JPH0371132B2 - - Google Patents

Info

Publication number
JPH0371132B2
JPH0371132B2 JP63216236A JP21623688A JPH0371132B2 JP H0371132 B2 JPH0371132 B2 JP H0371132B2 JP 63216236 A JP63216236 A JP 63216236A JP 21623688 A JP21623688 A JP 21623688A JP H0371132 B2 JPH0371132 B2 JP H0371132B2
Authority
JP
Japan
Prior art keywords
coil
coil diameter
receiving
subject
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63216236A
Other languages
Japanese (ja)
Other versions
JPH0265844A (en
Inventor
Yukihiro Yasugi
Hiroyuki Takeuchi
Hidenori Kishino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP63216236A priority Critical patent/JPH0265844A/en
Publication of JPH0265844A publication Critical patent/JPH0265844A/en
Publication of JPH0371132B2 publication Critical patent/JPH0371132B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、核磁気共鳴(以下「NMR」と略記
する)現象を利用して被検体(人体)の所望部位
の断層像を得る核磁気共鳴イメージング装置の受
信コイルに関し、特にコイル径が被検体に合わせ
て可変とされコイル導体長を最適状態に調整しう
る受信コイルにおいて、コイル径の変化に伴う共
振周波数の変化を補正可能とし、コイル導体長の
調整範囲を大きくできると共に良質の画像を得る
ことができる核磁気共鳴イメージング装置の受信
コイルに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to nuclear magnetic resonance technology that uses nuclear magnetic resonance (hereinafter abbreviated as "NMR") to obtain a tomographic image of a desired part of a subject (human body). Regarding the receiving coil of a resonance imaging device, especially in the receiving coil where the coil diameter is variable according to the subject and the coil conductor length can be adjusted to the optimum state, it is possible to correct changes in the resonance frequency due to changes in the coil diameter. The present invention relates to a receiving coil for a nuclear magnetic resonance imaging apparatus that can widen the adjustment range of conductor length and obtain high-quality images.

〔従来の技術〕[Conventional technology]

核磁気共鳴イメージング装置は、被検体の静磁
場及び傾斜磁場を与える磁場発生手段と、上記被
検体の生体組織を構成する原子の原子核に核磁気
共鳴を起こさせるために高周波信号を照射する送
信系と、上記の核磁気共鳴により放出される高周
波信号を検出する受信系と、この受信系で検出し
た高周波信号を用いて画像再構成演算を行う信号
処理系とを備えて構成されている。ここで、上記
受信系における高周波信号の検出には通常、コイ
ルが使用され、サドル型、ソレノイド型及びそれ
らを変形した種々の受信コイルが考えられてい
る。そして、この受信コイルの感度が再構成され
た画像のS/N比に直接影響するため、その研究
改良が多くなされている。例えば、D.I.Houltと
R.E.RichardsのS/N比を表す式によれば、高
周波信号の受信コイルの大きさ(コイル径)を小
さくすればS/N比が向上するとされており、そ
れは実験においても確認されている。
A nuclear magnetic resonance imaging apparatus includes a magnetic field generating means that applies a static magnetic field and a gradient magnetic field to a subject, and a transmission system that irradiates high-frequency signals to cause nuclear magnetic resonance to the nuclei of atoms constituting the living tissue of the subject. , a receiving system that detects high-frequency signals emitted by the above-mentioned nuclear magnetic resonance, and a signal processing system that performs image reconstruction calculations using the high-frequency signals detected by this receiving system. Here, a coil is normally used to detect the high frequency signal in the above-mentioned receiving system, and saddle type, solenoid type, and various types of receiving coils are considered. Since the sensitivity of this receiving coil directly affects the S/N ratio of the reconstructed image, many studies have been made to improve it. For example, DIHoult and
According to RERichards' formula expressing the S/N ratio, it is said that the S/N ratio can be improved by reducing the size (coil diameter) of the receiving coil for high-frequency signals, and this has been confirmed through experiments.

このことから、従来の核磁気共鳴イメージング
装置の受信コイル1として、第4図に示すよう
に、コイル導体2の基端部に主コネクタ3を設け
ると共に先端部にはコイル径可変のためのコイル
径調整用コネクタ4a,4b,4cを複数個設
け、上記主コネクタ3をコイル径調整用コネクタ
4a,4b,4cのいずれかに接続することによ
り、コイル径を被検体やその撮影部位に合わせて
可変とし、コイル導体長をその被検体に対して最
適状態に調整しうるようにしたものが提案されて
いる。そして、この受信コイル1の等価回路は、
第5図に示すように、上記コイル導体2の長さに
応じたインダクタンスL1,L2,L3のところにそ
れぞれコイル径調整用コネクタ4a,4b,4c
が設けられ、これに対して主コネクタ3を適宜切
り換えて接続するようになつている。なお、第5
図において、符号C1は共振容量、符号C2はマツ
チング容量、符号5は可変容量素子である。
For this reason, as shown in FIG. 4, as a receiving coil 1 of a conventional nuclear magnetic resonance imaging apparatus, a main connector 3 is provided at the base end of the coil conductor 2, and a coil for varying the coil diameter is provided at the distal end. By providing a plurality of diameter adjustment connectors 4a, 4b, 4c and connecting the main connector 3 to any of the coil diameter adjustment connectors 4a, 4b, 4c, the coil diameter can be adjusted to suit the subject or its imaging area. A variable coil conductor length has been proposed in which the length of the coil conductor can be adjusted to the optimum state for the subject. The equivalent circuit of this receiving coil 1 is
As shown in FIG. 5, coil diameter adjustment connectors 4a, 4b, 4c are installed at inductances L1 , L2 , and L3 corresponding to the lengths of the coil conductors 2, respectively.
is provided, and the main connector 3 is connected to this by switching appropriately. In addition, the fifth
In the figure, C 1 is a resonant capacitor, C 2 is a matching capacitor, and 5 is a variable capacitance element.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、このような受信コイル1においては、
検査対象の被検体やその撮影部位に合わせてコイ
ル径を変化させ、コイル導体長をその被検体に対
応して適宜調整した場合、上記コイル径の変化に
伴つて共振周波数が変化してしまうものであつ
た。例えば、コイル径を最も小さくするために、
第4図において主コネクタ3を第一のコイル径調
整用コネクタ4aに接続した場合は、そのコイル
導体長は上記主コネクタ3から第一のコイル径調
整用コネクタ4aまでの部分となり、第5図にお
いて受信コイル1のインダクタンスはL1となる。
そして、このインダクタンスL1と共振容量C1
マツチング容量C2とにより、信号周波数に同調
をとることになる。次に、ややコイル径を大きく
するために、第4図において主コネクタ3を第二
のコイル径調整用コネクタ4bに接続した場合
は、そのコイル導体長は上記主コネクタ3から第
二のコイル径調整用コネクタ4bまでの部分とな
り、第5図において受信コイル1のインダクタン
スはL1にL2を加えたものとなる。そして、この
インダクタンス(L1+L2)と共振容量C1とマツ
チング容量C2とにより、信号周波数に同調をと
ることになるが、今回変化したインダクタンス
L2による同調ずれの補正を、可変容量素子5の
容量C3を変化させて行う必要がある。さらに、
第4図において主コネクタ3を第三コイル径調整
用コネクタ4cに接続してコイル径を大きくした
場合には、そのコイル導体長はさらに大きくな
り、第5図において受信コイル1のインダクタン
スはさらに大きく変化し、そのインダクタンスの
変化による同調ずれの補正を、可変容量素子5の
容量C3を大きく変化させなければならない。
However, in such a receiving coil 1,
If the coil diameter is changed according to the subject to be examined and its imaging region, and the coil conductor length is adjusted appropriately according to the subject, the resonant frequency will change as the coil diameter changes. It was hot. For example, to minimize the coil diameter,
When the main connector 3 is connected to the first coil diameter adjustment connector 4a in FIG. 4, the length of the coil conductor is from the main connector 3 to the first coil diameter adjustment connector 4a, and as shown in FIG. The inductance of the receiving coil 1 is L1 .
Then, the inductance L1 , the resonant capacitance C1 , and the matching capacitance C2 tune the signal frequency. Next, in order to slightly increase the coil diameter, if the main connector 3 is connected to the second coil diameter adjustment connector 4b in FIG. This is the part up to the adjustment connector 4b, and the inductance of the receiving coil 1 in FIG. 5 is the sum of L1 and L2 . This inductance (L 1 + L 2 ), resonance capacitance C 1 and matching capacitance C 2 will tune the signal frequency, but the inductance changed this time
It is necessary to correct the tuning shift due to L 2 by changing the capacitance C 3 of the variable capacitance element 5. moreover,
In Fig. 4, when the main connector 3 is connected to the third coil diameter adjustment connector 4c to increase the coil diameter, the coil conductor length becomes even larger, and in Fig. 5, the inductance of the receiving coil 1 becomes even larger. The capacitance C 3 of the variable capacitance element 5 must be changed significantly to correct the tuning shift due to the change in inductance.

しかしながら、上記可変容量素子5は電圧制御
によるものであり、その補正量には限界がある。
従つて、あまりコイル径を大きくしてコイル導体
長を長くした場合は、受信コイル1のインダクタ
ンスの増加による同調ずれの補正を、可変容量素
子5だけで行うことはできなくなるものであつ
た。このことから、受信コイル1のインダクタン
スをあまり大きくすることはできず、結果として
コイル径を変化させて行うコイル導体長の調整範
囲を狭い範囲に制限しなければならないものであ
つた。従つて、被検体やその撮影部位に応じて最
適なコイル径とすることができず、S/N比が低
下して良質の画像が得られないことであつた。
However, the variable capacitance element 5 is controlled by voltage, and there is a limit to the amount of correction.
Therefore, if the coil diameter is made too large and the coil conductor length is made too long, it becomes impossible to correct the tuning deviation due to the increase in the inductance of the receiving coil 1 by using the variable capacitance element 5 alone. For this reason, the inductance of the receiving coil 1 cannot be increased too much, and as a result, the range of adjustment of the coil conductor length by changing the coil diameter must be limited to a narrow range. Therefore, it is not possible to set the optimum coil diameter depending on the subject and its imaging region, and the S/N ratio is reduced, making it impossible to obtain high-quality images.

そこで、本発明は、このような問題点を解決す
ることができる核磁気共鳴イメージング装置の受
信コイルを提供することを目的とする。
Therefore, an object of the present invention is to provide a receiving coil for a nuclear magnetic resonance imaging apparatus that can solve such problems.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明による核磁
気共鳴イメージング装置の受信コイルは、被検体
に静磁場及び傾斜磁場を与える磁場発生手段と、
上記被検体の生体組織を構成する原子の原子核に
核磁気共鳴を起こさせるために高周波信号を照射
する送信系と、上記の核磁気共鳴により放出され
る高周波信号を検出する受信系と、この受信系で
検出した高周波信号を用いて画像構成演算を行う
信号処理系とを備えて成る核磁気共鳴イメージン
グ装置の上記受信系内に設けられ、コイル径が被
検体に合わせて可変とされコイル導体長を最適状
態に調整しうる受信コイルにおいて、上記コイル
導体の先端部に所定間隔をあけて設けられた複数
個のコイル径調整用コネクタと該コイル導体との
間にコイル径を変えたときの共振周波数の変化を
補正する共振容量をそれぞれ設け、上記コイル導
体の基端部に設けられた主コネクタと上記いずれ
かのコイル径調整用コネクタとを接続して適宜コ
イル径を変化させたときに上記共振容量の接続切
換えが同時に行われるようにしたものである。
In order to achieve the above object, a receiving coil of a nuclear magnetic resonance imaging apparatus according to the present invention includes a magnetic field generating means for applying a static magnetic field and a gradient magnetic field to a subject;
a transmitting system that irradiates high-frequency signals to cause nuclear magnetic resonance to the nuclei of atoms constituting the living tissue of the subject; a receiving system that detects the high-frequency signals emitted by the nuclear magnetic resonance; It is installed in the receiving system of the nuclear magnetic resonance imaging apparatus, which comprises a signal processing system that performs image configuration calculations using high-frequency signals detected by the system, and the coil diameter is variable according to the subject and the coil conductor length is provided. In a receiving coil that can be adjusted to an optimal state, resonance occurs when the coil diameter is changed between the coil conductor and a plurality of coil diameter adjustment connectors provided at a predetermined interval at the tip of the coil conductor. Resonance capacitors are provided to correct frequency changes, and when the coil diameter is changed appropriately by connecting the main connector provided at the base end of the coil conductor to one of the coil diameter adjustment connectors, the above The connection switching of the resonant capacitors is performed at the same time.

〔作 用〕[Effect]

このように構成された核磁気共鳴イメージング
装置の受信コイルは、コイル径を変化させるため
に、コイル導体の基端部に設けられた主コネクタ
を該コイル導体の先端部に所定間隔をあけて設け
られた複数個のコイル径調整用コネクタのいずれ
かに接続することにより、コイル径の変化に応じ
て上記各コイル径調整用コネクタのところに設け
られたコイル径変更時の共振周波数の変化を補正
する共振容量を同時に切換え接続するように動作
する。
In the receiving coil of the nuclear magnetic resonance imaging apparatus configured in this way, in order to change the coil diameter, the main connector provided at the proximal end of the coil conductor is provided at a predetermined interval at the distal end of the coil conductor. By connecting to one of the multiple coil diameter adjustment connectors provided above, the change in resonance frequency when changing the coil diameter provided at each of the above coil diameter adjustment connectors can be corrected according to the change in coil diameter. It operates by simultaneously switching and connecting the resonant capacitors.

〔実施例〕〔Example〕

以下、本発明の実施例を添付図面に基づいて詳
細に説明する。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明による核磁気共鳴イメージング
装置の受信コイルの等価回路を示す回路図であ
り、第2図は上記受信コイルの要部を示す拡大説
明図であり、第3図は上記受信コイルが適用され
る核磁気共鳴イメージング装置の全体構成を示す
ブロツク図である。
FIG. 1 is a circuit diagram showing an equivalent circuit of the receiving coil of the nuclear magnetic resonance imaging apparatus according to the present invention, FIG. 2 is an enlarged explanatory diagram showing the main parts of the receiving coil, and FIG. 1 is a block diagram showing the overall configuration of a nuclear magnetic resonance imaging apparatus to which this is applied.

上記核磁気共鳴イメージング装置は、核磁気共
鳴(NMR)現象を利用して被検体の断層像を得
るもので、第3図に示すように、静磁場発生磁石
7と、磁場勾配発生系8と、送信系9と、受信系
10と、信号処理系11と、シーケンサ12と、
中央処理装置(CPU)13とを備えて成る。
The above-mentioned nuclear magnetic resonance imaging apparatus obtains a tomographic image of a subject by using the nuclear magnetic resonance (NMR) phenomenon, and as shown in FIG. , a transmission system 9, a reception system 10, a signal processing system 11, a sequencer 12,
A central processing unit (CPU) 13 is provided.

上記静磁場発生磁石7は、被検体6の周りにそ
の体軸方向と直交する方向に強く均一な静磁場を
発生させるもので、上記被検体6の周りのある広
がりをもつた空間に永久磁石方式または常電導方
式あるいは超電導方式の磁場発生手段が配置され
ている。磁場勾配発生系8は、X,Y,Zの三軸
方向に巻かれた傾斜磁場コイル14と、それぞれ
のコイルを駆動する傾斜磁場電源15とから成
り、上記シーケンサ12からの命令に従つてそれ
ぞれのコイルの傾斜磁場電源15を駆動すること
により、X,Y,Zの三軸方向の傾斜磁場Gx,
Gy,Gzを被検体6に印加するようになつてい
る。この傾斜磁場の加え方により、被検体6に対
するスライス面を設定することができる。送信系
9は、被検体6の生体組織を構成する原子の原子
核に核磁気共鳴を起こさせるために高周波信号を
照射するもので、高周波発振器16と変調器17
と高周波増幅器18と送信コイル19aとから成
り、上記高周波発振器16から出力された高周波
パルスをシーケンサ12の命令に従つて変調器1
7で振幅変調し、この振幅変調された高周波パル
スを高周波増幅器18で増幅した後に被検体6に
近接して配置された送信コイル19aに供給する
ことにより、電磁波が上記被検体6に照射される
ようになつている。受信系10は、被検体6の生
体組織の原子核の核磁気共鳴により放出される高
周波信号(NMR信号)を検出するもので、ソレ
ノイド形の受信コイル19bと増幅器20と直交
位相検波器21とA/D変換器22とから成り、
上記送信コイル19aから照射された電磁波によ
る被検体6の応答の電磁波(NMR信号)は被検
体6に近接して配置された受信コイル19bで検
出され、増幅器20及び直交位相検波器21を介
してA/D変換器22に入力してデイジタル量に
変換され、さらにシーケンサ12からの命令によ
るタイミングで直交位相検波器21によりサンプ
リングされた二系列の収集データとされ、その信
号が信号処理系11に送られるようになつてい
る。この信号処理系11は、CPU13と、磁気
デイスク23及び磁気テープ24等の記録装置
と、CRT等のデイスプレイ25とから成り、上
記CPU13でフーリエ変換、補正係数計算像再
構成等の処理を行い、任意断面の信号強度分布あ
るいは複数の信号に適当な演算を行つて得られた
分布を画像化してデイスプレイ25に断層像とし
て表示するようになつている。また、シーケンサ
12は、CPU13の制御で動作し、被検体6の
断層像のデータ収集に必要な種々の命令を送信系
9及び磁場勾配発生系8並びに受信系10に送る
ものである。なお、第3図において、送信コイル
19aと受信コイル19bと傾斜磁場コイル14
は、被検体6の周りの空間に配置された静磁場発
生磁石7の磁場空間内に配置されている。
The static magnetic field generating magnet 7 generates a strong and uniform static magnetic field around the subject 6 in a direction perpendicular to the body axis direction, and is a permanent magnet placed in a certain expanse of space around the subject 6. A magnetic field generating means of a normal conduction type, a normal conduction type, or a superconductivity type is arranged. The magnetic field gradient generation system 8 consists of gradient magnetic field coils 14 wound in the three axes of X, Y, and Z, and a gradient magnetic field power supply 15 that drives each coil, and each generates a magnetic field according to instructions from the sequencer 12. By driving the gradient magnetic field power supply 15 of the coil, gradient magnetic fields Gx,
Gy and Gz are applied to the subject 6. Depending on how this gradient magnetic field is applied, a slice plane for the subject 6 can be set. The transmission system 9 irradiates high frequency signals to cause nuclear magnetic resonance in the nuclei of atoms constituting the living tissue of the subject 6, and includes a high frequency oscillator 16 and a modulator 17.
It consists of a high frequency amplifier 18 and a transmitting coil 19a, and transmits the high frequency pulses output from the high frequency oscillator 16 to the modulator 1 according to instructions from the sequencer 12.
7, and this amplitude-modulated high-frequency pulse is amplified by a high-frequency amplifier 18 and then supplied to a transmitting coil 19a placed close to the subject 6, whereby the subject 6 is irradiated with electromagnetic waves. It's becoming like that. The receiving system 10 detects a high frequency signal (NMR signal) emitted by nuclear magnetic resonance of the atomic nucleus of the biological tissue of the subject 6, and includes a solenoid-shaped receiving coil 19b, an amplifier 20, a quadrature phase detector 21, and a /D converter 22,
The electromagnetic wave (NMR signal) in response to the electromagnetic wave irradiated from the transmitting coil 19a of the subject 6 is detected by the receiving coil 19b placed close to the subject 6, and is transmitted via the amplifier 20 and quadrature phase detector 21. The signals are input to the A/D converter 22 and converted into digital quantities, and then sampled by the quadrature phase detector 21 at the timing according to the command from the sequencer 12 to obtain two series of collected data, and the signals are sent to the signal processing system 11. It is starting to be sent. This signal processing system 11 consists of a CPU 13, a recording device such as a magnetic disk 23 and a magnetic tape 24, and a display 25 such as a CRT.The CPU 13 performs processing such as Fourier transform, correction coefficient calculation, image reconstruction, etc. The signal intensity distribution of an arbitrary cross section or the distribution obtained by performing appropriate calculations on a plurality of signals is converted into an image and displayed as a tomographic image on the display 25. Further, the sequencer 12 operates under the control of the CPU 13 and sends various commands necessary for data collection of tomographic images of the subject 6 to the transmission system 9, the magnetic field gradient generation system 8, and the reception system 10. In addition, in FIG. 3, the transmitter coil 19a, the receiver coil 19b, and the gradient magnetic field coil 14
is arranged in the magnetic field space of the static magnetic field generating magnet 7 arranged in the space around the subject 6.

ここで、本発明においては、上記受信コイル1
9bは、第4図に示す従来例と同様に、コイル導
体2の基端部に主コネクタ3を設けると共に先端
部にはコイル径可変のためのコイル径調整用コネ
クタ4a,4b,4cを所定間隔をあけて複数個
設け、上記主コネクタ3をコイル径調整用コネク
タ4a,4b,4cのいずれかに接続することに
より、コイル径が被検体やその撮影部位に合わせ
て可変とされ、コイル導体長がその被検体に対し
て最適状態に調整しうるようにされると共に、第
2図に示すように、上記コイル導体2の先端部に
所定間隔をあけて設けられた複数個のコイル径調
整用コネクタ4a,4b,4cと該コイル導体2
との間には所定容量のコンデンサ26がコイル径
を変えたときの共振周波数の変化を補正する共振
容量としてそれぞれ設けられている。
Here, in the present invention, the receiving coil 1
Similar to the conventional example shown in FIG. 4, 9b has a main connector 3 provided at the base end of the coil conductor 2, and predetermined coil diameter adjustment connectors 4a, 4b, 4c at the distal end for varying the coil diameter. By providing a plurality of connectors at intervals and connecting the main connector 3 to any of the coil diameter adjustment connectors 4a, 4b, and 4c, the coil diameter can be varied according to the subject and its imaging region, and the coil conductor The length of the coil conductor 2 can be adjusted to the optimum condition for the subject, and as shown in FIG. connectors 4a, 4b, 4c and the coil conductor 2
A capacitor 26 having a predetermined capacitance is provided between each of them as a resonant capacitor for correcting a change in the resonant frequency when the coil diameter is changed.

この受信コイル19bの等価回路は、第1図に
示すように、上記コイル導体2の長さに応じたイ
ンダクタンスL1,L2,L3のところにそれぞれコ
イル径調整用コネクタ4a,4b,4cが設けら
れると共に、これらのコイル径調整用コネクタ4
a,4b,4cと上記コイル導体2との間にはコ
イル径を変えたときの共振周波数の変化を補正す
る所定容量の共振容量C4,C5,C6がそれぞれ設
けられ、上記各コイル径調整用コネクタ4a〜4
cに対して主コネクタ3を適宜切り換えて接続す
ることにより、上記共振容量C4,C5,C6が同時
に切り換わるようになつている。なお、第1図に
おいて、符号C2はマツチング容量、符号5は可
変容量素子である。
As shown in FIG. 1, the equivalent circuit of this receiving coil 19b is such that coil diameter adjustment connectors 4a, 4b, 4c are placed at inductances L 1 , L 2 , L 3 corresponding to the lengths of the coil conductors 2, respectively. are provided, and these coil diameter adjustment connectors 4
A, 4b, 4c and the coil conductor 2 are provided with resonant capacitors C 4 , C 5 , C 6 having predetermined capacities for correcting changes in the resonant frequency when the coil diameter is changed, respectively. Diameter adjustment connectors 4a-4
By appropriately switching and connecting the main connector 3 to C, the resonance capacitances C 4 , C 5 and C 6 can be switched at the same time. In FIG. 1, reference numeral C2 represents a matching capacitance, and reference numeral 5 represents a variable capacitance element.

次に、このように構成された受信コイル19b
の使用及び動作について説明する。例えば、被検
体やその撮影部位に応じてコイル径を最も小さく
する場合は、第4図において主コネクタ3を第一
のコイル径調整用コネクタ4aに接続する。この
ときは、受信コイル19bのコイル導体長は上記
主コネクタ3から第一のコイル径調整用コネクタ
4aまでの部分となり、第1図において上記受信
コイル19bのインダクタンスはL1となると共
に、共振容量はC4となる。そして、このインダ
クタンスL1と共振容量C4とマツチング容量C2
により、信号周波数に同調をとる。次に、ややコ
イル径を大きくするために、第4図において主コ
ネクタ3を第二のコイル径調整用コネクタ4bに
接続した場合は、そのコイル導体長は上記主コネ
クタ3から第二のコイル径調整用コネクタ4bま
での部分となり、第1図において受信コイル19
bのインダクタンスは(L1+L2)となると共に、
共振容量はC5に切り換わる。そして、このイン
ダクタンス(L1+L2)と共振容量C5とマツチン
グ容量C2とにより、信号周波数に同調をとる。
このとき、今回変化したインダクタンスL2によ
る同調ずれの補正は、共振容量C5を上記の共振
容量C4とは違う値のものとすることにより行う
ことができる。さらに、第4図において主コネク
タ3を第三のコイル径調整用コネクタ4cに接続
してコイル径を大きくした場合は、そのコイル導
体長はさらに大きくなり、第1図において受信コ
イル19bのインダクタンスは(L1+L2+L3
となると共に、共振容量はC6に切り換わる。そ
して、このインダクタンス(L1+L2+L3)と共
振容量C6とマツチング容量C2とにより、信号周
波数に同調をとる。このとき、今回変化したイン
ダクタンス(L2+L3)による同調ずれの補正は、
共振容量C6を上記の共振容量C4,C5とは違う値
のものとすることにより行うことができる。
Next, the receiving coil 19b configured in this way
This section explains the use and operation of . For example, if the coil diameter is to be minimized depending on the subject or its imaging site, the main connector 3 is connected to the first coil diameter adjustment connector 4a in FIG. 4. At this time, the length of the coil conductor of the receiving coil 19b is from the main connector 3 to the first coil diameter adjustment connector 4a, and in FIG. 1, the inductance of the receiving coil 19b is L 1 , and the resonance capacitance is becomes C 4 . Then, the signal frequency is tuned by the inductance L1 , the resonant capacitor C4 , and the matching capacitor C2 . Next, in order to slightly increase the coil diameter, if the main connector 3 is connected to the second coil diameter adjustment connector 4b in FIG. This is the part up to the adjustment connector 4b, and is the receiving coil 19 in FIG.
The inductance of b is (L 1 +L 2 ), and
The resonant capacitance is switched to C5 . Then, the signal frequency is tuned by this inductance (L 1 +L 2 ), resonance capacitance C 5 and matching capacitance C 2 .
At this time, the tuning deviation due to the inductance L 2 that has changed this time can be corrected by setting the resonant capacitor C 5 to a value different from the above-mentioned resonant capacitor C 4 . Furthermore, if the coil diameter is increased by connecting the main connector 3 to the third coil diameter adjustment connector 4c in FIG. 4, the length of the coil conductor becomes even larger, and the inductance of the receiving coil 19b in FIG. ( L1 + L2 + L3 )
As , the resonant capacitance switches to C6 . Then, the signal frequency is tuned by this inductance (L 1 +L 2 +L 3 ), resonance capacitance C 6 , and matching capacitance C 2 . At this time, the correction of the tuning shift due to the inductance (L 2 + L 3 ) that has changed this time is:
This can be achieved by setting the resonant capacitance C 6 to a value different from the resonant capacitances C 4 and C 5 described above.

このように、受信コイル19bのコイル導体長
の増加に伴つてインダクタンスがL1,(L1+L2),
(L1+L2+L3)のように変化するのに応じて、予
め実験または計算によりそれぞれの共振容量C4
C5,C6をどのぐらいの値とするかを求めておき、
その所定容量を有するコンデンサ26(第2図参
照)と各コイル径調整用コネクタ4a〜4cのと
ころに接続することにより、信号周波数に常に同
調をとることができる。このとき、第1図に示す
可変容量素子5は、信号周波数への同調の微調整
だけを行えばよい。従つて、コイル導体長の変化
に対する可変容量素子5の補正量は、あまり大き
くなくてもよい。
In this way, as the coil conductor length of the receiving coil 19b increases, the inductance becomes L 1 , (L 1 +L 2 ),
(L 1 +L 2 +L 3 ), the resonant capacitance C 4 ,
Find the values of C 5 and C 6 , and
By connecting the capacitor 26 (see FIG. 2) having a predetermined capacity to each of the coil diameter adjustment connectors 4a to 4c, the signal frequency can always be tuned. At this time, the variable capacitance element 5 shown in FIG. 1 only needs to be finely tuned to the signal frequency. Therefore, the amount of correction of the variable capacitance element 5 for changes in the coil conductor length does not need to be very large.

なお、第1図及び第4図においては、コイル径
調整用コネクタを三箇所に設け、共振容量も三個
設けたものとして示したが、本発明はこれに限ら
ず、コイル径調整用コネクタを四箇所以上に設け
ると共に共振容量も四個以上設けてもよい。
In addition, in FIGS. 1 and 4, the coil diameter adjustment connectors are provided at three locations, and three resonance capacitors are also provided, but the present invention is not limited to this. They may be provided at four or more locations, and four or more resonance capacitors may also be provided.

〔発明の効果〕 本発明は以上のように構成されたので、コイル
径を変化させるために、コイル導体2の基端部に
設けられた主コネクタ3を該コイル導体2の先端
部に所定間隔をあけて設けられた複数個のコイル
径調整用コネクタ4a〜4cのいずれかに接続す
ることにより、コイル径の変化に応じて上記各コ
イル径調整用コネクタ4a〜4cのところに設け
られたコイル径変更時の共振周波数の変化を補正
する共振容量C4〜C6を同時に切換え接続するこ
とができる。従つて、上記コイル径の変化による
コイル導体長の変化によつてコイル導体2のイン
ダクタンスが変化する結果、受信コイル19bの
共振周波数が変化するのを、コイル径の変化に伴
い主コネクタ3をいずれかのコイル径調整用コネ
クタ4a〜4cに接続するだけで補正用の共振容
量C4〜C6を同時に切換え接続して、補正するこ
とができる。これにより、受信コイル19bの共
振周波数を一定に保つことができる。従つて、従
来のように補正量に限界のある可変容量素子5に
よつて制限されることなく、共振容量の接続され
たコイル径調整用コネクタの数をふやすことによ
り、コイル径を変化させて行うコイル導体長の調
整範囲を大きくすることができる。このことか
ら、被検体や撮影部位に応じて最適なコイル径と
することができ、S/N比を向上して良質の画像
を得ることができる。
[Effects of the Invention] Since the present invention is constructed as described above, in order to change the coil diameter, the main connector 3 provided at the proximal end of the coil conductor 2 is connected to the distal end of the coil conductor 2 at a predetermined interval. By connecting to any one of the plurality of coil diameter adjustment connectors 4a to 4c provided at intervals, the coils provided at each of the coil diameter adjustment connectors 4a to 4c can be adjusted according to changes in the coil diameter. Resonant capacitors C 4 to C 6 that correct changes in resonant frequency when changing the diameter can be switched and connected at the same time. Therefore, the resonant frequency of the receiving coil 19b changes as a result of the change in the inductance of the coil conductor 2 due to the change in the coil conductor length due to the change in the coil diameter. Just by connecting to the coil diameter adjustment connectors 4a to 4c, correction can be performed by simultaneously switching and connecting the correction resonance capacitors C4 to C6 . Thereby, the resonant frequency of the receiving coil 19b can be kept constant. Therefore, the coil diameter can be changed by increasing the number of coil diameter adjustment connectors to which resonance capacitances are connected without being limited by the variable capacitance element 5, which has a limited correction amount as in the past. The range of adjustment of the coil conductor length can be increased. From this, it is possible to set the optimum coil diameter according to the subject and the region to be imaged, and it is possible to improve the S/N ratio and obtain high-quality images.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による核磁気共鳴イメージング
装置の受信コイルの等価回路を示す回路図、第2
図は上記受信コイルの要部を示す拡大説明図、第
3図は上記受信コイルが適用される核磁気共鳴イ
メージング装置の全体構成を示すブロツク図、第
4図は本発明及び従来例の受信コイルの外観を示
す斜視図、第5図は従来例の受信コイルの等価回
路を示す回路図である。 1,19b…受信コイル、2…コイル導体、3
…主コネクタ、4a〜4c…コイル径調整用コネ
クタ、6…被検体、7…静磁場発生磁石、8…磁
場勾配発生系、9…送信系、10…受信系、11
…信号処理系、26…コンデンサ、C2…マツチ
ング容量、C4〜C6…共振容量、L1〜L3…インダ
クタンス。
FIG. 1 is a circuit diagram showing an equivalent circuit of a receiving coil of a nuclear magnetic resonance imaging apparatus according to the present invention, and FIG.
FIG. 3 is a block diagram showing the overall configuration of a nuclear magnetic resonance imaging apparatus to which the receiving coil is applied. FIG. 4 is a receiving coil of the present invention and a conventional example. FIG. 5 is a circuit diagram showing an equivalent circuit of a conventional receiving coil. 1, 19b...Reception coil, 2...Coil conductor, 3
... Main connector, 4a to 4c... Coil diameter adjustment connector, 6... Subject, 7... Static magnetic field generation magnet, 8... Magnetic field gradient generation system, 9... Transmission system, 10... Receiving system, 11
...Signal processing system, 26...Capacitor, C2 ...Matching capacitance, C4 to C6 ...Resonance capacitance, L1 to L3 ...Inductance.

Claims (1)

【特許請求の範囲】[Claims] 1 被検体に静磁場及び傾斜磁場を与える磁場発
生手段と、上記被検体の生体組織を構成する原子
の原子核に核磁気共鳴を起こさせるために高周波
信号を照射する送信系と、上記の核磁気共鳴によ
り放出される高周波信号を検出する受信系と、こ
の受信系で検出した高周波信号を用いて画像再構
成演算を行う信号処理系とを備えて成る核磁気共
鳴イメージング装置の上記受信系内に設けられ、
コイル径が被検体に合わせて可変とされコイル導
体長を最適状態に調整しうる受信コイルにおい
て、上記コイル導体の先端部に所定間隔をあけて
設けられた複数個のコイル径調整用コネクタと該
コイル導体との間にコイル径を変えたときの共振
周波数の変化を補正する共振容量をそれぞれ設
け、上記コイル導体の基端部に設けられた主コネ
クタと上記いずれかのコイル径調整用コネクタと
を接続して適宜コイル径を変化させたときに上記
共振容量の接続切換えが同時に行われるようにし
たことを特徴とする核磁気共鳴イメージング装置
の受信コイル。
1. A magnetic field generating means that applies a static magnetic field and a gradient magnetic field to the subject, a transmission system that irradiates high-frequency signals to cause nuclear magnetic resonance in the nuclei of atoms constituting the living tissue of the subject, and the above-mentioned nuclear magnetic field. In the receiving system of a nuclear magnetic resonance imaging apparatus, the receiving system includes a receiving system that detects high-frequency signals emitted by resonance, and a signal processing system that performs image reconstruction calculations using the high-frequency signals detected by the receiving system. established,
A receiving coil whose coil diameter is variable according to the subject and whose coil conductor length can be adjusted to an optimum state includes a plurality of coil diameter adjustment connectors provided at a predetermined interval at the tip of the coil conductor; Resonance capacitors are provided between the coil conductors to compensate for changes in resonance frequency when the coil diameter is changed, and a main connector provided at the base end of the coil conductor and one of the coil diameter adjustment connectors described above. 1. A receiving coil for a nuclear magnetic resonance imaging apparatus, characterized in that when the coil diameter is appropriately changed by connecting the receiving coil, the connection switching of the resonance capacitance is performed simultaneously.
JP63216236A 1988-09-01 1988-09-01 Receiving coil of nuclear magnetic resonance imaging apparatus Granted JPH0265844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63216236A JPH0265844A (en) 1988-09-01 1988-09-01 Receiving coil of nuclear magnetic resonance imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63216236A JPH0265844A (en) 1988-09-01 1988-09-01 Receiving coil of nuclear magnetic resonance imaging apparatus

Publications (2)

Publication Number Publication Date
JPH0265844A JPH0265844A (en) 1990-03-06
JPH0371132B2 true JPH0371132B2 (en) 1991-11-12

Family

ID=16685409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63216236A Granted JPH0265844A (en) 1988-09-01 1988-09-01 Receiving coil of nuclear magnetic resonance imaging apparatus

Country Status (1)

Country Link
JP (1) JPH0265844A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700837B2 (en) * 2001-05-21 2011-06-15 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Magnetic resonance imaging coil frequency stabilization method, magnetic resonance imaging coil cooling structure, and magnetic resonance imaging apparatus
JP4849623B2 (en) 2004-09-13 2012-01-11 学校法人慶應義塾 Method and apparatus for locally measuring the amount of protic solvent in a sample

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325541A (en) * 1986-07-17 1988-02-03 Mitsubishi Electric Corp High frequency coil for nmr
JPS6355914A (en) * 1986-08-26 1988-03-10 Mitsubishi Electric Corp High frequency magnetic field generating and detecting device
JPS6343509B2 (en) * 1981-04-24 1988-08-31 Asahi Glass Co Ltd

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343509U (en) * 1986-09-08 1988-03-23

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343509B2 (en) * 1981-04-24 1988-08-31 Asahi Glass Co Ltd
JPS6325541A (en) * 1986-07-17 1988-02-03 Mitsubishi Electric Corp High frequency coil for nmr
JPS6355914A (en) * 1986-08-26 1988-03-10 Mitsubishi Electric Corp High frequency magnetic field generating and detecting device

Also Published As

Publication number Publication date
JPH0265844A (en) 1990-03-06

Similar Documents

Publication Publication Date Title
US5327898A (en) Signal receiving coil device for MRI apparatus
JP3216938B2 (en) RF probe for MRI and magnetic resonance imaging apparatus
US5144243A (en) RF coil system for use in magnetic resonance imaging apparatus
IL91805A (en) Quadrature surface coil
JP2003180655A (en) Method for measuring location of object in mr system, and catheter and mr system for performing the method
JPH0759751A (en) Rf probe
US7391213B2 (en) Three axis angle invariant RF coil assembly and method and system employing same
JPH0578339B2 (en)
US5933007A (en) MR device for determining a nuclear magnetization distribution by means of a surface coil system
JPH0371132B2 (en)
JP3154002B2 (en) Receiving coil of quadrature receiving method and magnetic resonance imaging apparatus using this receiving coil
JP2767311B2 (en) High frequency coil for magnetic resonance imaging equipment
JPH048348A (en) Receiving coil for magnetic resonance imaging device
JP3007383B2 (en) Magnetic resonance imaging equipment
JP2811352B2 (en) High frequency coil for magnetic resonance imaging equipment
JPH05109U (en) Receiver coil for magnetic resonance imaging
JPH07265279A (en) Magnetic resonance imaging system
JPH07171132A (en) High frequency coil for magnetic resonance imaging device
JPH0647018A (en) Magnetic resonance imaging device
JP3170771B2 (en) Receiving coil for magnetic resonance imaging equipment
JPS59122937A (en) Nuclear magnetic resonance apparatus
JPH09192115A (en) Rf probe for magnetic resonance device
JPH07327957A (en) Rf probe for magnetic resonance apparatus
JPH05161624A (en) High frequency reception coil for magnetic resonance imaging device
JP4349648B2 (en) Magnetic resonance imaging apparatus and its receiving coil

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees