JPH0370750B2 - - Google Patents

Info

Publication number
JPH0370750B2
JPH0370750B2 JP58168935A JP16893583A JPH0370750B2 JP H0370750 B2 JPH0370750 B2 JP H0370750B2 JP 58168935 A JP58168935 A JP 58168935A JP 16893583 A JP16893583 A JP 16893583A JP H0370750 B2 JPH0370750 B2 JP H0370750B2
Authority
JP
Japan
Prior art keywords
zinc
pigment
aluminum alloy
aluminum
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58168935A
Other languages
Japanese (ja)
Other versions
JPS6060164A (en
Inventor
Eikichi Uchimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Original Assignee
Toyo Aluminum KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK filed Critical Toyo Aluminum KK
Priority to JP16893583A priority Critical patent/JPS6060164A/en
Priority to KR1019840005365A priority patent/KR900001316B1/en
Priority to GB08422923A priority patent/GB2147310B/en
Priority to DE19843433483 priority patent/DE3433483A1/en
Priority to FR8413992A priority patent/FR2551764B1/en
Publication of JPS6060164A publication Critical patent/JPS6060164A/en
Publication of JPH0370750B2 publication Critical patent/JPH0370750B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】 本発明は、高度の耐熱性を有し、鉄に対して高
度の犠牲防食効果を有するアルミニウム合金粉末
防食顔料に関する。 工期短縮、省力化の目的で新造船、大型の橋
梁、タンク等はブロツク建造方式という方法が採
用されている。この建造方式は鋼板をシヨツトブ
ラストしてミルスケール、赤錆を除去した後、シ
ヨツププライマーと称する一時防錆塗料が塗装さ
れる。この後、電子罫書によつて設計図を原寸に
拡大して鋼板に焼き付け、溶断、曲げ、溶接等の
工程を経てブロツクが組み立てられる。この後ブ
ロツクは更にブロツク塗装と称する塗装がなされ
るが、シヨツププライマーの目的は、このブロツ
ク塗装されるまでの1〜3ケ月間、鋼板の発錆を
防止することである。シヨツププライマーの性能
として防食性にすぐれることはもちろんである
が、溶断、溶接、ひずみ取り等による塗膜性能の
熱劣化が小さいことが重要である。シヨツププラ
イマーとしてはウオツシユプライマー、ジンクリ
ツチプライマー、ノンジンクプライマーが市販さ
れているが、防食性、耐熱性等に優れる無機ジン
クリツチプライマーの需要が急増しシヨツププラ
イマーの主流となつている。 無機ジンクリツチプライマーは、アルカリシリ
ケート又はアルキルシリケートをバインダーとし
て亜鉛粉末を高濃度に含有させた塗料である。亜
鉛粉末の犠牲陽極作用により高度の防食性を有
し、バインダーの耐熱性により優れた特性を示す
ものである。しかしながら現行の無機ジンクリツ
チプライマーでも溶断、溶接、ひずみ取り等によ
る塗膜性能の熱劣化が解決されたわけではなく、
溶断、溶接部の塗膜焼損、ひずみ取り部の熱劣
化、塗膜はがれ等の問題が依然として存在し、こ
れらの部分では著しい発錆をみる。 亜鉛は鉄に対する高度の犠牲陽極作用により鉄
の発錆を防止するが、融点が低く、揮発しやすい
ため溶断、溶接、ひずみ取り等の工程で高熱を受
けた場合、安易に蒸気(ヒユーム)となつて揮散
する。また急激な加熱による塗膜の割れ、はがれ
が生じることが多い。このようにして亜鉛粉末が
消失した部分はもはや防食効果が消失するととも
に、発生する亜鉛ヒユームは有毒であるため作業
上特別の注意を払わなければならない。 これらの問題を解決する方法として次に示すよ
うな技術が開示されているが、それぞれ一長一短
があり高度の防食性と耐熱性を有する防食顔料の
開発が待ち望まれていた。 特公昭47−27765には5%以下のZnを含有する
アルミニウム合金粉末を使用する技術が開示され
ているが、このアルミニウム合金粉末は犠牲陽極
作用が乏しく実用化されていない。 特公昭47−51090には1〜50%のAlを含有する
Zn合金粉末を使用する技術が開示されている。
この合金粉末は犠牲陽極効果は十分有している
が、耐熱性の改善が十分ではなく実用化に至つて
いない。 また、特公昭55−14873にはフレーク状亜鉛粉
末とフレーク状耐熱顔料(フレーク状アルミニウ
ム顔料、フレーク状黒鉛顔料、フレーク状雲母顔
料)を使用する技術が開示されている。この技術
は一部実用化されているが、フレーク状耐熱顔料
の含有量が多くなると防食性が低下するとともに
塗膜物性が低下し、一方フレーク状耐熱顔料の含
有量が少なくなると、耐熱性が不十分であるとい
う相反する性質を持ち、高度の耐熱性が要求され
るシヨツププライマー用としては満足な性能を有
するまでには至つていない。 アルミニウムに亜鉛を50%以上添加すると鉄に
対する犠牲陽極効果が認められるようになるが、
これはアルミニウムの不動態被膜の形成を抑制す
るか、又は酸化被膜が導電性を有するようになる
ためと推定される。 亜鉛を50%以上含有するアルミニウム合金は鉄
に対する犠牲陽極効果は認められるが、高温に加
熱された場合、亜鉛の揮散が激しいため、加熱さ
れた部分の防食性が著しく低下する。また、溶
断、溶接、ひずみ取り等の工程では、急激な加熱
を受けるため塗膜の割れ、はがれが多数発生す
る。 本発明者らは、従来の防食顔料のこのような問
題点を解決すべく鋭意研究の結果、亜鉛−アルミ
ニウム合金に適当量のケイ素を添加することによ
つて、高度の防食性と耐熱性を有するアルミニウ
ム合金粉末顔料が得られることを知見したもので
ある。 本発明は、亜鉛が25重量%を越え50重量%以下
及びケイ素10以上25重量%以下を含有し、残部が
アルミニウムと不可避不純物とからなるアルミニ
ウム合金粉末であり、亜鉛粉末と同等の防食性を
有し、かつ、高耐熱性を有する防食顔料を提供す
るものである。 本発明の防食顔料は、上記組成のアルミニウム
合金熔湯を調製し、該合金熔湯のアトマイズ法に
よつて容易に製造し得る。アトマイズ媒体として
は空気、不活性ガス等が一般的に使用されるが、
空気アトマイズ法によつて所望のアルミニウム合
金粉末が安易に製造し得る。 薄くて均一な塗膜を得るため、使用するアルミ
ニウム合金粉末の粒度は63μ以下が望ましい。こ
の目的でアトマイズ合金粉末を機械的に粉砕した
合金粉末も使用できる。機械的粉砕は、不活性ガ
ス雰囲気中ボールミルで乾式粉砕するか又はミネ
ラルスピリツト等の溶剤の共存下、ボールミル、
アトライターミル等で粉砕して得られたものが使
用し得る。 本発明のアルミニウム合金顔料用のバインダー
としては、従来一般的に使用されている種々のバ
インダーが使用し得るが、本顔料の特性を最大に
引き出すバインダーとしては耐熱性に優れたアル
カリシリケート系バインダー、アルキルシリケー
ト系バインダー及びアルキルチタネート系バイン
ダーが望ましい。 塗料中の顔料濃度は、顔料容積濃度で20〜50%
程度で使用でき、アトマイズ法によつて得られた
アルミニウム合金粉の場合、顔料容積濃度30〜50
%程度が望ましく、また機械的に粉砕された合金
粉末の場合、吸油量が増加するため金属分として
20〜40%顔料容積濃度で使用するのが望ましい。 塗装はエアースプレー、エアレススプレー、刷
毛塗り等のいずれでも使用可能であり、目的に応
じて使い分けし得る。 次に本発明の原理について言及する。 防食顔料が犠牲陽極効果を有するためには、顔
料と鋼板の電気的接触がなされていること及び顔
料が鉄に対して十分卑な電極電位を有することが
必須条件である。 因みに、亜鉛と軟鋼の電極電位は0.1N甘汞電
極に対して亜鉛は−1.10V、軟鋼は−0.58Vであ
る。一方、アルミニウムは−0.85Vである。電極
電位だけからはアルミニウムでも鉄に対して十分
犠牲陽極効果が期待し得るが、現実的にはアルミ
ニウムは鉄に対する犠牲陽極効果は全く認められ
ない。この理由はアルミニウム新生面にはすぐに
不導電性の不動態被膜が形成されるためである。 ケイ素の電極電位は0.1N甘汞電極に対して−
0.26Vであり、鉄より貴な金属であり、これ自体
全く犠牲陽極効果は期待できないが、亜鉛−アル
ミニウム合金に添加された場合、著しい犠牲陽極
効果の向上が認められることを知見し本発明に至
つたものである。この犠牲陽極効果の向上の機構
は定かではないが、酸化被膜が高度の導電性を持
つたためか又はアルミニウム不動態被膜形成の抑
制によるものと推定される。 ケイ素を10〜25重量%好ましくは12〜20重量%
添加することによつて、アルミニウム合金中の亜
鉛含有量が25重量%を越え50重量%以下好ましく
は30〜40重量%で高度の犠牲陽極効果が得られ、
且つ該アルミニウム合金は高温に加熱されても高
度の防食性を保持していた。 また、本発明のアルミニウム合金粉顔料を含有
するアルカリシリケート、アルキルシリケート塗
料塗膜は、従来の亜鉛粉末、亜鉛−アルミニウム
合金粉末を使用した塗料塗膜と比較して急激な加
熱による耐はくり性が著しく優れていることが明
らかとなつた。この理由は、本発明のアルミニウ
ム合金粉末顔料がケイ素を含有しているためバイ
ンダーとの密着性に優れ強固な塗料塗膜を形成す
るためと推定される。 以下に本発明の実施例を示す。 表1の実施例、比較例に示す合金組成の金属粉
末を空気アトマイズ法によつて製造した。これら
の金属粉を350meshのスクリーンで篩い、
350meshスクリーンを通過した粒度44μ以下の金
属粉を使用して塗料を作製した。比較例1は、亜
鉛末3号(三井金属鋼業株式会社製)を用いた。
また、実施例11、12は空気アトマイズ法によつて
金属粉を製造した後、100meshスクリーンを通過
した金属粉をミネラルスピリツトの共存下ボール
ミルによつて粉砕し、次いで250meshスクリーン
を通過した粒度63μ以下の金属粉を使用した。 塗料用ワニスは下記のような組成で調整した。 エチルシリケート40(商品名) *50(重量%) 5%塩酸水 1 イソプロピルアルコール 43.2 純水 5.8 計 100 *多摩化学工業株式会社製 塗料の顔料容積濃度は実施例11、12を除いて全
て45.8%になるように調整した。亜鉛の比重が
7.13であるのに対して、本発明のアルミニウム合
金の比重は約3.8〜5.0程度であるため合金組成か
ら比重を計算し顔料容積濃度が一定になるように
重量添加量を調整した。実施例11、12は顔料の吸
油量が大きいため顔料容積濃度を38.5%になるよ
うに調整した。 試験片は、サイズ70mm×150mm、厚さ2.3mmのサ
ンドブラスト加工鋼板(JIS G3141のSPCC−
SB)に試料塗料を刷毛塗りしたものを用いた。
塗膜は室温乾燥し、塗装後4日経時した後、試験
に供した。なお、乾燥後の塗膜厚さは約30μmで
あつた。 塩水噴霧試験は、JIS K5400記載の方法により
300時間実施し、スクラツチ部の発錆状態および
塗膜全面の発錆状態を目視判定した。この塩水噴
霧試験を下記耐熱テストの前後に行なつた。 塗膜の耐熱テストは試験片を垂直面から15°傾
斜させて2cm間隔に保持具に保持し、電気炉中で
加熱する方法で行なつた。室温から700℃までの
昇温時間が約45分間の急速加熱の場合、比較例の
数例は著しい塗膜のはがれが認められた。室温か
ら700℃までの昇温時間を約4時間にし、700℃で
30分間保持後、室温まで徐冷した試験片は殆んど
塗膜のハガレは認められなかつたため、この試験
片を加熱後の塩水噴霧試験に供した。 実施例、比較例から明らかなように、亜鉛を25
%越えて含有するアルミニウム合金にケイ素が10
%以上含有されるようになると防食性が著しく向
上することがわかる。 また、これらの合金粉を使用した塗膜は700℃
以上に加熱されても、高度の防食性を有している
ことが判る。 ケイ素の含有量が25%よりも多くなるとかえつ
て防食性が低下してくるが、この理由は電極電位
が鉄に対して貴なケイ素量が増すことにより合金
自体の電極電位が鉄の電極電位に近づき犠牲陽極
効果が失われるものと推定される。 亜鉛の含有量は多くなる程防食性が良好になる
が、亜鉛の含有量が50%を越えるようになると耐
熱性が著しく低下し、要求される性能を満足でき
なくなる。この理由は、亜鉛含有量が大きくなる
につれて、加熱時の亜鉛の揮散が激しくなり、顔
料粒子の著しい体積減少を引き起すためと推定さ
れる。 更に、本発明の防食顔料の他の有用性はその比
重が従来の亜鉛粉末顔料と比較して格段に小さい
ことである。従来の亜鉛粉末顔料は比重が大きい
ため塗料中ですぐに沈降するため、塗装時常に強
力な撹拌を必要とする。このため非常に取り扱い
が不便であつたが、本発明のアルミニウム合金粉
末は塗料中で沈降しにくく、強力な撹拌をする必
要がないので塗装作業が大幅に改善できることが
わかつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aluminum alloy powder anticorrosion pigment that has a high degree of heat resistance and a high degree of sacrificial corrosion protection effect on iron. In order to shorten construction times and save labor, the block construction method is used for new ships, large bridges, tanks, etc. In this construction method, the steel plates are shot blasted to remove mill scale and red rust, and then a temporary anti-rust paint called shot primer is applied. Thereafter, the design drawing is enlarged to its original size using electronic markings, burned onto a steel plate, and the block is assembled through processes such as fusing, bending, and welding. After this, the block is further coated with a coating called block coating, and the purpose of the shop primer is to prevent rust on the steel plate for one to three months until this block coating is applied. As for the properties of a shop primer, it goes without saying that it has excellent anti-corrosion properties, but it is also important that there is little thermal deterioration of coating film performance due to fusing, welding, strain relief, etc. Wash primers, zinc-rich primers, and non-zinc primers are commercially available as shot primers, but the demand for inorganic zinc-rich primers, which have excellent corrosion resistance, heat resistance, etc., has rapidly increased, and they have become the mainstream of shot primers. An inorganic zinc-rich primer is a paint containing a high concentration of zinc powder using an alkali silicate or alkyl silicate as a binder. It has a high degree of corrosion resistance due to the sacrificial anode action of the zinc powder, and exhibits excellent properties due to the heat resistance of the binder. However, the current inorganic zinc-rich primer does not solve the problem of thermal deterioration of coating film performance due to fusing, welding, strain relief, etc.
Problems such as melting, burnout of the paint film at welded areas, thermal deterioration of strain relief areas, and peeling of the paint film still exist, and significant rusting occurs in these areas. Zinc prevents iron from rusting by acting as a highly sacrificial anode on iron, but since it has a low melting point and is easily volatile, it easily turns into steam when exposed to high heat during processes such as cutting, welding, and strain relief. It fades and evaporates. In addition, the coating film often cracks or peels off due to rapid heating. Parts where the zinc powder has disappeared no longer have any anticorrosive effect, and the zinc fume generated is toxic, so special care must be taken during work. The following techniques have been disclosed as methods for solving these problems, but each has advantages and disadvantages, and the development of anticorrosive pigments that have a high degree of corrosion resistance and heat resistance has been awaited. Japanese Patent Publication No. 47-27765 discloses a technique using aluminum alloy powder containing 5% or less Zn, but this aluminum alloy powder has poor sacrificial anode action and has not been put to practical use. Special Publication No. 47-51090 contains 1 to 50% Al.
A technique using Zn alloy powder is disclosed.
Although this alloy powder has a sufficient sacrificial anode effect, it has not been put to practical use because its heat resistance has not been sufficiently improved. Further, Japanese Patent Publication No. 55-14873 discloses a technique using flake zinc powder and flake heat-resistant pigments (flake aluminum pigment, flake graphite pigment, flake mica pigment). Although some of this technology has been put into practical use, when the content of flaky heat-resistant pigment increases, corrosion resistance and physical properties of the coating film decrease, while when the content of flaky heat-resistant pigment decreases, heat resistance decreases. It has the contradictory properties of being insufficient, and has not yet achieved satisfactory performance as a shop primer, which requires a high degree of heat resistance. When more than 50% zinc is added to aluminum, a sacrificial anode effect on iron becomes apparent.
It is presumed that this is because the formation of a passive film of aluminum is suppressed or the oxide film becomes conductive. Aluminum alloys containing 50% or more zinc have a sacrificial anode effect on iron, but when heated to high temperatures, the zinc volatilizes rapidly, resulting in a significant decrease in corrosion protection in the heated area. Furthermore, in processes such as fusing, welding, and strain relief, the coating film is subject to rapid heating, which causes many cracks and peeling of the coating film. As a result of intensive research to solve these problems with conventional anticorrosion pigments, the present inventors have found that by adding an appropriate amount of silicon to a zinc-aluminum alloy, a high degree of corrosion resistance and heat resistance can be achieved. It has been discovered that an aluminum alloy powder pigment having the following properties can be obtained. The present invention is an aluminum alloy powder containing more than 25% by weight and less than 50% by weight of zinc and more than 10% by weight and less than 25% by weight of silicon, with the balance being aluminum and unavoidable impurities, and which has corrosion resistance equivalent to that of zinc powder. The purpose of the present invention is to provide an anticorrosion pigment that has a high heat resistance and high heat resistance. The anticorrosive pigment of the present invention can be easily produced by preparing a molten aluminum alloy having the above composition and atomizing the molten alloy. Air, inert gas, etc. are generally used as the atomizing medium.
Desired aluminum alloy powder can be easily produced by air atomization. In order to obtain a thin and uniform coating film, the particle size of the aluminum alloy powder used is preferably 63μ or less. For this purpose, alloy powder obtained by mechanically pulverizing atomized alloy powder can also be used. Mechanical pulverization can be carried out by dry pulverization in a ball mill in an inert gas atmosphere or by ball milling in the presence of a solvent such as mineral spirits.
Those obtained by pulverizing with an attritor mill or the like can be used. As the binder for the aluminum alloy pigment of the present invention, various binders commonly used in the past can be used, but as binders that bring out the characteristics of the present pigment to the maximum, alkali silicate binders with excellent heat resistance, Alkyl silicate-based binders and alkyl titanate-based binders are preferred. Pigment concentration in paint is 20-50% in terms of pigment volume concentration
In the case of aluminum alloy powder obtained by the atomization method, the pigment volume concentration is 30 to 50.
%, and in the case of mechanically pulverized alloy powder, the amount of oil absorbed increases, so the metal content is
It is preferable to use a pigment volume concentration of 20-40%. For painting, air spray, airless spray, brush painting, etc. can be used, depending on the purpose. Next, the principle of the present invention will be described. In order for the anticorrosion pigment to have a sacrificial anode effect, it is essential that the pigment be in electrical contact with the steel plate and that the pigment have a sufficiently base electrode potential with respect to iron. Incidentally, the electrode potentials of zinc and mild steel are -1.10V and -0.58V for zinc and mild steel, respectively, compared to a 0.1N electrode. On the other hand, aluminum is -0.85V. Aluminum can be expected to have a sufficient sacrificial anode effect on iron from the electrode potential alone, but in reality, aluminum has no sacrificial anode effect on iron at all. The reason for this is that a non-conductive passive film is immediately formed on the new aluminum surface. The electrode potential of silicon is - with respect to the 0.1N electrode.
0.26V, which is a metal more noble than iron, and cannot be expected to have any sacrificial anode effect by itself, but it was discovered that when added to a zinc-aluminum alloy, the sacrificial anode effect was significantly improved. It has been reached. Although the mechanism of this improvement in the sacrificial anode effect is not clear, it is presumed that it is due to the high conductivity of the oxide film or to the suppression of the formation of an aluminum passive film. 10-25% by weight silicon, preferably 12-20% by weight
By adding, a high sacrificial anode effect can be obtained when the zinc content in the aluminum alloy is more than 25% by weight and less than 50% by weight, preferably 30 to 40% by weight,
Moreover, the aluminum alloy maintained a high degree of corrosion resistance even when heated to high temperatures. In addition, the alkali silicate or alkyl silicate paint film containing the aluminum alloy powder pigment of the present invention has better peeling resistance due to rapid heating than paint films using conventional zinc powder or zinc-aluminum alloy powder. It has become clear that it is significantly superior. The reason for this is presumed to be that since the aluminum alloy powder pigment of the present invention contains silicon, it has excellent adhesion with the binder and forms a strong paint film. Examples of the present invention are shown below. Metal powders having alloy compositions shown in Examples and Comparative Examples in Table 1 were produced by an air atomization method. Sieve these metal powders through a 350mesh screen,
A paint was made using metal powder with a particle size of 44μ or less that passed through a 350mesh screen. Comparative Example 1 used zinc powder No. 3 (manufactured by Mitsui Kinzoku Kogyo Co., Ltd.).
In addition, in Examples 11 and 12, after producing metal powder by the air atomization method, the metal powder that passed through a 100 mesh screen was ground in a ball mill in the coexistence of mineral spirits, and then passed through a 250 mesh screen with a particle size of 63 μm. The following metal powders were used. A paint varnish was prepared with the following composition. Ethyl silicate 40 (trade name) *50 (wt%) 5% hydrochloric acid water 1 Isopropyl alcohol 43.2 Pure water 5.8 Total 100 *Manufactured by Tama Chemical Industry Co., Ltd. The pigment volume concentration of the paints is all 45.8% except for Examples 11 and 12. I adjusted it so that The specific gravity of zinc is
7.13, whereas the specific gravity of the aluminum alloy of the present invention is about 3.8 to 5.0, so the specific gravity was calculated from the alloy composition and the weight addition amount was adjusted so that the pigment volume concentration was constant. In Examples 11 and 12, the pigment volume concentration was adjusted to 38.5% because the oil absorption amount of the pigment was large. The test piece was a sandblasted steel plate (JIS G3141 SPCC-
SB) coated with the sample paint by brush was used.
The coating film was dried at room temperature and subjected to testing after 4 days of application. The coating film thickness after drying was approximately 30 μm. The salt spray test was conducted according to the method described in JIS K5400.
The test was carried out for 300 hours, and the state of rust on the scratched portion and the state of rust on the entire surface of the coating film was visually judged. This salt spray test was conducted before and after the heat resistance test described below. The heat resistance test of the coating film was carried out by holding the test pieces in a holder at 2 cm intervals at an angle of 15 degrees from the vertical plane, and heating them in an electric furnace. In the case of rapid heating in which the heating time from room temperature to 700°C was approximately 45 minutes, significant peeling of the coating film was observed in several comparative examples. The heating time from room temperature to 700℃ is about 4 hours, and at 700℃
After holding for 30 minutes, the test piece was slowly cooled to room temperature, and almost no peeling of the coating film was observed, so this test piece was subjected to a salt water spray test after heating. As is clear from the examples and comparative examples, zinc
Silicon in aluminum alloys containing more than 10%
% or more, it can be seen that the anticorrosion properties are significantly improved. In addition, coating films using these alloy powders can be heated to 700℃.
It can be seen that it has a high degree of corrosion resistance even when heated to the above temperature. When the silicon content exceeds 25%, the anticorrosion property actually decreases, but the reason for this is that the electrode potential of the alloy itself becomes lower than that of iron due to the increase in the amount of noble silicon relative to iron. It is estimated that the sacrificial anode effect is lost as the temperature approaches . The higher the zinc content, the better the corrosion resistance, but if the zinc content exceeds 50%, the heat resistance will drop significantly, making it impossible to satisfy the required performance. The reason for this is presumed to be that as the zinc content increases, the volatilization of zinc becomes more intense during heating, causing a significant volume reduction of the pigment particles. Furthermore, another advantage of the anticorrosion pigment of the present invention is that its specific gravity is much lower than that of conventional zinc powder pigments. Conventional zinc powder pigments have a high specific gravity and easily settle in paints, requiring strong stirring at all times during painting. For this reason, it was very inconvenient to handle, but it was found that the aluminum alloy powder of the present invention does not easily settle in the paint and does not require strong stirring, so that the painting work can be greatly improved. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 亜鉛、ケイ素、アルミニウム及び他の不可避
的不純物よりなり、亜鉛の含有量が25重量%を越
え50重量%以下であり、ケイ素の含有量が10〜25
重量%である高耐熱性アルミニウム合金粉末防食
顔料。
1 Consists of zinc, silicon, aluminum and other unavoidable impurities, with a zinc content of more than 25% by weight and less than 50% by weight, and a silicon content of 10 to 25% by weight.
High heat resistant aluminum alloy powder anti-corrosion pigment which is % by weight.
JP16893583A 1983-09-13 1983-09-13 Highly heat-resistant aluminum alloy powder corrosion-resistant pigment Granted JPS6060164A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP16893583A JPS6060164A (en) 1983-09-13 1983-09-13 Highly heat-resistant aluminum alloy powder corrosion-resistant pigment
KR1019840005365A KR900001316B1 (en) 1983-09-13 1984-08-31 Aluminium alloy pigment
GB08422923A GB2147310B (en) 1983-09-13 1984-09-11 Aluminum alloy pigment
DE19843433483 DE3433483A1 (en) 1983-09-13 1984-09-12 ALUMINUM ALLOY PIGMENT
FR8413992A FR2551764B1 (en) 1983-09-13 1984-09-12 ALUMINUM ALLOY PIGMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16893583A JPS6060164A (en) 1983-09-13 1983-09-13 Highly heat-resistant aluminum alloy powder corrosion-resistant pigment

Publications (2)

Publication Number Publication Date
JPS6060164A JPS6060164A (en) 1985-04-06
JPH0370750B2 true JPH0370750B2 (en) 1991-11-08

Family

ID=15877267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16893583A Granted JPS6060164A (en) 1983-09-13 1983-09-13 Highly heat-resistant aluminum alloy powder corrosion-resistant pigment

Country Status (1)

Country Link
JP (1) JPS6060164A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101565A (en) * 1984-10-25 1986-05-20 Chugoku Toryo Kk Inorganic paint
JP2582874B2 (en) * 1988-10-19 1997-02-19 大和製罐株式会社 Rustproof container
JP2014025015A (en) * 2012-07-30 2014-02-06 Kubota Corp Coating material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486524A (en) * 1977-12-23 1979-07-10 Asahi Chem Ind Co Ltd Production of scaly composite metallic pigment
JPS5811771A (en) * 1981-07-16 1983-01-22 Nisshin Steel Co Ltd Zinc-aluminum silicon alloy covered steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486524A (en) * 1977-12-23 1979-07-10 Asahi Chem Ind Co Ltd Production of scaly composite metallic pigment
JPS5811771A (en) * 1981-07-16 1983-01-22 Nisshin Steel Co Ltd Zinc-aluminum silicon alloy covered steel

Also Published As

Publication number Publication date
JPS6060164A (en) 1985-04-06

Similar Documents

Publication Publication Date Title
KR102120743B1 (en) Anticorrosive coating composition containing conductive nano-materials
KR102611925B1 (en) Heat-resistant coating composition, heat-resistant coating film, substrate with heat-resistant coating film and producing method thereof
KR101130297B1 (en) Two component zinc type water base paint composition
JPH0551672B2 (en)
JPH0370750B2 (en)
JPH0133507B2 (en)
US2877126A (en) Magnesium-zinc paint pigments
JPH11116856A (en) Rustproofing coating composition
JPH0422980B2 (en)
JPH11343422A (en) Rust-preventive pigment for rust-preventive organic coating
JP2009279824A (en) Anticorrosive steel material having excellent weldability
GB2147310A (en) Aluminum alloy pigment
JPS62275173A (en) Primary rust-resisting paint composition
JPH0360351B2 (en)
JP3454010B2 (en) Non-chrome type metal anticorrosion coating composition
CN206553616U (en) The composite anti-corrosive structure of electric arc spraying zinc-copper titanium
JP2637549B2 (en) Primary rust preventive paint composition
JPH045070B2 (en)
JPH0517263B2 (en)
JPS61213270A (en) Heat-resistant and corrosion-resistant coating composition
JPS61589A (en) Surface of metal coated with heat-resistant and corrosion-resistant composition
JP2005336432A (en) Coating for steel material and steel material having excellent corrosion resistance and rust preventing property
CA1079509A (en) Composition for corrosion protection
JPS60133072A (en) Primary rust preventing coating material composition having good weldability
JPS581705B2 (en) Zn alloy anti-rust pigment powder for highly corrosion-resistant anti-rust paints