JPH0371141A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH0371141A
JPH0371141A JP20759189A JP20759189A JPH0371141A JP H0371141 A JPH0371141 A JP H0371141A JP 20759189 A JP20759189 A JP 20759189A JP 20759189 A JP20759189 A JP 20759189A JP H0371141 A JPH0371141 A JP H0371141A
Authority
JP
Japan
Prior art keywords
electric charge
general formula
charge transfer
charge transferring
compd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20759189A
Other languages
Japanese (ja)
Other versions
JP2789700B2 (en
Inventor
Mamoru Rin
護 臨
Yuka Kondou
由香 近藤
Hiroshi Horiuchi
堀内 博視
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP20759189A priority Critical patent/JP2789700B2/en
Publication of JPH0371141A publication Critical patent/JPH0371141A/en
Application granted granted Critical
Publication of JP2789700B2 publication Critical patent/JP2789700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain an electrophotogaphic sensitive body hardly accumulating residual potential even after repeated use, hardly undergoing a change in the electrostatic chargeability or sensitivity and having high stability by incorporating a specified electron withdrawing compd. into an electric charge transferring layer. CONSTITUTION:An electric charge transferring layer is composed essentially of an electric charge transferring material, a resin binder and an electron withdrawing compd. represented by general formula 1 (where each of R<1> and R<2> is halogen, each of R<3>-R<5> is H or halogen and X is cyano, alkoxycarbonyl, optionally substd. aryloxycarbonyl or optionally substd. aryl). The compd. represented by the formula 1 is used by 0.01-30pts.wt., preferably 0.1-10pts.wt. per 100 pts.wt. of the resin binder. The electric charge transferring layer may contain various additives such as an antioxidant and a sensitizer as required.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電子写真感光体に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to an electrophotographic photoreceptor.

詳しくは、非常に耐久性の優れた電子写真感光体に関す
るものである。
Specifically, the present invention relates to an electrophotographic photoreceptor with extremely excellent durability.

[従来の技術1 電子写真技術は、即時性、高品質の画像が得られること
などから、近年では複写機の分野にとどまらず、各種プ
リンターの分野でも広く使われ応用されてきている。電
子写真技術の中核となる感光体については、その光導電
材料として従来からのセレン、ヒ素−セレン合金、硫化
カドミウム、酸化亜鉛といった無機系の光導電体から、
最近では、無公害で底膜が容易、製造が容易である等の
利点を有する有機系の光導電材料を使用した感光体が開
発されている。
[Prior Art 1] Electrophotographic technology has been widely used and applied in recent years not only in the field of copying machines but also in the field of various printers because of its ability to provide instantaneous and high-quality images. For photoreceptors, which are the core of electrophotographic technology, photoconductive materials range from conventional inorganic photoconductors such as selenium, arsenic-selenium alloys, cadmium sulfide, and zinc oxide.
Recently, photoreceptors using organic photoconductive materials have been developed, which have advantages such as being non-polluting, easy to form a bottom film, and easy to manufacture.

有機系感光体の中でも電荷発生層、及び電荷移動層を積
層した、いわゆる積層型感光体が考案され、研究の主流
となっている。
Among organic photoreceptors, a so-called laminated photoreceptor in which a charge generation layer and a charge transfer layer are laminated has been devised and has become the mainstream of research.

1 積層型感光体は、それぞれ効率の高い電荷発生物質、及
び電荷移動物質を組合せることにより高感度な感光体が
得られること、材料の選択範囲が広く安全性の高い感光
体が得られること、また塗布の生産性が高く比較的コス
ト面でも有利なことから、感光体の主流になる可能性も
高く鋭意開発されている。
1. A laminated photoconductor can obtain a highly sensitive photoconductor by combining a highly efficient charge-generating substance and a charge-transfer substance, and a highly safe photoconductor with a wide selection of materials. Moreover, since it has high coating productivity and is relatively advantageous in terms of cost, it is highly likely that it will become the mainstream of photoreceptors, and is being actively developed.

[発明が解決しようとする課題] しかしながら、従来実用化されている積層型感光体は、
繰返し使用した場合電気特性的には帯電電位の低下、残
留電位の蓄積、感度の変動等が有り、必ずしも寿命に関
しては十分であるとは言えない。特に残留電位の蓄積は
有機感光体においてはよく問題となり、有機感光体の高
耐刷化を妨げる大きな要因となっている。残留電位が蓄
積する原因はいくつか考えられるが、最も影響を及ぼす
と考えられるのは電荷移動層中の不純物によるものであ
る。この様な不純物としては元来組成物中に存在するも
の、コロナ放電にまり生成するもの、像露光、除電ラン
プ等の光に繰返しさらされ3− ること、更にはメンテナンス時に外部光にさらされるこ
と等により劣化生成するものなどが考えられる。
[Problem to be solved by the invention] However, the laminated photoreceptor that has been put into practical use so far has
When used repeatedly, electrical characteristics include a decrease in charging potential, accumulation of residual potential, and fluctuations in sensitivity, so it cannot necessarily be said that the product has a sufficient lifespan. In particular, the accumulation of residual potential is often a problem in organic photoreceptors, and is a major factor that hinders the increase in printing durability of organic photoreceptors. There are several possible causes for the accumulation of residual potential, but the one that is thought to have the most influence is impurities in the charge transfer layer. Such impurities include those that originally exist in the composition, those that are generated due to corona discharge, those that are repeatedly exposed to light such as image exposure and static elimination lamps, and those that are exposed to external light during maintenance. It is conceivable that there may be deterioration and generation due to factors such as this.

すなわちこの様な不純物がトラップとなりキャリアーを
捕捉し、動けない空間電荷を形成することにより残留電
位になると考えられる。
In other words, it is thought that such impurities act as traps, capture carriers, and form immobile space charges, resulting in a residual potential.

この様な電荷移動層中のトラップに起因すると考えられ
る残留電位を抑制する手段の一つとして、電子吸引性物
質を電荷移動層中に添加することが試みられている。
As one means for suppressing the residual potential considered to be caused by such traps in the charge transfer layer, attempts have been made to add an electron-withdrawing substance to the charge transfer layer.

一般に電子供与性化合物に列し電子吸引性物質を添加す
ると、電荷移動錯体を形威しその新たな吸収が長波長側
に出現する。そこで電荷移動錯体の吸収帯に相当する光
を照削すると電荷移動層中にわずかではあるが移動可能
なキャリアー(正孔−電子)が生威し、このキャリアー
が結果的に動けない空間電荷を中和し、残留電位を抑制
すると考えられている。しかしながらこれまで知られて
いる電子吸引性物質は、残留電位の抑制が十分でなかっ
たり、暗減衰の増加、繰返し使用による表面4− 電位の低下、感度の低下といった弊害を伴うものが多い
のが現状である。
Generally, when an electron-withdrawing substance is added to an electron-donating compound, a charge transfer complex is formed and new absorption appears on the longer wavelength side. Therefore, when light corresponding to the absorption band of the charge transfer complex is irradiated, a small amount of mobile carriers (holes and electrons) are generated in the charge transfer layer, and these carriers eventually eliminate immobile space charges. It is thought to neutralize and suppress residual potential. However, many of the electron-withdrawing substances known so far have disadvantages such as insufficient suppression of residual potential, increased dark decay, decrease in surface potential due to repeated use, and decrease in sensitivity. This is the current situation.

[課題を解決するための手段] そこで本発明者らは、残留電位の抑制効果が十分あり、
他の電気特性に対しほとんど影響を及ぼさない電子吸引
性化合物について鋭意検討した結果、特定の電子吸引性
化合物が非常に優れた性能を示すことを見出し本発明に
到達した。
[Means for solving the problem] Therefore, the present inventors have developed a method that has a sufficient effect of suppressing the residual potential.
As a result of intensive studies on electron-withdrawing compounds that have little effect on other electrical properties, the present invention was achieved by discovering that a specific electron-withdrawing compound exhibits extremely excellent performance.

すなわち本発明の要旨は、導電性基体上に、少なくとも
電荷発生層及び電荷移動層を有する電子写真感光体にお
いて、該電荷移動層に下記一般式(1)で示される電子
吸引性化合物を含有することを特徴とする電子写真感光
体に存する。
That is, the gist of the present invention is an electrophotographic photoreceptor having at least a charge generation layer and a charge transfer layer on a conductive substrate, the charge transfer layer containing an electron-withdrawing compound represented by the following general formula (1). The invention resides in an electrophotographic photoreceptor characterized by the following.

一般式(1) (式中、R1,及びR2はそれぞれ独立してハロゲン原
子をあられし、R3,R4及びR5はそれぞれ独立して
水素原子、又はハロゲン原子をあられり、 Xはシアノ
基、アルコキシカルボニル基、置換されていてもよいア
リールオキシカルボニル基、又は置換されていてもよい
アリール基を表わす。)以下本発明の詳細な説明する。
General formula (1) (wherein, R1 and R2 each independently represent a halogen atom, R3, R4 and R5 each independently represent a hydrogen atom or a halogen atom, and X is a cyano group, an alkoxy The present invention will be described in detail below.

本発明の感光体は導電性支持体上に設けられる。導電性
支持体としては、アルミニ・クム、ステンレス鋼、銅、
ニッケル等の金属材料;表面にアルミニウム、銅、パラ
ジウム、酸化すず、酸化インジウム等の導電性層を設け
たポリエステルフィルム、紙等の絶縁性支持体が使用さ
れる。
The photoreceptor of the present invention is provided on a conductive support. Conductive supports include aluminum cum, stainless steel, copper,
A metal material such as nickel; an insulating support such as a polyester film or paper provided with a conductive layer of aluminum, copper, palladium, tin oxide, indium oxide, etc. on the surface is used.

導電性支持体と電荷発生層の間には通常使用されるよう
な公知のバリアー層が設けられてもよい。
A commonly used barrier layer may be provided between the conductive support and the charge generation layer.

バリアー層としては、例えばアルミニウム陽極酸化被膜
、酸化アルミニウム、水酸化アルミニウム等の無機層、
ポリビニルアルコール、カゼイン、ポリビニルピロリド
ン、ポリアクリル酸、セルロース類、ゼラチン、デンプ
ン、ポリウレタ− 6− ン、ポリイミド、ポリアミド、等の有機層が使用される
As a barrier layer, for example, an inorganic layer such as an aluminum anodic oxide film, aluminum oxide, or aluminum hydroxide,
Organic layers such as polyvinyl alcohol, casein, polyvinylpyrrolidone, polyacrylic acid, celluloses, gelatin, starch, polyurethane, polyimide, polyamide, etc. are used.

電荷発生層に用いられる電荷発生物質としては、セレン
及びその合金、ヒ素−セレン、硫化カドミウム、酸化亜
鉛、その他の黒磯光導電物質、フタロシアニン、アゾ色
素、キナクリドン、多環キノン、ピリリウム塩、チアピ
リリウム塩、インジゴ、チオインジゴ、アントアントロ
ン、ピラントロン、シアニン等の各種有機顔料、染料が
使用できる。
Charge generating substances used in the charge generating layer include selenium and its alloys, arsenic-selenium, cadmium sulfide, zinc oxide, other Kuroiso photoconductive substances, phthalocyanines, azo dyes, quinacridones, polycyclic quinones, pyrylium salts, thiapyrylium salts. Various organic pigments and dyes such as indigo, thioindigo, anthorone, pyrantrone, and cyanine can be used.

中でも無金属フタロシアニン、銅塩化インジウム、塩化
ガリウム、錫、オキシチタニウム、亜鉛、バナジウム、
等の金属又は、その酸化物、塩化物の配位したフタロシ
アニン類、モノアゾ、ビスアゾ、トリスアゾ、ポリアゾ
類等のアゾ顔料が好ましい。電荷発生層はこれらの物質
をたとえばポリエステル樹脂、ポリビニルアセテート、
ポリアクリル酸エステル、ポリメタリクリル酸エステル
、ポリエステル、ポリカーボネート、ポリビニルアセト
アセタール、ポリビニルプロピオナー− ル、ポリビニルブチラール、フェノギシ樹脂、エポキシ
樹脂、ウレタン樹脂、セルロースエステル、セルロース
エーテル、などの各種バインダー樹脂で結着した形で使
用される。この場合の電荷発生物質の使用比率はバイン
ダー(b・]脂10’O重重量に対して30から500
重量部の範囲より使用され、その膜厚は通常0.111
mから2pm、好ましくは0.15pmから0.8pm
が好適である。
Among them, metal-free phthalocyanine, copper indium chloride, gallium chloride, tin, oxytitanium, zinc, vanadium,
Preferred are azo pigments such as phthalocyanines, monoazo, bisazo, trisazo, and polyazo, which are coordinated with metals such as, or their oxides or chlorides. The charge generation layer is made of these materials, such as polyester resin, polyvinyl acetate,
Bound with various binder resins such as polyacrylic ester, polymethacrylic ester, polyester, polycarbonate, polyvinyl acetoacetal, polyvinyl propional, polyvinyl butyral, phenoxy resin, epoxy resin, urethane resin, cellulose ester, cellulose ether, etc. used in the form In this case, the usage ratio of the charge generating substance is 30 to 500% by weight of the binder (b.) fat 10'O.
It is used in a range of parts by weight, and the film thickness is usually 0.111.
m to 2pm, preferably 0.15pm to 0.8pm
is suitable.

また電荷発生層には必要に応じて塗布性を改善するため
のレベリング剤や酸化防止剤、増感剤等の各種添加剤を
含んでいてもよい。
Further, the charge generation layer may contain various additives such as a leveling agent, an antioxidant, and a sensitizer to improve coating properties, if necessary.

電荷移動層は基本的に電荷移動材料、バインダー樹脂と
ともに下記一般式(1)で示される電子吸引性化合物か
ら構成される。
The charge transfer layer basically comprises a charge transfer material, a binder resin, and an electron-withdrawing compound represented by the following general formula (1).

一般式(1) 但し、R1、及びR2はそれぞれ独立して塩素、臭素、
ヨウ素等のハロゲン原子をあられず。R3,R4及びR
5はそれぞれ独立して水素原子;又は、塩素、臭素、ヨ
ウ素等のハロゲン原子を表わす。
General formula (1) However, R1 and R2 each independently represent chlorine, bromine,
Cannot contain halogen atoms such as iodine. R3, R4 and R
Each of 5 independently represents a hydrogen atom; or a halogen atom such as chlorine, bromine, or iodine.

Xはシアノ基;メトキシカルボニル基、エトキシカルボ
ニル基、プロポキシカルボニル基、ブトキシカルボニル
基等のアルコキシカルボニル基;置換されていてもよい
フェノキシカルボニル基、ナフトキシカルボニル基等の
アリールオキシカルボニル基;又は置換されていてもよ
いフェニル基、ナフチル基等のアリール基を表わし、ア
リールオキシカルボニル基、アリール基の置換基の例と
してはシアノ基;ニトロ基;メチル基、エチル基等のア
ルキル基;塩素、臭素、ヨウ素等のハロゲン原子が挙げ
られる。
X is a cyano group; an alkoxycarbonyl group such as a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, a butoxycarbonyl group; an aryloxycarbonyl group such as an optionally substituted phenoxycarbonyl group or a naphthoxycarbonyl group; or a substituted Examples of substituents for aryloxycarbonyl and aryl groups include cyano group; nitro group; alkyl groups such as methyl and ethyl groups; chlorine, bromine, Examples include halogen atoms such as iodine.

前記一般式(1)で示される電子吸引性化合物は例えば
一般式(2)で示されるベンズアルデヒド類と、一般式
(3)で示されるニトリル化合物とを縮合させることに
より容易に合成することができる。
The electron-withdrawing compound represented by the general formula (1) can be easily synthesized, for example, by condensing a benzaldehyde represented by the general formula (2) and a nitrile compound represented by the general formula (3). .

一般式(2) 一般式(3) なおここで一般式(2)及び(3)においてR1−R5
及びXは前記と同様の置換基を表わす。
General formula (2) General formula (3) Here, in general formulas (2) and (3), R1-R5
and X represents the same substituent as above.

次に一般式(1)で示される化合物の主な具体例を示す
Next, main specific examples of the compound represented by the general formula (1) will be shown.

0− 1− −12 電荷移動材料としてはたとえばカルバゾール、インドー
ル、イミダゾール、オキサゾール、ピラゾール、オキサ
ジアゾール、ピラゾリン、チアジアゾールなどの複素環
化合物、アニリン誘導体、ヒドラゾン化合物、芳香族ア
ミン誘導体、スチルベン誘導体、或いはこれらの化合物
からなる基を主鎖もしくは側鎖に有する重合体などの電
子供与性物質が挙げられる。電荷移動層に使用されるバ
インダー樹脂としてはたとえばポリメチルメタクリレー
ト、ポリスチレン、ポリ塩化ビニル等のビニル重合体、
及びその共重合体、ポリカーボネート、ポリエステル、
ポリエステルカーボネート、ポリスルホン、ポリイミド
、フェノキシ、エポキシ、シリコーン樹脂等があげられ
、またこれらの部分的架橋硬化物も使用できる。
0-1--12 Charge transfer materials include, for example, heterocyclic compounds such as carbazole, indole, imidazole, oxazole, pyrazole, oxadiazole, pyrazoline, and thiadiazole, aniline derivatives, hydrazone compounds, aromatic amine derivatives, stilbene derivatives, or Examples include electron-donating substances such as polymers having groups composed of these compounds in their main chains or side chains. Examples of binder resins used in the charge transfer layer include vinyl polymers such as polymethyl methacrylate, polystyrene, and polyvinyl chloride;
and copolymers thereof, polycarbonate, polyester,
Examples include polyester carbonate, polysulfone, polyimide, phenoxy, epoxy, silicone resin, and partially crosslinked cured products thereof can also be used.

一般式(1)で示される電子吸引性化合物とバインダー
樹脂との割合はバインダー樹脂100重量部に対して0
.01〜30重量部、好ましくは0.1〜10重量部の
範囲で使用される。
The ratio of the electron-withdrawing compound represented by general formula (1) to the binder resin is 0 with respect to 100 parts by weight of the binder resin.
.. It is used in an amount of 0.1 to 30 parts by weight, preferably 0.1 to 10 parts by weight.

電荷移動材料とバインダー樹脂との割合はバインダー樹
脂100重量部に対して30〜200重量部、好ましく
は40〜120重量部の範囲で使用される。
The ratio of the charge transfer material to the binder resin is 30 to 200 parts by weight, preferably 40 to 120 parts by weight, based on 100 parts by weight of the binder resin.

また電荷移動層には、必要に応じて酸化防止剤、増感剤
等の各種添加剤を含んでいてもよい。
Further, the charge transfer layer may contain various additives such as an antioxidant and a sensitizer, if necessary.

電荷移動層の膜厚は10〜6011m、好ましくは10
〜45pmの厚みで使用されるのがよい。
The thickness of the charge transfer layer is 10 to 6011 m, preferably 10 m
It is preferable to use it at a thickness of ~45 pm.

[発明の効果] 本発明による電荷移動層に特定の電子吸引性化合物を含
有させた電子写真感光体は、繰返し使用しても残留電位
の蓄積がほとんどなく、更に帯電性、感度の変動も非常
に少なく安定性が極めて良好である。
[Effects of the Invention] The electrophotographic photoreceptor according to the present invention in which the charge transfer layer contains a specific electron-withdrawing compound has almost no accumulation of residual potential even after repeated use, and also shows very little change in chargeability and sensitivity. The stability is extremely good.

[実施例] 以下、本発明を製造例、実施例及び比較例により更に詳
細に説明するが特にこれらに限定されるものではない。
[Example] Hereinafter, the present invention will be explained in more detail with reference to Production Examples, Examples, and Comparative Examples, but the present invention is not particularly limited thereto.

製造例(例示化合物(5)) 2.3.6−ドリクロロベンズアルデヒド1.1g及び
マロノニトリル0.4gをテトラヒドロフラン5mlに
溶解し13− 14− た後ピペリジンを一滴加え65℃で一時間反応させた。
Production Example (Exemplary Compound (5)) 1.1 g of 2.3.6-drichlorobenzaldehyde and 0.4 g of malononitrile were dissolved in 5 ml of tetrahydrofuran, and then one drop of piperidine was added and reacted at 65°C for one hour. .

室温まで冷却後析出した結晶を濾取しイソプロパノール
より再結晶を行ない淡黄色の結晶1.1gを得た。なお
このものの融点は75−7TCであった。
After cooling to room temperature, the precipitated crystals were collected by filtration and recrystallized from isopropanol to obtain 1.1 g of pale yellow crystals. The melting point of this product was 75-7TC.

実施例−1 下記構造を有するビスアゾ化合物10重量部を150重
量部の4−メトキシ−4−メチルペンタノン−2に加え
、サンドグラインドミルにて粉砕分散処理を行なった。
Example-1 10 parts by weight of a bisazo compound having the following structure was added to 150 parts by weight of 4-methoxy-4-methylpentanone-2, and pulverized and dispersed using a sand grind mill.

ここで得られた顔料分散液をポリビニルブチラール(電
気化学工業(株)製、商品名#6000−C)の5%1
,2−ジメトキシエタン溶液に加え、最終的に固形分濃
度4,0%の分散液を作製した。
The pigment dispersion obtained here was mixed with 5% 1 of polyvinyl butyral (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name #6000-C).
, 2-dimethoxyethane solution to prepare a final dispersion with a solid content concentration of 4.0%.

この様にして得られた分散液を、アルミニウムを蒸着し
た厚さ75pmのポリエステルフィルムのアルミニウム
蒸着面に、その乾燥膜厚が0.7 g / mm2とな
るように塗布し電荷発生層を設けた。
The dispersion thus obtained was applied to the aluminum-deposited surface of a 75-pm-thick polyester film on which aluminum had been deposited so that the dry film thickness was 0.7 g/mm2 to form a charge generation layer. .

次にこの電荷発生層」二に次に示すヒドラゾン化合物9
5重量部と 例示化合物(5)を1.5重量部及び下記構造のポリカ
ーボネート樹脂100重量部を 1.4−ジオキサン、テトラヒドロフランの混合溶媒に
溶解させた液を塗布した後、室温で30分、125℃で
30分乾燥させ、乾燥後の膜厚が20μmとなるように
電荷移動層を設けた。この様にして作製した感光体を感
光体特性測定機に装着し、周速260 mm /see
で帯電(初期においてスコロトロンで一700■になる
ように設定)、露光、除電のサイクルを30万回繰返し
た時の暗電位及び残留電位の変動を測定した。
Next, this charge generation layer is prepared with the following hydrazone compound 9.
5 parts by weight, 1.5 parts by weight of Exemplified Compound (5), and 100 parts by weight of a polycarbonate resin having the following structure dissolved in a mixed solvent of 1,4-dioxane and tetrahydrofuran, and then applied at room temperature for 30 minutes. It was dried at 125° C. for 30 minutes, and a charge transfer layer was provided so that the film thickness after drying was 20 μm. The photoconductor produced in this way was mounted on a photoconductor characteristic measuring machine, and the circumferential speed was 260 mm/see.
The cycle of charging (initially set to 1,700 μm with a scorotron), exposure, and neutralization was repeated 300,000 times, and the changes in dark potential and residual potential were measured.

その結果を表−1に示す。この結果から30万回の繰返
しにおいても暗電位は変化がなく残留電位の蓄積も少な
いことが分かる。
The results are shown in Table-1. From this result, it can be seen that the dark potential does not change even after 300,000 repetitions, and there is little accumulation of residual potential.

実施例2〜7 実施例−1において使用した電子吸引性化合物のかわり
に一般式(1)の例示化合物(1)、(2)、(6)、
(7)、(9)、(10)を用いた以外は実施例−lと
同様にして感光体を作製し、その特性を評価した。その
結果を表−1に示す。
Examples 2 to 7 Exemplary compounds (1), (2), (6) of general formula (1) were used instead of the electron-withdrawing compound used in Example-1.
A photoreceptor was produced in the same manner as in Example 1 except that (7), (9), and (10) were used, and its characteristics were evaluated. The results are shown in Table-1.

これらいずれの感光体も残留電位の蓄積は少ないことが
判る。
It can be seen that all of these photoreceptors have little accumulation of residual potential.

比較例 実施例−1において電子吸引性化合物を加えない以外は
実施例−1と同様にして感光体を作製し、その特性を評
価した。その結果を表−1に示す。表−1の結果から明
らかなように残留電位の蓄積は大きいことが判る。
Comparative Example A photoreceptor was prepared in the same manner as in Example-1 except that no electron-withdrawing compound was added in Example-1, and its characteristics were evaluated. The results are shown in Table-1. As is clear from the results in Table 1, the accumulation of residual potential is large.

7− 以上の結果から明らかなように本発明の感光体は非常に
優れた性能を有していることが判る。
7- As is clear from the above results, it can be seen that the photoreceptor of the present invention has very excellent performance.

Claims (1)

【特許請求の範囲】[Claims] (1)導電性基体上に、少なくとも電荷発生層及び電荷
移動層を有する電子写真感光体において、該電荷移動層
に下記一般式(1)で示される電子吸引性化合物を含有
することを特徴とする電子写真感光体。 一般式(1) ▲数式、化学式、表等があります▼ (式中、R^1、及びR^2はそれぞれ独立してハロゲ
ン原子をあらわし、R^3、R^4及びR^5はそれぞ
れ独立して水素原子、又はハロゲン原子をあらわし、X
はシアノ基、アルコキシカルボニル基、置換されていて
もよいアリールオキシカルボニル基、又は置換されてい
てもよいアリール基を表わす。)
(1) An electrophotographic photoreceptor having at least a charge generation layer and a charge transfer layer on a conductive substrate, characterized in that the charge transfer layer contains an electron-withdrawing compound represented by the following general formula (1). Electrophotographic photoreceptor. General formula (1) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (In the formula, R^1 and R^2 each independently represent a halogen atom, and R^3, R^4 and R^5 each independently represents a hydrogen atom or a halogen atom,
represents a cyano group, an alkoxycarbonyl group, an optionally substituted aryloxycarbonyl group, or an optionally substituted aryl group. )
JP20759189A 1989-08-10 1989-08-10 Electrophotographic photoreceptor Expired - Fee Related JP2789700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20759189A JP2789700B2 (en) 1989-08-10 1989-08-10 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20759189A JP2789700B2 (en) 1989-08-10 1989-08-10 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH0371141A true JPH0371141A (en) 1991-03-26
JP2789700B2 JP2789700B2 (en) 1998-08-20

Family

ID=16542306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20759189A Expired - Fee Related JP2789700B2 (en) 1989-08-10 1989-08-10 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2789700B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4905349A (en) * 1989-03-06 1990-03-06 Townsend Engineering Company Encased product and method for encasing the same
US5387487A (en) * 1991-08-30 1995-02-07 Ricoh Company, Ltd. Electrophotographic photoconductor
KR20030046175A (en) * 2001-12-05 2003-06-12 현대자동차주식회사 Timing-cover structure to raise NVH of automobile
WO2011107076A1 (en) * 2010-03-04 2011-09-09 Johann Wolfgang Goethe-Universität Use of halogenated cyanocinnamic acid derivatives as matrices in maldi mass spectrometry

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4905349A (en) * 1989-03-06 1990-03-06 Townsend Engineering Company Encased product and method for encasing the same
US5387487A (en) * 1991-08-30 1995-02-07 Ricoh Company, Ltd. Electrophotographic photoconductor
KR20030046175A (en) * 2001-12-05 2003-06-12 현대자동차주식회사 Timing-cover structure to raise NVH of automobile
WO2011107076A1 (en) * 2010-03-04 2011-09-09 Johann Wolfgang Goethe-Universität Use of halogenated cyanocinnamic acid derivatives as matrices in maldi mass spectrometry

Also Published As

Publication number Publication date
JP2789700B2 (en) 1998-08-20

Similar Documents

Publication Publication Date Title
JP2013173769A (en) P-terphenyl compound and charge transporting agent
JPS6155672B2 (en)
JP2858324B2 (en) Electrophotographic photoreceptor
JP3847732B2 (en) Single layer type electrophotographic photosensitive member, electrophotographic cartridge, electrophotographic drum, and image forming apparatus
JPH0518105B2 (en)
JPH04356052A (en) Photosensitive material for electrophotography
JPH0677154B2 (en) Electrophotographic photoconductor
JP2785354B2 (en) Electrophotographic photoreceptor
JPH0371141A (en) Electrophotographic sensitive body
JP3644972B2 (en) Electrophotographic photoreceptor
JP2789702B2 (en) Electrophotographic photoreceptor
JP3445009B2 (en) Indenoquinoxaline compound and electrophotographic photoreceptor containing the same
JP2789701B2 (en) Electrophotographic photoreceptor
JP2875360B2 (en) Electrophotographic photoreceptor
JPH08320581A (en) Electrophotographic photoreceptor
JPH0895270A (en) Electrophotographic photoreceptor
JP3358304B2 (en) Electrophotographic photoreceptor
JPH0527458A (en) Electrophotographic sensitive material
JPH02285357A (en) Electrophotographic sensitive body
JPS5972448A (en) Electrophotographic receptor
JP3106622B2 (en) Electrophotographic photoreceptor
JP2005003872A (en) Electrophotographic photoreceptor
JPH05150473A (en) Electrophotographic sensitive body
JPH0348853A (en) Electrophotographic sensitive body
JP2002167372A (en) Stilbene derivative and electronic photograph sensitizing material using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080612

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090612

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees