JPH0370997A - Guiding device for missile - Google Patents

Guiding device for missile

Info

Publication number
JPH0370997A
JPH0370997A JP1207442A JP20744289A JPH0370997A JP H0370997 A JPH0370997 A JP H0370997A JP 1207442 A JP1207442 A JP 1207442A JP 20744289 A JP20744289 A JP 20744289A JP H0370997 A JPH0370997 A JP H0370997A
Authority
JP
Japan
Prior art keywords
missile
angle
axis
target
seeker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1207442A
Other languages
Japanese (ja)
Inventor
Hiroshi Takashima
寛 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1207442A priority Critical patent/JPH0370997A/en
Publication of JPH0370997A publication Critical patent/JPH0370997A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PURPOSE:To make a computer exclusive for high speed unnecessary, produce a guiding device for a missile inexpensively and permit the intertia guidance of the missile by a method wherein the guiding device is provided with a detecting means, in which a seeker axis is stabilized in space from the time of launching while the attitude angle of the missile is detected even during flying utilizing an angle between the seeker axis and the fuselage of the missile. CONSTITUTION:Upon launching, a target angle lambdaT and the attitude angle theta0 of a missile, which are seen from the point of launching, are inputted from external sources into a signal processing computer 10. Simultaneously with the launching, a switch 11 is set at a position 1 by a sequence signal Sc1 from the signal processing computer 10. According to this setting, a seeker axis becomes a mode stabilized in space. After launching, the signal processing computer 10 monitors an angle lambdaM between the seeker axis and the axis of a fuselage at all times. Since the initial value of the angle lambdaM is lambdaC, the changing amount of the attitude angle during flying becomes DELTAtheta=lambdaM-lambdaC. The signal proceeding computer 10 outputs a steering signal deltac utilizing the angle theta while the signal is transmitted to a steering device 6 through another switch 12 whereby the inertia guidance of the missile may be effected. When the missile approaches a target, sequence signals Sc1, Sc2 are sent to the switches 11, 12 by the signal processing computer 10 whereby the guiding mode of the missile becomes homing guidance mode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は飛しょう体の誘導装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a flying object guidance device.

〔従来の技術〕[Conventional technology]

従来の長射程の飛しょう体の誘導装置は2発射時の目標
方向を予め記憶して発射し、飛しよう体が目標を探知で
きる距離までは、飛しょう体に搭載されている慣性航法
装置で飛しょう体の姿勢角を検出して目標の方向へ飛し
ょう体を誘導させる慣性誘導方式で誘導し、飛しょう体
が目標を探知できる距離になれば、シーカ軸を走査して
目標を捕捉、追尾した後は比例航法を用いてホーミング
誘導し、飛しょう体を目標に命中するように誘導する方
式があった。
Conventional guidance systems for long-range projectiles memorize the target direction at the time of launch in advance and fire, and the inertial navigation system mounted on the projectile uses the inertial navigation system installed on the projectile to reach the distance at which the projectile can detect the target. The system uses an inertial guidance method that detects the attitude angle of the projectile and guides the projectile toward the target.When the projectile reaches a distance where it can detect the target, it scans the seeker axis to acquire the target. After tracking, there was a method of homing guidance using proportional navigation to guide the projectile to hit the target.

第2図は従来の飛しょう体の誘導装置を説明した図であ
り、(1)は誤差角検出器、(2)は増幅器、(3)は
トルカ、(4)はフリージャイロ、(5)は角度検出器
Figure 2 is a diagram explaining a conventional guidance device for a flying object, in which (1) is an error angle detector, (2) is an amplifier, (3) is a torquer, (4) is a free gyro, and (5) is an error angle detector. is an angle detector.

(6)は操舵装置、(7)は慣性航法装置、(8)はレ
ートセンサ、(9)は高速専用計算機、 Qlは信号処
理計算機。
(6) is a steering device, (7) is an inertial navigation device, (8) is a rate sensor, (9) is a high-speed dedicated computer, and Ql is a signal processing computer.

(11)、 (12)はスイッチ、 (13)は加算器
である。
(11) and (12) are switches, and (13) is an adder.

次に動作について説明する。第2図の従来の飛しょう体
の誘導装置において2発射時、スイッチ(11)、 (
12)は図の方向にたおれている。また2発射時点から
見た百標の角度λTと2発射時の飛しょう体の姿勢角度
θ。が計n機01にあらかじめ入力されている。発射後
、高速専用計算機(9)は、レートセンサ(8)が検出
した機体姿勢角度θmを高速で積分し、前記θ。に加算
することにより飛しょう体の姿勢角度を計算し、前記入
でとの差が零になるように操舵信号δCを出力する。前
記操舵信号δCはスイッチ(12)を通して操舵装置(
6)に入力され飛しょう体の姿勢を制御する。また高速
専用計算機(9)はシーカ軸への走査指令λCを出力し
て目標を捜索する。信号処理計算機aoは目標を発見す
るとコマンドSeを出力、このSeによってスイッチ(
11)、 (12)は第2図と反対方向へ倒される。こ
のとき、誤差角検出器(1)はシーカ軸と目標との角度
差εを検出し、増幅器(2)でに1倍されてスイッチ(
12)を通じて操舵信号として操舵装置(6)に入力さ
れる。一方に1εはスイッチ(11)を通じてトルカ(
3)に入力され、フリージャイロ(4)を走査する。こ
うして目標捕捉後は飛しょう体は比例航法により目標に
誘導される。
Next, the operation will be explained. In the conventional guidance system for a flying object shown in Fig. 2, when two launches are performed, the switch (11), (
12) is folded in the direction shown in the figure. Also, the angle λT of the hundred marks seen from the point of the second launch and the attitude angle θ of the projectile at the time of the second launch. has been input into the total n machine 01 in advance. After launch, the high-speed dedicated computer (9) integrates the aircraft attitude angle θm detected by the rate sensor (8) at high speed, and calculates the above-mentioned θ. The attitude angle of the flying object is calculated by adding to , and a steering signal δC is outputted so that the difference from the above input becomes zero. The steering signal δC is passed through a switch (12) to a steering device (
6) to control the attitude of the flying object. Further, the high-speed dedicated computer (9) outputs a scanning command λC to the seeker axis to search for a target. When the signal processing computer ao discovers the target, it outputs the command Se, which causes the switch (
11) and (12) are thrown in the opposite direction to that shown in Figure 2. At this time, the error angle detector (1) detects the angular difference ε between the seeker axis and the target, which is multiplied by 1 in the amplifier (2) and the switch (
12) is input to the steering device (6) as a steering signal. On the other hand, 1ε is passed through the switch (11) to the torque converter (
3) and scans the free gyro (4). After target acquisition, the aircraft is guided to the target using proportional navigation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記の従来の飛しょう体の誘導装置では
、飛しょう体の姿勢角を計算するための高速専用計算機
が必要であり、コスト的に高くつくという欠点があった この発明は、上記のような課題を解消するためになされ
たもので、高速専用計算機が不要で安価な、かつ慣性誘
導が可能な飛しょう体の誘導装置を得ることを目的とす
る。
However, the above-mentioned conventional guidance device for a flying object requires a high-speed dedicated computer to calculate the attitude angle of the flying object, and this invention has the disadvantage of being expensive. The purpose of this project was to provide a guidance system for a flying object that does not require a high-speed dedicated computer, is inexpensive, and is capable of inertial guidance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による飛しょう体の誘導装置は、目標の目視線角
速度に比例して飛しょう体を誘導させる飛しょう体の誘
導方式において、前記目標とシーカ軸方向との誤差角を
検出する誤差角検出器と。
A flying object guidance device according to the present invention has an error angle detection method that detects an error angle between the target and the seeker axis direction in a flying object guidance method that guides the flying object in proportion to the visual line angular velocity of the target. With the vessel.

前記誤差角検出器出力を入力として機械的にシーカ軸を
走査するトルカ及び2自由度のフリージャイロから構成
される走査系と、前記シーカ軸の機体軸からの角度を検
出する手段と、N記誤差角検出器出力を操舵信号として
前記憶しょう体を前記目標に誘導する手段と、前記シー
カ軸と機体軸との検出角度を使用して、前記シーカ軸を
前記目標方向に指向させるIO御手段と、前記シーカ軸
と機体軸との検出角度を使用して操舵信号を計算し。
a scanning system comprising a torquer and a free gyro with two degrees of freedom that mechanically scans the seeker axis using the output of the error angle detector as input; a means for detecting the angle of the seeker axis from the aircraft axis; means for guiding the pre-memory body toward the target using the error angle detector output as a steering signal; and IO control means for directing the seeker axis toward the target using the detected angle between the seeker axis and the aircraft axis. and calculating a steering signal using the detected angle between the seeker axis and the aircraft axis.

前記憶しょう体を前記誤差角検出器出力を使わずに前記
目標に誘導する制御手段と、前記憶しょう体のロール軸
まわりの回転を止める1tiIlI11手段とを備える
乙とを特徴とする飛しょう体の誘導装置である。
A flying object characterized by B comprising: control means for guiding the front memory body to the target without using the output of the error angle detector; and means for stopping the rotation of the front memory body about the roll axis. It is a guidance device.

〔作 用〕[For production]

この発明による飛しょう体の誘導装置は2発射後直ちに
シーカ軸を空間に安定させるため、シーカ軸と機体のな
す角度の時間的変化は2発射後の機体の姿勢角の変化に
等しくなることを利用して。
Since the flying object guidance system according to the present invention stabilizes the seeker axis in space immediately after the second launch, it is assumed that the temporal change in the angle between the seeker axis and the aircraft is equal to the change in the attitude angle of the aircraft after the second launch. Take advantage of it.

高速専用計算機を用いずに慣性誘導を行うことができる
Inertial guidance can be performed without using a high-speed dedicated computer.

〔実施例〕〔Example〕

次に本発明の一実施例を説明する。 Next, one embodiment of the present invention will be described.

第1図は2本発明に関連する飛しょう体と目標に関する
角度関係を表わす図である。第1図において、(1)は
誤差角検出器、(2)は増幅器、(3)はトルカ、(4
)はフリージャイロ、(5)は角度検出器、(6)は操
舵装置、(8)はレートセンサ、 (Inは信号処理計
算機、 (11)、 (12)はスイッチ、 (13)
は加算器である。
FIG. 1 is a diagram showing the angular relationship between two flying objects and a target related to the present invention. In Figure 1, (1) is an error angle detector, (2) is an amplifier, (3) is a torquer, and (4) is an amplifier.
) is a free gyro, (5) is an angle detector, (6) is a steering device, (8) is a rate sensor, (In is a signal processing computer, (11), (12) are switches, (13)
is an adder.

発射時、信号処理計算機0ωには外部から2発射点から
見た目標角度λTと、飛しょう体の姿勢角θ。が入力さ
れる。
At the time of launch, the signal processing computer 0ω stores the target angle λT seen from the two launch points from the outside and the attitude angle θ of the projectile. is input.

発射以前にまず信号処理計算機αωよりのンーケンス信
号Se1.Se、によってスイッチ(11)、 (12
)は図の位置にある。この時、シーカ軸は信号処理計算
機叫よりの角度指令信号λCで目標の見える方向へ指向
させられる。すなわち、λC=θ。−λTであることは
いうまでもない。発射と同時に信号処理計算機叫よりの
シーケンス信号 Se1にによってスイッチ(11)は
図の1の位置に設定される。これによってシーカ軸は空
間に安定化されるモードとなる。発射後、信号処理計算
機はシーカ軸と機体のなす角λMを常にモニタしており
、このλMの初期値はλCであるから2発射後、飛しょ
う中の姿勢角の変化量Δθ=λM−λCである。
Before the launch, the sequence signal Se1. from the signal processing computer αω is first processed. Se, by switches (11), (12
) is in the position shown in the figure. At this time, the seeker axis is directed in the direction in which the target can be seen by the angle command signal λC from the signal processing computer. That is, λC=θ. It goes without saying that -λT. Simultaneously with the firing, the switch (11) is set to position 1 in the figure by the sequence signal Se1 from the signal processing computer. This puts the seeker axis in a spatially stabilized mode. After launch, the signal processing computer constantly monitors the angle λM between the seeker axis and the aircraft, and the initial value of λM is λC, so after two launches, the amount of change in attitude angle during flight Δθ = λM - λC It is.

既に述べたように2発射時の飛しょう体の姿勢角θ0は
既知であるから、飛しょう中の姿勢角θはθ=θ。十Δ
θの単純な計算式で表わすことができる。このθを使用
して信号処理計算機alはyk舵信号δCを出力し、ス
イッチ(12)を通じて操舵装置(6)に送られて慣性
誘導される。目標に接近すると信号処理計算機GO)よ
りシーケンス信号 Se1゜Se2がスイッチ(11)
 (12)に送られてホーミング誘導モードとなるのは
、従来の飛しょう体の誘導装置と同じである。
As already mentioned, since the attitude angle θ0 of the projectile during the second launch is known, the attitude angle θ during flight is θ=θ. ten Δ
It can be expressed by a simple calculation formula for θ. Using this θ, the signal processing computer al outputs a yk rudder signal δC, which is sent to the steering device (6) through the switch (12) for inertial guidance. When approaching the target, the signal processing computer GO) sends a sequence signal Se1゜Se2 to the switch (11).
(12) and becomes the homing guidance mode, which is the same as in conventional guidance devices for flying objects.

〔発明の効果〕〔Effect of the invention〕

以上のように2本発明は、従来の慣性誘導方式の欠点(
高価な高速専用計算機が必要)を解決するために2発射
時からシーカ軸を空間に安定化させ、飛しょう中もシー
カ軸と機体のなす角度を利用して飛しよう体の姿勢角度
を検出する手段を備えているので、信号処理計算機の能
力で充分まかなえ、高価な高速専用計算機が不要で安価
に慣性誘導が行える効果がある。
As described above, the present invention overcomes the drawbacks of the conventional inertial guidance system (
(requires an expensive high-speed dedicated computer), the seeker axis is stabilized in space from the second launch, and during flight, the attitude angle of the flying object is detected using the angle between the seeker axis and the aircraft. Since the system is equipped with the means, the ability of the signal processing computer is sufficient, and there is no need for an expensive high-speed dedicated computer, making it possible to perform inertial guidance at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の飛しょう体の誘導装置を示す図、第2
図は従来の飛しょう体の誘導装置を示す図、第3図は飛
しょう中の飛しょう体と目標の角度関係を示す図、第4
図は発射時の飛しょう体と0標の角度関係を示す図であ
る。 図中、 (1)ば誤差角検出器、(2)は増m器、(3
)はトルカ、(4)はフリージャイロ、(5)は角度検
出11.(6)は操舵装置、(7)は慣性航法装置、(
8)はレートセンサ、(9)は高速専用計算機、 QC
Iは信号処理計算機。 (11) (12)はスイッチp (1g)は加算器、
 (14)は飛しょう体である。 なお2図中同一符号は同一、又は相当部分を示す。
Fig. 1 is a diagram showing the flying object guidance device of the present invention, Fig. 2
Figure 3 shows the conventional guidance system for a flying object, Figure 3 shows the angular relationship between the flying object and the target, and Figure 4 shows the angular relationship between the flying object and the target.
The figure shows the angular relationship between the projectile and the zero mark at the time of launch. In the figure, (1) is the error angle detector, (2) is the m intensifier, and (3) is the error angle detector.
) is ToruCa, (4) is free gyro, (5) is angle detection 11. (6) is a steering device, (7) is an inertial navigation device, (
8) is a rate sensor, (9) is a high-speed dedicated calculator, QC
I is a signal processing computer. (11) (12) is the switch p (1g) is the adder,
(14) is a projectile. Note that the same reference numerals in the two figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 目標の目視線角速度に比例して飛しょう体を誘導させる
飛しょう体の誘導装置において、前記目標とシーカ軸方
向との誤差角を検出する誤差角検出器と、前記誤差角検
出器出力を入力として機械的にシーカ軸を走査するトル
カ及び2自由度のフリージャイロから構成される走査系
と、前記シーカ軸の機体軸からの角度を検出する手段と
、前記誤差角検出器出力を操舵信号として前記飛しょう
体を前記目標に誘導する手段と、前記シーカ軸と機体軸
との検出角度を使用して、シーカ軸を前記目標方向に指
向させる制御手段と、前記シーカ軸と機体軸との検出角
度を使用して操舵信号を計算し、前記飛しょう体を前記
誤差角検出器出力を使わずに前記目標に誘導する制御手
段と、前記飛しょう体のロール軸まわりの回転を止める
制御手段とを備えることを特徴とする飛しょう体の誘導
装置。
A flying object guidance device that guides a flying object in proportion to a target's line-of-sight angular velocity includes an error angle detector that detects an error angle between the target and the seeker axis direction, and an output of the error angle detector that is input. a scanning system comprising a torquer that mechanically scans the seeker axis and a free gyro with two degrees of freedom; a means for detecting the angle of the seeker axis from the aircraft axis; and an output of the error angle detector as a steering signal. means for guiding the flying object to the target; control means for directing the seeker axis in the target direction using a detected angle between the seeker axis and the body axis; and detection of the seeker axis and the body axis. control means for calculating a steering signal using the angle and guiding the projectile to the target without using the output of the error angle detector; and control means for stopping rotation of the projectile about a roll axis. A flying object guidance device comprising:
JP1207442A 1989-08-10 1989-08-10 Guiding device for missile Pending JPH0370997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1207442A JPH0370997A (en) 1989-08-10 1989-08-10 Guiding device for missile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1207442A JPH0370997A (en) 1989-08-10 1989-08-10 Guiding device for missile

Publications (1)

Publication Number Publication Date
JPH0370997A true JPH0370997A (en) 1991-03-26

Family

ID=16539837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1207442A Pending JPH0370997A (en) 1989-08-10 1989-08-10 Guiding device for missile

Country Status (1)

Country Link
JP (1) JPH0370997A (en)

Similar Documents

Publication Publication Date Title
US4050068A (en) Augmented tracking system
US3746281A (en) Hybrid strapdown guidance system
US4012989A (en) Inertial free-sight system
EP0797068A3 (en) A guidance system for air-to-air missiles
US4288050A (en) Steering device for missiles
KR940004647B1 (en) Lightest missile guidance system
JP2020502465A (en) Guided ammunition system for detecting off-axis targets
US4142695A (en) Vehicle guidance system
US4530270A (en) Method of directing a close attack missile to a target
US3156435A (en) Command system of missile guidance
Gapiński et al. Analysis of the dynamics and control of the modified optical target seeker used in anti-aircraft rocket missiles
JPH0370997A (en) Guiding device for missile
US3494576A (en) Self-contained and automatic guidance system for directing a missile towards a radiation-emitting target
US5874727A (en) Method and apparatus for combatting helicopters operating with concealment
US4560120A (en) Spin stabilized impulsively controlled missile (SSICM)
GB1056815A (en) Fire control system for weapons
US4185797A (en) Target seeking gyro
US5848764A (en) Body fixed terminal guidance system for a missile
US3480233A (en) Missile guidance method and apparatus
JP2744007B2 (en) Flying object guidance device
KR101292057B1 (en) Device for measuring angle of seeker receiver
JP3566182B2 (en) Target position estimation device
RU2170907C1 (en) Method for aiming in attack of high-speed targets by fighter in flat trajectory and device for its realization
IL229036A (en) Method for automatically managing a homing device mounted on a projectile, in particular on a missile
JPH0253000A (en) Guiding device for missile