、メタノールで再結晶して、
3′,5′−0−(1,1,3,3−テトライソプ
ロプルジシロキサン−1,3−ジイル)−5−
ヨードデオキシシチジン(b)750mgを得た。物性
値は次の通りであつた。 m.p. 210−211℃ UV λメタノ哀
It is an oligo or polynucleotide of the formula: where Y 2 is -O- and W 2 is H-. fluorescent nucleosides or nucleotides to DNA
There are two methods for introducing into oligomers or polymers: organic chemical synthesis and enzymatic chemical introduction. The organic chemical synthesis method is a method of directly synthesizing an oligonucleotide containing a fluorescent nucleoside (F). Synthesis was carried out using the solid-phase phosphotriester method developed by Itakura et al. according to the cycle shown in FIG. That is, in step 1, the dimethoxytrityl group (DNTr group) of the 5'-hydroxyl group is removed with benzenesulfonic acid (BSA), and in step 2, the dimer block is condensed with mesitylene sulfonate nitrotriazole (MSNT), and the solid phase is The chain of the F-containing oligomer was extended. Furthermore, in order to prevent the formation of oligomers having a different sequence than the intended one, unreacted 5'-hydroxyl groups in the condensation reaction were capped with acetic anhydride (Ac 2 O) in the presence of 4-dimethylaminopyridine (DMAP). By repeating this cycle, the desired oligomer was synthesized. Cleavage of the oligomer nucleotide from the polymer support and removal of the phosphoric acid protecting group were performed by treatment with aqueous ammonia at room temperature. Furthermore, by heat treatment with ammonia water,
The acyl group in the base part was removed. It was then purified by reverse phase silica gel column chromatography, the necessary fractions were collected, the DMTr group at the 5' end was removed, and further purified by high performance liquid chromatography. fluorescent nucleosides or nucleotides to DNA
Examples of methods for enzymatically introducing oligomers or polymers include () Nick translation using DNA polymerase (Rigby, PW et al., J. Mol. Biol., 113 , 237).
(1977)) () 3'-end addition reaction using terminal deoxynucleotide transferase (FJ Bollum, The Enzymes, (PD
Boyer, ed.), 3rd Ed.Vol.10, pp.145-171,
Academic Press, New York, NY (1974)
(see ) are commonly used. When using either enzyme, nucleoside 5'-triphosphate is preferably used as the substrate. The synthesis of the fluorescent nucleoside 5′-monophosphate was described by Yoshikawa et al.
Lett., 5065 (1967)).
In addition, 5'-triphosphoric acid can be synthesized by converting 5'-monophosphoric acid into imidazolide and then reacting it with diphosphoric acid.
Otto et al.'s method (J.An.Chem.Soc., 87 , 1785-
1788 (1965)). Next, using the synthesized 5'-triphosphate as a substrate and performing nick translation using DNA polymerase, in place of cytidine,
Fluorescently labeled oligomers or polymers into which fluorescent nucleotides have been introduced can be prepared. Furthermore, when terminal deoxynucleotide transferase is used, a fluorescent nucleotide polymer can be added to the 3'-end. Hereinafter, the present invention will be explained in detail with reference to Examples and Reference Examples. Example 1 (1) Suspend 500 mg of 5-iododeoxycytidine (a) in 10 ml of anhydrous pyridine, and add 1,1,
0.57 ml (1.2 equivalents) of 3,3-tetraisopropyl-1,3-dichlorodisiloxane was added under ice cooling, and the mixture was then reacted at room temperature for 2 hours. Under ice-cooling, add 2 ml of water to stop the reaction.
After standing for a minute, the solvent was distilled off under reduced pressure. The residue was extracted with a water-chloroform system, and the chloroform layer was dried over anhydrous sodium sulfate. After distilling off chloroform, it was purified by silica gel chromatography, recrystallized from methanol,
3',5'-0-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)-5-
750 mg of iododeoxycytidine (b) was obtained. The physical property values were as follows. mp 210−211℃ UV λMethanosai

Claims (1)

【特許請求の範囲】 1 一般式()で表わされる蛍光性ヌクレオシ
ド又はヌクレオチド。 [式()において、X1とY1は各々
【式】を表わす(nは0,1,2又は 3の整数を示す)。Z1はH−又は
【式】を表わす(mは0,1,2又は 3の整数を示す)。W1はH−又はHO−を表わ
す。] 2 一般式()において、X1とY1が共にH0−
でZ1がH−又はHO−でW1がH−である、特許
請求の範囲第1項記載の蛍光性ヌクレオシド。 3 一般式()において、X1及び/又はY1
【式】(nは1,2又は3の整数を示 す)でZ1がH−又はHO−でW1がH−である、
特許請求の範囲第1項記載の蛍光性ヌクレオチ
ド。
[Claims] 1. A fluorescent nucleoside or nucleotide represented by the general formula (). [In formula (), X 1 and Y 1 each represent [formula] (n represents an integer of 0, 1, 2, or 3). Z 1 represents H- or [Formula] (m represents an integer of 0, 1, 2 or 3). W 1 represents H- or HO-. ] 2 In the general formula (), both X 1 and Y 1 are H0−
The fluorescent nucleoside according to claim 1, wherein Z 1 is H- or HO- and W 1 is H-. 3 In the general formula (), X 1 and/or Y 1 is [Formula] (n represents an integer of 1, 2 or 3), Z 1 is H- or HO-, and W 1 is H-,
Fluorescent nucleotide according to claim 1.
JP19769085A 1985-09-09 1985-09-09 Fluorescent nucleoside or nucleotide Granted JPS6259293A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19769085A JPS6259293A (en) 1985-09-09 1985-09-09 Fluorescent nucleoside or nucleotide
JP3144090A JPH0798834B2 (en) 1985-09-09 1991-05-21 Fluorescent polynucleotide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19769085A JPS6259293A (en) 1985-09-09 1985-09-09 Fluorescent nucleoside or nucleotide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3144090A Division JPH0798834B2 (en) 1985-09-09 1991-05-21 Fluorescent polynucleotide

Publications (2)

Publication Number Publication Date
JPS6259293A JPS6259293A (en) 1987-03-14
JPH0371437B2 true JPH0371437B2 (en) 1991-11-13

Family

ID=16378729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19769085A Granted JPS6259293A (en) 1985-09-09 1985-09-09 Fluorescent nucleoside or nucleotide

Country Status (1)

Country Link
JP (1) JPS6259293A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992005185A1 (en) * 1990-09-20 1992-04-02 Amoco Corporation Probe compositions for chromosome identification and methods
WO1995005391A1 (en) * 1993-08-18 1995-02-23 Chromagen, Inc. Applications of fluorescent n-nucleosides and fluorescent structural analogs of n-nucleosides
US5502177A (en) * 1993-09-17 1996-03-26 Gilead Sciences, Inc. Pyrimidine derivatives for labeled binding partners
US6007992A (en) * 1997-11-10 1999-12-28 Gilead Sciences, Inc. Pyrimidine derivatives for labeled binding partners
US6028183A (en) * 1997-11-07 2000-02-22 Gilead Sciences, Inc. Pyrimidine derivatives and oligonucleotides containing same
EP1483280B1 (en) 2002-03-08 2012-10-24 Glen Research Corporation Fluorescent nitrogenous base and nucleosides incorporating same
WO2004046147A1 (en) * 2002-11-18 2004-06-03 Otsuka Pharmaceutical Co., Ltd. Polynucleotide derivative and use thereof

Also Published As

Publication number Publication date
JPS6259293A (en) 1987-03-14

Similar Documents

Publication Publication Date Title
CA2386221C (en) Compounds for protecting hydroxyls and methods for their use
US5214134A (en) Process of linking nucleosides with a siloxane bridge
US5908926A (en) 5'to 3' nucleic acid synthesis using 3'-photoremovable protecting group
US7566775B2 (en) N8- and C8-linked purine bases and structurally related heterocycles as universal nucleosides used for oligonucleotides hybridization
JP2621123B2 (en) 2'-Dideoxy-isoguanosines, isosteric analogs and isoguanosine derivatives and uses thereof
EP0235301A1 (en) Pyridopyrimidine nucleotide derivatives
WO1992002528A1 (en) Incorporation of selectably clevable and/or abasic sites into oligonucleotide chains and reagents therefor
JPH10513178A (en) Novel chain terminators, their use for nucleic acid sequencing and synthesis, and methods for their preparation
JP2011084573A (en) Method and composition for synthesizing labelled oligonucleotide and analog on solid support
JPH0714954B2 (en) Coumarin derivatives for use as nucleotide cross-linking reagents
EP0289619B1 (en) Process for synthesizing oligonucleotides and compounds for forming high-molecular protective group
JP2835630B2 (en) Nucleoside derivatives that can be used in the synthesis of targeted oligonucleotides, oligonucleotides derived from these derivatives, and their synthesis
JPH0371437B2 (en)
EP0540742A1 (en) Oligodeoxyribonucleotides
JPS62255499A (en) Fluorescent nucleoside or nucleotide
NZ292140A (en) Oligomers consisting of 1,5-anhydrohexitol nucleosides, antisence techniques.
US4426517A (en) Process for de-cyanoethylating blocked nucleotides
Nadeau et al. Use of ribonucleosides as protecting groups in synthesis of polynucleotides with phosphorylated terminals
EP1138688A1 (en) N8- and C8- linked purine bases as universal nucleosides used for oligonucleotide hybridization
JPH0374239B2 (en)
JPH0798834B2 (en) Fluorescent polynucleotide
JP3061659B2 (en) 2- {2- (monomethoxytrityloxy) ethylthio} ethyl group and use of said group
JP2003292499A (en) Process for chemical synthesis of oligonucleotide
JPH0551599B2 (en)
KR960005720B1 (en) Method of the preparation of alkynylamino-nucleotides

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term