JPH0370742A - Preparation of organic thin film and its use - Google Patents
Preparation of organic thin film and its useInfo
- Publication number
- JPH0370742A JPH0370742A JP20686789A JP20686789A JPH0370742A JP H0370742 A JPH0370742 A JP H0370742A JP 20686789 A JP20686789 A JP 20686789A JP 20686789 A JP20686789 A JP 20686789A JP H0370742 A JPH0370742 A JP H0370742A
- Authority
- JP
- Japan
- Prior art keywords
- film
- membrane
- cylindrical
- organic thin
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 18
- 239000012528 membrane Substances 0.000 claims abstract description 61
- 239000000463 material Substances 0.000 claims abstract description 31
- 239000002131 composite material Substances 0.000 claims abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 17
- 239000011148 porous material Substances 0.000 claims abstract description 15
- 239000000126 substance Substances 0.000 claims abstract description 15
- 238000009835 boiling Methods 0.000 claims abstract description 4
- 239000010408 film Substances 0.000 claims description 106
- 238000000034 method Methods 0.000 claims description 27
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 238000001704 evaporation Methods 0.000 claims description 2
- 230000008020 evaporation Effects 0.000 claims description 2
- 239000002904 solvent Substances 0.000 abstract description 5
- 230000001955 cumulated effect Effects 0.000 abstract 1
- 239000002585 base Substances 0.000 description 32
- 230000001186 cumulative effect Effects 0.000 description 29
- 239000012510 hollow fiber Substances 0.000 description 21
- 229920000642 polymer Polymers 0.000 description 21
- 239000002356 single layer Substances 0.000 description 20
- 239000007789 gas Substances 0.000 description 15
- 229920005575 poly(amic acid) Polymers 0.000 description 14
- 239000000470 constituent Substances 0.000 description 11
- 239000010410 layer Substances 0.000 description 11
- 238000000926 separation method Methods 0.000 description 11
- 125000000217 alkyl group Chemical group 0.000 description 10
- 229920002492 poly(sulfone) Polymers 0.000 description 10
- -1 polyethylene Polymers 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 230000035508 accumulation Effects 0.000 description 9
- 238000009825 accumulation Methods 0.000 description 9
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 125000000129 anionic group Chemical group 0.000 description 7
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 125000005647 linker group Chemical group 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- RZJRJXONCZWCBN-UHFFFAOYSA-N octadecane Chemical compound CCCCCCCCCCCCCCCCCC RZJRJXONCZWCBN-UHFFFAOYSA-N 0.000 description 4
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 4
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 238000003892 spreading Methods 0.000 description 4
- 230000007480 spreading Effects 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229920002307 Dextran Polymers 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 125000000962 organic group Chemical group 0.000 description 3
- 229920002239 polyacrylonitrile Polymers 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 125000000732 arylene group Chemical group 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- OGQYPPBGSLZBEG-UHFFFAOYSA-N dimethyl(dioctadecyl)azanium Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC OGQYPPBGSLZBEG-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000004210 ether based solvent Substances 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 125000003010 ionic group Chemical group 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 229920000083 poly(allylamine) Polymers 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- 125000006158 tetracarboxylic acid group Chemical group 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- NPNPZTNLOVBDOC-UHFFFAOYSA-N 1,1-difluoroethane Chemical compound CC(F)F NPNPZTNLOVBDOC-UHFFFAOYSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- ZBMISJGHVWNWTE-UHFFFAOYSA-N 3-(4-aminophenoxy)aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=CC(N)=C1 ZBMISJGHVWNWTE-UHFFFAOYSA-N 0.000 description 1
- AIVVXPSKEVWKMY-UHFFFAOYSA-N 4-(3,4-dicarboxyphenoxy)phthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1OC1=CC=C(C(O)=O)C(C(O)=O)=C1 AIVVXPSKEVWKMY-UHFFFAOYSA-N 0.000 description 1
- AVCOFPOLGHKJQB-UHFFFAOYSA-N 4-(3,4-dicarboxyphenyl)sulfonylphthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1S(=O)(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 AVCOFPOLGHKJQB-UHFFFAOYSA-N 0.000 description 1
- IWXCYYWDGDDPAC-UHFFFAOYSA-N 4-[(3,4-dicarboxyphenyl)methyl]phthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1CC1=CC=C(C(O)=O)C(C(O)=O)=C1 IWXCYYWDGDDPAC-UHFFFAOYSA-N 0.000 description 1
- GEYAGBVEAJGCFB-UHFFFAOYSA-N 4-[2-(3,4-dicarboxyphenyl)propan-2-yl]phthalic acid Chemical compound C=1C=C(C(O)=O)C(C(O)=O)=CC=1C(C)(C)C1=CC=C(C(O)=O)C(C(O)=O)=C1 GEYAGBVEAJGCFB-UHFFFAOYSA-N 0.000 description 1
- QGMGHALXLXKCBD-UHFFFAOYSA-N 4-amino-n-(2-aminophenyl)benzamide Chemical compound C1=CC(N)=CC=C1C(=O)NC1=CC=CC=C1N QGMGHALXLXKCBD-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 125000002511 behenyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- ZLSMCQSGRWNEGX-UHFFFAOYSA-N bis(4-aminophenyl)methanone Chemical compound C1=CC(N)=CC=C1C(=O)C1=CC=C(N)C=C1 ZLSMCQSGRWNEGX-UHFFFAOYSA-N 0.000 description 1
- NAJAZZSIKSSBGH-UHFFFAOYSA-N butane-1,1,1,2-tetracarboxylic acid Chemical compound CCC(C(O)=O)C(C(O)=O)(C(O)=O)C(O)=O NAJAZZSIKSSBGH-UHFFFAOYSA-N 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 125000006159 dianhydride group Chemical group 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- NHLUVTZJQOJKCC-UHFFFAOYSA-N n,n-dimethylhexadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCN(C)C NHLUVTZJQOJKCC-UHFFFAOYSA-N 0.000 description 1
- 239000002120 nanofilm Substances 0.000 description 1
- 125000004957 naphthylene group Chemical group 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229940006186 sodium polystyrene sulfonate Drugs 0.000 description 1
- 238000000807 solvent casting Methods 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 150000000000 tetracarboxylic acids Chemical class 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Artificial Filaments (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、有機薄膜の製造方法として知られるラングミ
ュア・プロジェット法(以下、LB法と略記する)の改
良法、及びその用途、特にその方法により得られる複合
膜を用いた気体選択透過膜に関するものである。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an improved method of the Langmuir-Prodgett method (hereinafter abbreviated as LB method), which is known as a method for producing organic thin films, and its uses, particularly its use. The present invention relates to a gas selective permeation membrane using a composite membrane obtained by the method.
(従来の技術)
従来、LB法を用いた有機薄膜は、親水部および疎水部
よりなる両親媒性物質を水面上に展開後圧縮し、形成さ
せた単分子層を平面基板上に逐次累積することで作成さ
れていた。(Prior art) Conventionally, an organic thin film using the LB method is produced by spreading an amphiphilic substance consisting of a hydrophilic part and a hydrophobic part on a water surface and then compressing it, and sequentially accumulating the formed monomolecular layer on a flat substrate. It was created by
この累積方法には、■ 垂直f!に漬法(膜面を通過し
て固体基板を垂直に上下させながら単分子層を移し取る
)、■ 水平付着法(水平に支えた基板を単分子膜に接
触させ、これを引き上げて単分子層を移し取る)の2通
りがある。This accumulation method includes ■ Vertical f! ■ dipping method (transferring the monomolecular layer by moving the solid substrate vertically up and down through the membrane surface), horizontal adhesion method (bringing a horizontally supported substrate into contact with the monomolecular film and pulling it up to remove the monomolecular layer) There are two ways to transfer the layers.
垂直浸漬法で形成される有機Eil膜は、固体基板の種
類・累積条件を変えることで累積膜型をX型、Y型、X
型に制御できる。The organic Eil film formed by the vertical immersion method can have a cumulative film type of X type, Y type, or X type by changing the type of solid substrate and cumulative conditions.
Can be controlled by type.
このようにして作成されるLB膜は、■機能性部分が一
定の配向をとる、■分子レベルの一定な膜厚をとる、と
いう特徴を有しており、その特性を活かして超微細加工
を必要とするエレクトロニクス材料、レジスト、センサ
ー、メモリ材料、非線形光学材料、分M膜等の分野にお
ける機能性超311Q形戒法として利用されている。The LB film created in this way has the following characteristics: (1) the functional parts have a certain orientation, and (2) it has a constant film thickness at the molecular level. It is used as a functional super-311Q-type precept in the required fields of electronics materials, resists, sensors, memory materials, nonlinear optical materials, separation M films, etc.
その中でも、LB膜の薄膜である特性を利用して、高透
過性分M膜を得ようとする試みはこれまで数多くなされ
ているが、これには全て平板状の多孔質材料が用いられ
ており、殆どの場合、ガス分離に有用なピンホールのな
い均一累積膜の形成は困難であり、良好なガス分離性能
とガス透過性能を示す例は知られていない。Among them, many attempts have been made to obtain highly permeable M membranes by taking advantage of the thin film properties of LB membranes, but all of these attempts have used flat plate-shaped porous materials. Therefore, in most cases, it is difficult to form a pinhole-free uniform cumulative film useful for gas separation, and there are no known examples showing good gas separation performance and gas permeation performance.
(発明が解決しようとする課題)
以上に説明した従来のLB膜は、すべて平面状の多孔性
、又は、非多孔性の基膜の上に累積されたものであって
、円筒形状、あるいは円柱形状の基膜の上にLB膜が累
積された例は知られていない。(Problems to be Solved by the Invention) The conventional LB films described above are all deposited on a planar porous or non-porous base film, and have a cylindrical shape or a cylindrical shape. There are no known examples in which an LB film has been accumulated on a shaped base film.
もし、円筒形状、あるいは円柱形状の基膜の上にLBl
pJが累積されたLB膜が得られれば、当該複合材料は
、従来の平面状の基膜の上にLBIIAが累積された複
合材料とは全く異なった用途が可能となり、工業的に極
めて有用な新しいタイプの薄膜材料となる。If LBL is placed on a cylindrical or cylindrical base film,
If an LB film with accumulated pJ can be obtained, the composite material can be used in a completely different way from the conventional composite material in which LBIIA is accumulated on a planar base film, and it will be extremely useful industrially. A new type of thin film material.
例えば、平面状の複合膜と比べて、円筒形状、あるいは
円柱形状の複合膜の場合には、単位容積に高表面積の複
合膜を充填することができる。For example, compared to a planar composite membrane, in the case of a cylindrical or cylindrical composite membrane, a unit volume can be filled with a composite membrane having a high surface area.
従って、円筒形状、あるいは円柱形状の複合膜を、高表
面積が必要な用途、例えば、分離膜やセンサー等の用途
に使用した場合、平面状複合膜と比べて遥かにコンパク
トな装置が可能となる。Therefore, when a cylindrical or cylindrical composite membrane is used for applications that require a high surface area, such as separation membranes or sensors, it is possible to create a much more compact device compared to a flat composite membrane. .
また、円筒形状、あるいは、円柱形状の複合膜は、平面
状複合膜とは異なり軸方向以外の方向性が無いので、セ
ンサー等に使用した場合、軸方向以外の全方向からのシ
グナルを均等に感知できるという利点もある。Also, unlike planar composite membranes, cylindrical or cylindrical composite membranes have no directionality other than the axial direction, so when used in sensors, etc., signals from all directions other than the axial direction are uniformly transmitted. It also has the advantage of being detectable.
分m膜材料等の分野においては、薄膜状の平膜複合膜は
自己支持性が無いので、当該複合膜を多数充填した分離
装置の製作は繁雑であるが、円筒状複合膜の場合には、
自己支持性があるので、当該複合膜を多数充填した分離
装置の製作が容易である。In the field of membrane materials, thin flat membrane composite membranes do not have self-supporting properties, so manufacturing a separation device filled with a large number of such composite membranes is complicated, but in the case of cylindrical composite membranes, ,
Since it is self-supporting, it is easy to manufacture a separation device filled with a large number of the composite membranes.
さらに、−船釣に、円筒形状複合膜の方が円柱形状複合
膜に比べて耐圧性が高いので、分離操作の際に差圧を高
くすることができる利点も期待できる。Furthermore, for boat fishing, the cylindrical composite membrane has higher pressure resistance than the cylindrical composite membrane, so it can be expected to have the advantage of being able to increase the differential pressure during separation operations.
以上に例示したように、LBWi!を用いた円筒形状あ
るいは円柱形状複合膜は工業的に有用な多くの特徴が期
待できるが、円筒形状、あるいは、円柱形状基膜、特に
、直径が20mm以下の細い基膜上にLB膜が均一に累
積できるがどぅがは全く予想がつかなかった。As exemplified above, LBWi! A cylindrical or cylindrical composite membrane using a cylindrical or cylindrical composite membrane can be expected to have many industrially useful features. It can be accumulated, but I couldn't predict it at all.
(課題を解決するための手段)
円筒形状複合膜を得る方法としては、平膜状の複合膜を
円筒形に変換する方法が考えられるが、この方法では、
接合部で膜の均一性の保持が困難である。また、平膜か
ら円筒形への形状の変換は大きさに限界があり、微細加
工が困難である。(Means for solving the problem) A possible method for obtaining a cylindrical composite membrane is to convert a flat composite membrane into a cylindrical one, but in this method,
It is difficult to maintain film uniformity at the joint. Furthermore, there is a limit to the size of the shape of a flat membrane to a cylinder, and microfabrication is difficult.
そこで、本発明者等は更に鋭意検討した結果、LBl1
9を直接円筒形状基膜あるいは円柱形状基膜に累積する
ことが可能であることを見出した。Therefore, as a result of further intensive study, the present inventors found that LBl1
It has been found that it is possible to directly accumulate 9 on a cylindrical or cylindrical base film.
円筒形状基膜、あるいは円柱形状基膜は非多孔性のもの
でも多孔性のものでもLB膜の累積は可能であるが、多
孔性基膜へLB膜を累積する場合には、特定の細孔径以
下の基膜に高分子量の両親媒性物質を累積すること、あ
るいは/およびLB腹膜累積前基膜の細孔を特定の物質
で充填あるいは被覆することにより、さらに均一な単分
子累積膜が得られることを見出し、本発明を完成させた
。It is possible to accumulate LB films on cylindrical or columnar base films, whether they are non-porous or porous; however, when LB films are accumulated on a porous base film, it is necessary to A more uniform monomolecular cumulative film can be obtained by accumulating a high-molecular-weight amphiphilic substance in the following base membrane and/or filling or coating the pores of the LB peritoneal pre-accumulation base membrane with a specific substance. The present invention was completed based on the discovery that
すなわち、本発明は;
■水槽内の水面上に親水部および疎水部よりなる両親媒
性物質を展開し圧縮することにより単分子層を形成し、
当該単分子層を基膜上へ逐次累積するラングミュア・プ
ロジェット法において、基膜が円筒形状或いは円柱形状
である有機薄膜の製造方法に関し、さらに、
■ あらかじめ多孔性円柱形状基膜の細孔を、沸点が5
0℃/760ffIII+Hg”150℃/10−4m
mHgの範囲である物質を主成分とする材料で充填ある
いは被覆した基膜を使用し、当該基膜上に有a薄膜形成
後に、充填あるいは被覆した材料を蒸発により除去する
有機薄膜の製造方法にも特徴を持つ。That is, the present invention: (1) Forming a monomolecular layer by spreading and compressing an amphipathic substance consisting of a hydrophilic part and a hydrophobic part on the water surface in an aquarium;
In the Langmuir-Prodgett method, in which the monomolecular layer is sequentially accumulated on a base film, the base film has a cylindrical or columnar shape. , the boiling point is 5
0℃/760ffIII+Hg"150℃/10-4m
A method for producing an organic thin film, which uses a base film filled or coated with a material whose main component is a substance in the mHg range, and after forming a thin film on the base film, the filled or coated material is removed by evaporation. It also has characteristics.
さらに、■前記の、■項のいずれかに記載の方法により
製造された複合膜を用いた、気体選択透過膜に関するも
のである。Furthermore, the present invention relates to a gas selective permeation membrane using a composite membrane produced by the method described in any one of the above-mentioned (2) items.
以下、本発明の技術についてさらに詳細に説明する。The technology of the present invention will be explained in more detail below.
使用する円筒形状及び円柱形状基膜の材料としては、石
英、ガラス等のセラミックスやポリスルホン、ポリアク
リロニトリル、ポリエチレン、ポリフッ化ビニリデン、
ポリイミド、セルロース系等の有機高分子;アルミニウ
ム、銅、鉄などの金giシリコン、ガリウムーヒ素など
の半導体などを例示することができるが、これらの基膜
は、実質的に水に溶解しないことが必要である。The materials used for the cylindrical shape and columnar base film include ceramics such as quartz and glass, polysulfone, polyacrylonitrile, polyethylene, polyvinylidene fluoride,
Examples include organic polymers such as polyimide and cellulose; semiconductors such as gold gi-silicon such as aluminum, copper, and iron, and gallium-arsenic; however, these base films are substantially insoluble in water. is necessary.
これらの円筒形状基膜あるいは円柱形状基膜において、
その直径はその使用目的に応じて任意に選択することが
可能であり、通常は直径が0.01mm〜50mの範囲
のものが使用され、好ましくは直径が0.01mm〜2
0III11の範囲のものが利用される。また、ガス分
離等の分離膜用中空糸として用いる場合は、分myaモ
ジュールの単位容積当たりの有効面積を大きくとるため
!こは、通常には、直径が0.01m〜5閣の範囲のも
のが使用され1、好ましくは、直径0.01s〜3II
11の範囲のものが、特に好ましくは、直径0.01a
++a〜lawの範囲のものが使用される。In these cylindrical base films or columnar base films,
The diameter can be arbitrarily selected depending on the purpose of use, and those with a diameter of 0.01 mm to 50 m are usually used, preferably 0.01 mm to 2 m.
A range of 0III11 is used. In addition, when used as a hollow fiber for separation membranes such as gas separation, the effective area per unit volume of the Minmya module can be increased! This is usually used with a diameter of 0.01 m to 5 mm, preferably 0.01 m to 3 mm in diameter.
11, particularly preferably a diameter of 0.01a
Those in the range of ++a to law are used.
円筒形状基膜あるいは円柱形状基膜では、非多孔性、多
孔性にかかわらず単分子膜の累積が可能であり、基膜の
形状はその用途によって適宜使い分けられる。また、多
孔性膜において、孔径は種々の大きさのものが使用でき
るが、通常には、孔径が10入〜15μmの範囲のもの
が使用され、好ましくは孔径が1oλ〜5μmの範囲の
ものが使用される。さらに、ガス分離膜用の多孔性中空
糸基膜においては、孔径が10入〜1μmの範囲のもの
が好適である。With a cylindrical base film or a cylindrical base film, it is possible to accumulate a monomolecular film regardless of whether it is non-porous or porous, and the shape of the base film can be appropriately selected depending on its use. In addition, in porous membranes, pores of various sizes can be used, but those with pore diameters in the range of 10 μm to 15 μm are usually used, and preferably those with pore diameters in the range of 10 μm to 5 μm. used. Furthermore, in a porous hollow fiber base membrane for a gas separation membrane, one having a pore diameter in the range of 10 μm to 1 μm is suitable.
あまり孔径が大きすぎると、単分子膜を担持するのが困
難となり、ピンホールが生威しゃすくなる。逆に、孔径
が小さすぎると、分#膜においては透過速度が小さくな
りすぎて実用的でなくなる。If the pore size is too large, it becomes difficult to support a monomolecular film, and pinholes are likely to occur. On the other hand, if the pore size is too small, the permeation rate of the membrane becomes too low to be practical.
本発明において有機薄膜として用いる両親媒性物質は、
水面上に単分子層として展開した後、圧力をかけると、
分子は親水基を水側、疎水基を空気側に向けて配向し、
密に充填して単分子膜を形成する。このとき、単分子膜
を形成する表面圧力の範囲は、通常5mN/m 〜80
mN/m、好ましくはI OmN/m 〜35mN/m
である。5mN / m以下だと密に充填しなくなり、
逆に、80m N / m状だと単分子膜の構造にもよ
るが、単分子膜が崩壊してしまう。The amphiphilic substance used as the organic thin film in the present invention is
After spreading as a monolayer on the water surface, when pressure is applied,
The molecules are oriented with the hydrophilic groups facing the water side and the hydrophobic groups facing the air side.
Densely packed to form a monolayer. At this time, the range of surface pressure for forming a monomolecular film is usually 5 mN/m to 80 mN/m.
mN/m, preferably I OmN/m ~35 mN/m
It is. If it is less than 5mN/m, it will not be densely packed,
On the other hand, at 80 mN/m, the monomolecular film collapses, although it depends on the structure of the monomolecular film.
親水性の部分には、親水基としてケトン、アルデヒド、
エステル、アミン、アミド、アルコール、脂肪酸、脂肪
酸二価金属塩、脂肪酸アルカリ金属塩、硫酸エステル、
そのスルフォン化物あるいはこれらの親水基を含むポリ
マーが好適である。The hydrophilic part contains ketones, aldehydes,
Esters, amines, amides, alcohols, fatty acids, divalent metal salts of fatty acids, alkali metal salts of fatty acids, sulfuric esters,
Sulfonated products thereof or polymers containing these hydrophilic groups are suitable.
また、疎水性部分としては、フッ化炭素、飽和炭化水素
、不飽和炭化水素、芳香族炭化水素が好適であり、炭素
数の増大とともに疎水性が強くなる。疎水性部分の炭素
数はその構造にもよるが、通常は4〜40個、好ましく
は6〜30個、特に好ましくは8〜25個の範囲が使用
される。Further, as the hydrophobic moiety, fluorocarbons, saturated hydrocarbons, unsaturated hydrocarbons, and aromatic hydrocarbons are suitable, and the hydrophobicity becomes stronger as the number of carbon atoms increases. The number of carbon atoms in the hydrophobic moiety depends on its structure, but is usually in the range of 4 to 40, preferably 6 to 30, particularly preferably 8 to 25.
L8gにおいては、疎水性部分と親水性部分のバランス
が必要であり、炭素数が少なすぎると疎水性が不十分と
なり、良好なLB膜が形成されない、一方、炭素数が多
すぎると疎水性が強くなりすぎ、この場合も良好なLB
膜が形成されない。In L8g, a balance between hydrophobic and hydrophilic parts is required; if the number of carbon atoms is too small, the hydrophobicity will be insufficient and a good LB film will not be formed.On the other hand, if the number of carbon atoms is too large, the hydrophobicity will be insufficient. Too strong, also a good LB in this case
No film is formed.
上記の物質を水面上に展開し、圧力をかけて形成させた
単分子層を、基膜上にそのまま移しとることにより有I
!薄膜を形成するのである。By spreading the above substance on the water surface and applying pressure to form a monomolecular layer, transfer it directly onto the base film.
! It forms a thin film.
本発明に使用される前記単分子膜構成物質は、分子内に
一対の疎水性部分と親水性部分を有する低分子物質であ
ってもよいし、分子内に複数の疎水性部分と親水性部分
を有する高分子物質であってもよい。The monolayer constituent material used in the present invention may be a low-molecular substance having a pair of hydrophobic parts and a hydrophilic part in the molecule, or a plurality of hydrophobic parts and hydrophilic parts in the molecule. It may also be a polymeric substance having the following.
以下に本発明に使用される有機薄膜構成物質の構造につ
いてさらに詳細に説明する。The structure of the organic thin film constituent material used in the present invention will be explained in more detail below.
(1)低分子の単分子膜構成物質:
低分子の単分子膜構成物質としては、下記−収装(1)
で表されるものが好適である。(1) Low-molecular monolayer film constituents: The following low-molecular monolayer film constituents are listed in (1)
The one represented by is suitable.
R−A−X ・・・・・ (1)(ただし、Rは
有機基であり、Aは2価の結合基であり、Xは親水性の
基を表す、)
以下、各々について具体的に説明する。R-A-X... (1) (However, R is an organic group, A is a divalent bonding group, and X represents a hydrophilic group.) Below, each will be specifically explained. explain.
まず、有I!基Rとしては、芳香族もしくは脂環式炭化
水素基等で置換されていてもよいアルキル基のほか、ア
ルケニル、アルキニル基等の不飽和基が挙げられる。ま
た、これらは、アルキル基等の炭素の一部が他の結合基
、例えばo、s、co、エステル基、芳香族基等で置換
されていても良い。First of all, I have it! Examples of the group R include alkyl groups which may be substituted with aromatic or alicyclic hydrocarbon groups, as well as unsaturated groups such as alkenyl and alkynyl groups. In addition, some of the carbon atoms such as alkyl groups may be substituted with other bonding groups, such as o, s, co, ester groups, aromatic groups, etc.
長鎖アルキル基としては、ミリスチル、ペンタデカニル
、バルミチニル、ステアリル、ノナデカニル、エイコサ
ニル、ヘプタデカニル、ヘンエイコサニル、ベヘニル、
テトラゴサニル基等の炭素数8〜40までのアルキル基
が好適である。Long chain alkyl groups include myristyl, pentadecanyl, valmitinyl, stearyl, nonadecanyl, eicosanyl, heptadecanyl, heneicosanyl, behenyl,
Alkyl groups having 8 to 40 carbon atoms, such as tetragosanyl groups, are preferred.
これらの長鎖アルキル基は分岐していてもかまわない、
また、Rは炭素数4〜25、好ましくは、炭素数6〜1
2のポリフルオロアルキル基であっても構わない。These long chain alkyl groups may be branched,
Further, R has 4 to 25 carbon atoms, preferably 6 to 1 carbon atoms.
2 may be a polyfluoroalkyl group.
ポリフルオロアルキル基の例としては、例えば以下に示
すような含フツ素セグメントを含有するものが挙げられ
る。Examples of polyfluoroalkyl groups include those containing a fluorine-containing segment as shown below.
CF、+cFs斤(i、は0〜20の整数)、CF。CF, +cFs (i is an integer from 0 to 20), CF.
\ CF 4 CF zh (yaは0〜1日の整数)、/ CF。\ CF 4 CF zh (ya is an integer from 0 to 1), / C.F.
HCF zA:c F z’f”j (nは0〜20の
整数)、また、Rとしては、前記構造のポリフルオロア
ルキル基の他に、CF、=CF、、
CFlCFs−CFtのオリゴメリゼーシッンで台底さ
れる分岐を有していてもよい、ポリフルオロアルキル基
やポリフルオロアルキレン基、あるいは、
CF3
CxF、O+C5FaO)′T−Ch−CO−、、(k
はO〜6の整数である)
等のエーテル構造を含むフッ素含有基であってもよい。HCF zA: c F z'f"j (n is an integer of 0 to 20), and as R, in addition to the polyfluoroalkyl group of the above structure, CF, = CF, oligomerization of CFlCFs-CFt A polyfluoroalkyl group or a polyfluoroalkylene group, which may have a branch that is bottomed by a thin film, or CF3CxF,O+C5FaO)'T-Ch-CO-, (k
is an integer of 0 to 6) It may be a fluorine-containing group containing an ether structure such as.
前記−収装(1)におけるAは、2価の連結基であり、
アルキレン基やアリーレン基、または酸素やイオウを含
むアルキレン基やアリーレン基が好ましい。A in the above-mentioned (1) is a divalent linking group,
An alkylene group, an arylene group, or an alkylene group or arylene group containing oxygen or sulfur is preferred.
また、前記−収装(1)におけるXは、陰イオン性基で
あり、−COO−−3(h−1S、0ff−1−0SO
s−PO2−等が挙げることがき、特にCOO−や−5
03が望ましい。In addition, X in the above-mentioned - Shuso (1) is an anionic group, -COO--3(h-1S, Off-1-0SO
Examples include s-PO2-, especially COO- and -5
03 is desirable.
一般式(1)の具体例としては、
CH3(CHz)zCミC−C三C(C1lx)sCO
OH。As a specific example of general formula (1), CH3(CHz)zCmiC-C3C(C1lx)sCO
Oh.
11CミC(C112) + acOOHljls(C
)It)++SOJ 1
CFs(CFt)qCIhCHiCOO)I。11CmiC(C112) + acOOOHljls(C
)It)++SOJ 1 CFs(CFt)qCIhCHiCOO)I.
等が挙げられる。etc.
低分子の単分子膜構成物質には、以上のようなものが好
ましいが、実質的に水に溶解しないものであれば何らこ
れらに限定されない。The low-molecular monomolecular film-constituting substances are preferably those listed above, but are not limited to these as long as they are substantially insoluble in water.
(2)高分子の単分子膜横或物質:
単分子膜構戒物質が高分子のものとしては、親水性部分
を形成している高分子主鎖部分と、疎水性部分よりなる
ものが挙げられる。(2) Polymer monolayer material: Examples of polymer monolayer materials include those consisting of a polymer main chain portion forming a hydrophilic portion and a hydrophobic portion. It will be done.
ここで、親水性を示す高分子主鎖部分としては、イオン
性基を含むものや、エステル結合やアミド結合等の極性
基を含むものが例示される。Here, examples of the polymer main chain portion exhibiting hydrophilicity include those containing ionic groups and those containing polar groups such as ester bonds and amide bonds.
以下にさらに詳しく高分子状単分子膜構成物質の例につ
いて説明する。Below, examples of polymeric monolayer film constituents will be explained in more detail.
(1)疎水部とポリマー主鎖がイオン結合をしている場
合:
この場合は、下記の一般式(n)で表されるが、(II
)式において、Zが陽イオン性基含有ポリマーの場合に
は、Yは陰イオン性基と疎水部を含む基でなければなら
ず、逆に、2が陰イオン性基含有のポリマーであれば、
Yが陽イオン性基と疎水部を含む基でなければならない
。また、nは10以上であることが望ましい。(1) When the hydrophobic part and the polymer main chain have an ionic bond: In this case, it is represented by the following general formula (n), but (II
), when Z is a cationic group-containing polymer, Y must be a group containing an anionic group and a hydrophobic part; conversely, if 2 is an anionic group-containing polymer, ,
Y must be a group containing a cationic group and a hydrophobic part. Further, it is desirable that n be 10 or more.
Zが陰イオン性のポリマーの例としては、以下のような
ものが示される。Examples of polymers in which Z is anionic include the following.
下記−収装(I[[)で示されるのは、ポリアミド酸と
長鎖アルキル基を有するアミン類とからなる(式中、R
’は4価の有Ia基、R2は2価の有機基、nは10以
上の整数を示す、)
で表される。The compound represented by I [[] below consists of a polyamic acid and an amine having a long-chain alkyl group (in the formula, R
' is a tetravalent Ia group, R2 is a divalent organic group, and n is an integer of 10 or more.
上記−収装(iff)で表されるポリアミド酸は、下記
式(■):
F 3
等の2価の基を示す)
等の4価の芳香族有機基又はその置換した誘導体から選
ばれる。The polyamic acid represented by the above -inclusion (iff) is selected from a tetravalent aromatic organic group such as the following formula (■): (indicates a divalent group such as F 3 ) or a substituted derivative thereof.
上記−収装(IV)で表されるテトラカルボン酸二無水
物としては、例えばピロメリット酸、3゜4.3.4”
−ベンゾフェノンテトラカルボン酸、3,4.3”、4
゛−ビフェニルテトラカルボン酸、ビス(3,4−ジカ
ルボキシフェニル)メタン、ビス(3,4−ジカルボキ
シフェニル)エーテル、ビス(3,4−ジカルボキシフ
ェニル)スルホン、2.2−ビス(3,4−ジカルボキ
シフェニル)プロパン、ブタンテトラカルボン(式中、
R1は−収装(III)におけると同様)で表されるテ
トラカルボン酸二無水物と下記式():
%式%()
(式中、Rtは一般式(1)におけると同様)で表され
るジアミンから、従来公知のポリアミド酸の製造方法に
よって製造される。Examples of the tetracarboxylic dianhydride represented by (IV) include pyromellitic acid, 3°4.3.4"
-benzophenonetetracarboxylic acid, 3,4.3", 4
-Biphenyltetracarboxylic acid, bis(3,4-dicarboxyphenyl)methane, bis(3,4-dicarboxyphenyl)ether, bis(3,4-dicarboxyphenyl)sulfone, 2,2-bis(3 ,4-dicarboxyphenyl)propane, butanetetracarboxylic (in the formula,
R1 is a tetracarboxylic dianhydride represented by the following formula (): (same as in general formula (III)) and R1 is represented by the following formula (): % formula % () (wherein Rt is the same as in general formula (1)) The diamine is produced by a conventionally known method for producing polyamic acid.
上記式中、R1としては、
酸等のテトラカルボン酸の二酸無水物を例示することが
できる。In the above formula, examples of R1 include dianhydrides of tetracarboxylic acids such as acids.
一方、R2としては、フェニレン、ナフチレン、ビフェ
ニレン、R1におけるXと同様な2価の基によって連結
されたビフェニレン誘導基等の2価の芳香族基から選ば
れるのが通常である。On the other hand, R2 is usually selected from divalent aromatic groups such as phenylene, naphthylene, biphenylene, and a biphenylene derivative group connected by a divalent group similar to X in R1.
上記−収装(V)で表されるジアミンとしては、例えば
メタフェニレンジアミン、バラフェニレンジアミン、4
,4゛−シアミノビフェニル、33°−メチレンジアニ
リン、4.4“−メチレンジアニリン、4,4°−エチ
レンジアニリン、4゜4°−イソプロピリデンジアニリ
ン、3,4′オキシジアニリン、4,4°−オキシジア
ニリン、4.4°−チオジアニリン、3,3″−カルボ
ニルジアニリン、4.4’ −カルボニルジアニリン、
3.3′−スルホニルジアニリン、4,4゛−スルホニ
ルジアニリン、1.4“−ナフタレンシア4ン、1,5
°−ナフタレンジアミン、2,6′−ナフタレンジアミ
ン等を挙げることができる。Examples of the diamine represented by the above-mentioned compound (V) include metaphenylenediamine, paraphenylenediamine,
, 4゛-cyaminobiphenyl, 33°-methylene dianiline, 4.4''-methylene dianiline, 4,4゜-ethylene dianiline, 4゜4゜-isopropylidene dianiline, 3,4' oxydianiline , 4,4°-oxydianiline, 4.4°-thiodianiline, 3,3″-carbonyldianiline, 4,4′-carbonyldianiline,
3.3'-sulfonyl dianiline, 4,4''-sulfonyl dianiline, 1.4''-naphthalenecyan, 1,5
Examples include °-naphthalenediamine and 2,6'-naphthalenediamine.
さらに、本発明において用いられる、長鎖アルキル基を
有するアミン類は、−収装(■):RゴーN−R’
・ ・ ・ ・ (Vl)■
R′
(式中、R3、R4、R5は水素原子又は前記−収装(
I)中のRで表されるアルキル基を示し、そのうち少な
くとも一つはRである。)で表される。Furthermore, the amines having a long-chain alkyl group used in the present invention are -
・ ・ ・ ・ (Vl) ■ R' (wherein, R3, R4, and R5 are hydrogen atoms or the above-mentioned -
Indicates an alkyl group represented by R in I), at least one of which is R. ).
その他、イオン性基を含む高分子の単分子膜構成物質と
しては、前記−収装(If)において、Zが陰イオン性
基を含むポリマーの場合には、陰イオン性としては−c
oo−−so、−、os。In addition, as a monomolecular film constituent substance of a polymer containing an ionic group, in the above-mentioned -incorporation (If), when Z is a polymer containing an anionic group, -c as an anionic group is used.
oo--so,-,os.
−PO5−等が挙げられ、Yとしては、アンモニウムカ
チオン、ピリジニウムカチオン、或いはホスホニウムカ
チオン等のカチオンと、−収装(1)において、Rで表
される疎水部を含む基である組合せが例示される。Examples of Y include a combination of a cation such as an ammonium cation, a pyridinium cation, or a phosphonium cation, and a group containing a hydrophobic moiety represented by R in (1). Ru.
その具体例としては、例えば以下のものが挙げられる。Specific examples include the following.
一方、Zが陽イオン性のものとしては、例えばアンモニ
ウムカチオン、ピリジニウムカチオン、或いはホスホニ
ウムカチオン等のカチオンを含むポリマーが挙げられる
。On the other hand, examples of polymers in which Z is cationic include polymers containing cations such as ammonium cations, pyridinium cations, or phosphonium cations.
なお、この場合のYとしては、−COO−30s−1O
S 03− P Os−等の陰イオン性基と一般式
(■)におけるRで表される疎水部を含むものが使用さ
れる。In addition, Y in this case is -COO-30s-1O
Those containing an anionic group such as S 03-P Os- and a hydrophobic portion represented by R in the general formula (■) are used.
具体的な例としては、以下に示されるものが挙げられる
。Specific examples include those shown below.
H3
(CHz)u
(2)疎水部とポリマー主鎖部が極性基で連結される場
合;
前記したように極性連結基としては、エステル結合、ア
ミド結合等が使用され、その具体例としては、例えば以
下のポリマーが挙げられる。H3 (CHz)u (2) When the hydrophobic part and the polymer main chain part are connected by a polar group; As mentioned above, as the polar linking group, ester bonds, amide bonds, etc. are used, and specific examples thereof include: Examples include the following polymers.
以上、単分子膜の構Iti、成分の構造を示した。次に
、単分子膜の形成方法を示す。The structure of the monomolecular film and the structure of the components have been shown above. Next, a method for forming a monolayer will be described.
まず、単分子膜構成物質の有機溶媒溶液を水面上に展開
し、単分子層を形成させ、次にこの当該単分子層を基膜
上に移し取るのである。First, an organic solvent solution of a monomolecular film constituent material is spread on the water surface to form a monomolecular layer, and then this monomolecular layer is transferred onto the base film.
ここで使用される有機溶媒は、例えばヘキサン、オクタ
ン等の炭化水素系溶媒;ベンゼン、トルエン、キシレン
等の芳香族系溶媒;ジクロロメタン、クロロホルム、四
塩化炭素等の塩素系溶媒;ジエチルエーテル、ジブチル
エーテル等のエーテル系溶媒およびフレオン等のフッ素
系溶媒を例示することができるが、水と実質的に混合し
ないことが必要である。また、これらの有機溶媒とジメ
チルホルムアミド、N、N−ジメチルアセトアミド、N
−メチル−2−ピロリドン、ジメチルスルホキシド等の
極性溶媒とを混合して使用することができる。Organic solvents used here include, for example, hydrocarbon solvents such as hexane and octane; aromatic solvents such as benzene, toluene, and xylene; chlorine solvents such as dichloromethane, chloroform, and carbon tetrachloride; diethyl ether, dibutyl ether Examples include ether solvents such as ether solvents, and fluorine solvents such as freon, but they are required to be substantially immiscible with water. In addition, these organic solvents and dimethylformamide, N,N-dimethylacetamide, N
-Methyl-2-pyrrolidone, dimethyl sulfoxide, and other polar solvents can be used in combination.
単分子膜を形成する両親媒性物質を含む溶液の濃度は、
通常0. 01〜10mmo l/j!、好ましくは0
.05〜5mmol/j!の範囲が選ばれる。また、−
収装(ff)において、ポリマーの重合度を表すnは特
に制限はないが、多孔膜上に載せる場合は、20〜4万
の範囲が好ましい。nが20以下であると、多孔膜上に
安定なLB膜が形成されないし、また、nの上限は特に
ないが、nが4万以上だと溶媒に溶解しにくくなり、使
用することが困難である。The concentration of a solution containing an amphiphile that forms a monolayer is
Usually 0. 01~10mmol/j! , preferably 0
.. 05~5mmol/j! The range is selected. Also, -
In packaging (ff), n, which represents the degree of polymerization of the polymer, is not particularly limited, but when placed on a porous membrane, it is preferably in the range of 200,000 to 40,000. If n is less than 20, a stable LB film will not be formed on the porous membrane, and there is no particular upper limit for n, but if n is more than 40,000, it will be difficult to dissolve in the solvent and difficult to use. It is.
また、−収装<n>で表されるポリマーの大きさを重量
平均分子量で規定する場合には、繰返し単位の構造にも
左右されるが、通常重量平均分子量が3,000以上の
ぜのが使用され、好ましくは重量平均分子量が5,00
0以上、特に好ましくは10,000以上のものが使用
される。重量平均分子量の上限は特にないが、溶解性な
どの点で重量平均分子量が2,000万程度のものが使
い易い。In addition, when defining the size of the polymer represented by -closing <n> by the weight average molecular weight, it is usually determined that the polymer has a weight average molecular weight of 3,000 or more, although it also depends on the structure of the repeating unit. is used, preferably having a weight average molecular weight of 5,00
The number used is 0 or more, particularly preferably 10,000 or more. Although there is no particular upper limit to the weight average molecular weight, it is easy to use a weight average molecular weight of about 20 million from the viewpoint of solubility.
また、疎水部に反応基(例えば、二重結合、三重結合を
含んだ単分子膜では、基膜上に累積後に反応させても、
水面上展開時に反応させた後に基膜上に移し取っても良
い。In addition, in monomolecular films containing reactive groups (e.g. double bonds, triple bonds) in the hydrophobic part, even if the reaction is carried out after accumulation on the base film,
The reaction may be carried out during development on the water surface and then transferred onto the base film.
上記以外でも、単分子膜の性質を損なわない限り、適宜
単分子膜の形成法は変えられる。In addition to the above methods, the method for forming the monolayer may be changed as appropriate as long as the properties of the monolayer are not impaired.
例えば、上記−収装(II)において、ポリマーCH工
M Hz
といった親水性のものを用いている場合には、この親水
性ポリマーを予め0.01〜10mmol/l水溶液と
しておき、そこに、上記−収装(I)でRとして表され
ているアルキル鎖を含むカルボン酸や四級アンモニウム
塩の有機溶媒溶液を添加して界面上で、
CH。For example, in case (II) above, when a hydrophilic polymer such as CH-M Hz is used, this hydrophilic polymer is made into a 0.01 to 10 mmol/l aqueous solution in advance, and the above-mentioned solution is added thereto. - Adding an organic solvent solution of a carboxylic acid containing an alkyl chain or a quaternary ammonium salt represented by R in the compound (I) to form CH on the interface.
のように両親媒性単分子膜を形成する方法がある。There is a method to form an amphiphilic monolayer as shown in the following.
次に、単分子膜を累積する円筒形状及び円柱形状基膜に
ついて記述する。Next, a cylindrical shape and a cylindrical base film in which a monomolecular film is accumulated will be described.
単分子膜を累積する円筒形状及び円柱形状基膜は、非多
孔性のものであれば、低分子の単分子膜でも高分子の単
分子膜でも、平板状基膜と同様に良好に累積される。一
方、多孔性の円筒基膜に対しても、低分子の単分子膜、
高分子の単分子膜とも、累積させることは可能である。Cylindrical and cylindrical base films that accumulate monolayers, as long as they are non-porous, can be accumulated as well as flat base films, whether they are low-molecular monolayers or polymer monolayers. Ru. On the other hand, for porous cylindrical base membranes, low-molecular monolayers,
It is possible to accumulate even monomolecular films of polymers.
しかし、ガス9111Mのようなピンホールのない均一
な膜を形成させたい場合には、■ 重量平均分子量が3
. 000以上の高分子量の単分子膜構成物質を使い、
さらに■ 多孔膜が分画分子[170,000以下であ
ることが好ましく、さらに好ましくは、■単分子膜を累
積する前に、基膜の穴を充填或いは被覆して表面処理を
行い、累積膜形成後に表面処理物質を除去する方法が望
ましい。However, if you want to form a uniform film without pinholes like Gas 9111M, ■ the weight average molecular weight is 3.
.. Using monolayer constituents with a high molecular weight of 000 or more,
Furthermore, (1) it is preferable that the porous membrane has a molecular fraction [170,000 or less], and more preferably (1) before stacking the monomolecular film, surface treatment is performed by filling or covering the pores of the base film to form a cumulative film. A method that removes the surface treatment material after formation is desirable.
分画分子量70,000以下の膜とは、重量平均分子量
70,000以下の@ff質を90%以上阻止する膜の
ことである。その例としては、例えば重量平均分子量7
0.000のデキストランを90%以上排除する膜、或
いは重量平均分子I65゜OOOのアルブミンを90%
以上排除する膜が挙げられる。A membrane with a molecular weight cut off of 70,000 or less is a membrane that blocks 90% or more of @ff quality with a weight average molecular weight of 70,000 or less. For example, weight average molecular weight 7
A membrane that excludes 90% or more of dextran with a weight average molecular weight of 0.000 or 90% of albumin with a weight average molecular weight of I65°OOO.
The above-excluded membranes can be mentioned.
なお、下限は、ガス透過性があれば制限がないが、あま
り細孔径が小さすぎるとガス透過量が低くなるという問
題点がある。従って、通常は細孔径が10Å以上のもの
が使用される。There is no lower limit as long as there is gas permeability, but if the pore diameter is too small, there is a problem that the amount of gas permeation will be low. Therefore, a material with a pore diameter of 10 Å or more is usually used.
表面処理に使う材料には、常温で固体状のものと、常温
で液体のものとがあり、その沸点は50”C/760+
m*Hg=150℃/10−’mllHgの範囲のもの
が好ましい。Materials used for surface treatment include those that are solid at room temperature and those that are liquid at room temperature, and their boiling point is 50"C/760+
Preferably, m*Hg=150°C/10-'mlHg.
常温で液体状であるものとしては、p−キシレン、オク
タン等、また常温で固体状であるものとしては、n−オ
クタデカン、1,1,2.2−テトラクロロ−1,2−
ジフルオロエタン等が挙げられる。これらはいずれも水
に対して不溶であり、しかも基膜及び単分子膜を実質的
に溶解、膨潤させないものが望ましい、上記以外の材料
として寒天を表面処理に用いるのも好適である。Those that are liquid at room temperature include p-xylene, octane, etc., and those that are solid at room temperature include n-octadecane, 1,1,2.2-tetrachloro-1,2-
Examples include difluoroethane. All of these materials are desirably insoluble in water and do not substantially dissolve or swell the base film or monomolecular film. It is also suitable to use agar as a material other than the above for surface treatment.
表面を処理する方法の具体的例としては、処理材溶液中
に(常温で固体のものは融点以上に加熱する)浸漬する
だけの方法、或いは浸漬しながら中空糸の内側を減圧に
して穴を閉塞する方法等が挙げられる。Specific examples of methods for treating the surface include simply immersing it in a treatment material solution (heating it above its melting point if it is solid at room temperature), or reducing the pressure inside the hollow fiber while immersing it to make holes. Examples include a method of occlusion.
単分子膜累積後、処理材を除去する方法については、室
温、或いは加熱しながら中空系の内側を減圧することが
好適である。この際、加熱する場合の温度は、基膜、有
aTN膜が変化しない温度であることが望ましく、通常
は0℃〜150℃の範囲が使用されるが、それに限定さ
れるものではない。As for the method for removing the treatment material after the monomolecular film has been accumulated, it is preferable to reduce the pressure inside the hollow system at room temperature or while heating. At this time, the heating temperature is preferably a temperature at which the base film and the aTN film do not change, and is usually in the range of 0° C. to 150° C., but is not limited thereto.
有機薄膜の累積方法においては、表面圧、温度、累積速
度などの条件を変化させることにより累積膜型をX型、
Y型、Z型と制御することができる。In the organic thin film accumulation method, the cumulative film type can be changed to X type, X type, etc. by changing conditions such as surface pressure, temperature, and accumulation rate.
It can be controlled as Y type or Z type.
累積速度は、速すぎると累積した膜が剥離することがあ
るため、0.5〜20C11/分程度が好適である。The cumulative speed is preferably about 0.5 to 20 C11/min, since the accumulated film may peel off if it is too fast.
(実施例)
以下、実施例により本発明をさらに説明するが、本発明
はこれに限定されるものではない。(Example) Hereinafter, the present invention will be further explained with reference to Examples, but the present invention is not limited thereto.
の合成。synthesis of.
特開昭62−275134号公報に記載しである方法と
同様にして、4,4°−オキシジアニリンと無水ピロメ
リット酸よりポリアミド酸を生威し、これにヘキサデシ
ルジメチルアミンを加え、式(■)化合物を台底した。Polyamic acid was produced from 4,4°-oxydianiline and pyromellitic anhydride in the same manner as described in JP-A No. 62-275134, and hexadecyldimethylamine was added thereto to obtain the formula (■) The compound bottomed out.
式(■)化合物の重量平均分子量は、前駆体のポリアミ
ド酸の固有粘度0.6から、European Pol
ymer、JOurnal、、13゜375頁(197
7)に記載の換算式に従い換算し、長鎖アルキルを考慮
した結果、6,800であった。The weight average molecular weight of the compound of formula (■) is based on the European Pol
ymer, Journal, 13°375 pages (197
As a result of conversion according to the conversion formula described in 7) and taking long chain alkyl into consideration, it was 6,800.
得られた式(■)化合物のトルエン、N、 N−ジメチ
ルアセドアミドl:l混合溶液(繰返し単位基準濃度1
mmol/jりをLB膜累積装置の累積槽の槽内水面上
に展開した。A 1:1 mixed solution of the obtained compound of formula (■) in toluene, N, N-dimethylacedeamide (repeating unit standard concentration 1
mmol/j was spread on the water surface in the accumulation tank of the LB film accumulation device.
このポリアミド酸誘導体単分子膜の表面圧−面積曲線を
第1図に示す、第1図より曲線が鋭い立ち上がりを示し
、ていることから、この単分子膜構成物質は、きれいな
単分子膜を形成していることが判る。The surface pressure-area curve of this monomolecular film of polyamic acid derivative is shown in Figure 1.The curve shows a sharp rise compared to Figure 1, which indicates that this monomolecular film constituent material forms a clean monomolecular film. I can see that you are doing it.
次に、水面上の単分子膜を26mN/++nの圧力下に
、垂直浸漬法を用いて、直径1.5c+eの円筒石英基
板に累積したところZ型膜となり、累積比は0.96と
なった。Next, the monomolecular film on the water surface was accumulated on a cylindrical quartz substrate with a diameter of 1.5c+e under a pressure of 26 mN/++n using the vertical immersion method, resulting in a Z-type film with a cumulative ratio of 0.96. Ta.
円筒石英基板上に累積したポリアミド酸誘導体単分子膜
の累積操作回数と紫外線吸収スペクトルにおける2 5
8 nmの吸光係数との関係を第2図に示す、このグラ
フが直線関係になることにより良好なLB膜の累積が行
われていることが判る。Cumulative number of operations and ultraviolet absorption spectrum of polyamic acid derivative monomolecular film accumulated on cylindrical quartz substrate 2 5
The relationship with the extinction coefficient at 8 nm is shown in FIG. 2, and it can be seen that good accumulation of the LB film is achieved because this graph shows a linear relationship.
また、吸収スペクトルの形状は溶媒キャスト法で別途製
造したポリアミド酸誘導体のものと一致した。Furthermore, the shape of the absorption spectrum was consistent with that of a polyamic acid derivative separately produced by a solvent casting method.
実施例2
実施例1でtll製したポリアミド酸誘導体単分子膜を
30mN/mの圧力下、直径1閣の非多孔性ポリスルホ
ン中空糸に垂直浸漬法を用いて累積したところY型膜と
なり、10回の積層回数で累積比は1.8だった。また
、表面圧を15mN/mとした場合はZ型膜となり、1
0回の積層回数における累積比は1.0であった。Example 2 The polyamic acid derivative monolayer prepared in Example 1 was deposited on a non-porous polysulfone hollow fiber with a diameter of 1 cm under a pressure of 30 mN/m using the vertical dipping method, resulting in a Y-shaped film with a thickness of 10 mN/m. The cumulative ratio was 1.8 based on the number of times the layers were stacked. In addition, when the surface pressure is 15 mN/m, it becomes a Z-type film, and 1
The cumulative ratio when the number of laminations was 0 was 1.0.
実施例3
実施例1で調製したポリアミド酸誘導体単分子膜を、分
子量50,000のアルブミンを90%以上排除可能な
外径1. 4wa、内径0.amのポリアクリロニトリ
ルの多孔性中空糸に表面圧30m N / mの圧力下
で累積したところ、2型膜となった。積層回数10回で
累積比は0.85だった。Example 3 The polyamic acid derivative monomolecular film prepared in Example 1 was coated with an outer diameter of 1.5 mm that could exclude 90% or more of albumin with a molecular weight of 50,000. 4wa, inner diameter 0. When accumulated on a porous hollow fiber of am polyacrylonitrile under a surface pressure of 30 mN/m, a type 2 membrane was obtained. The cumulative ratio was 0.85 after 10 laminations.
実施例4
繰返し単位基準濃度0.2mmo l/j!の重量平均
分子160,000のポリアリルアミン水溶液に、10
.12−ペンタコサジオニック酸0゜1 m m o
1 / j!のクロロホルム溶液を滴下した。Example 4 Repeating unit standard concentration 0.2 mmol/j! To an aqueous solution of polyallylamine having a weight average molecular weight of 160,000, 10
.. 12-pentacosadionic acid 0゜1 m m o
1/j! A chloroform solution of was added dropwise.
第3図は当該物質の表面圧−面積曲線である。FIG. 3 is a surface pressure-area curve of the material.
第3図より曲線が鋭い立ち上がりを示していることから
、この単分子膜構成物質はきれいな単分子膜を形成しう
ることか判る。As shown in FIG. 3, the curve shows a sharp rise, indicating that this monomolecular film constituent material can form a clean monomolecular film.
当該単分子膜を表面圧30mN/mで外径0゜41m5
.内径0.33mmで、孔径が重量平均分子量70,0
00のデキストランを90%以上排除可能な多孔性ポリ
スルホン中空糸に累積したところ、Z型膜となった。累
積比は10回で0.97であった。The monomolecular film has an outer diameter of 0°41m5 at a surface pressure of 30mN/m.
.. The inner diameter is 0.33 mm and the pore size has a weight average molecular weight of 70.0.
When 00 dextran was accumulated in a porous polysulfone hollow fiber capable of excluding 90% or more, a Z-type membrane was obtained. The cumulative ratio was 0.97 for 10 times.
実施例5
実施例4と同様の方法で形成した単分子膜を表面圧30
mN/mで実施例3で使用したものと同じ規格のポリア
クリロニトリル多孔性中空糸に累積したところ、Z型膜
となった。累積比は10回で0.88であった。Example 5 A monomolecular film formed in the same manner as in Example 4 was subjected to a surface pressure of 30
When accumulated at mN/m on polyacrylonitrile porous hollow fibers of the same specifications as those used in Example 3, a Z-type membrane was obtained. The cumulative ratio was 0.88 for 10 times.
実施例6
繰返し単位基準濃度0.2mmol/j!の重量平均分
子170,000のポリスチレンスルホン酸ナトリウム
水溶液にジメチルジステアリルアンモニウムのO,1m
mol/j!クロロホルム溶液を滴下した。第4図は当
該物質の表面圧−面積曲線である。第4図より曲線が鋭
い立ち上がりを示していることから、この単分子膜形成
物質はきれいな単分子膜を形成していることが判る。Example 6 Repeating unit standard concentration 0.2 mmol/j! O, 1 m of dimethyl distearyl ammonium was added to an aqueous solution of sodium polystyrene sulfonate having a weight average molecular weight of 170,000.
mol/j! A chloroform solution was added dropwise. FIG. 4 is a surface pressure-area curve of the material. From FIG. 4, it can be seen that the curve shows a sharp rise, indicating that this monomolecular film-forming substance forms a clean monomolecular film.
当該単分子膜を表面圧30mN/mで実施例4で用いた
ものと同じ規格の多孔性ポリスルホン中空糸に累積した
ところZ型膜となった。累積比は10回で0695であ
った。When the monomolecular membrane was accumulated on a porous polysulfone hollow fiber of the same standard as that used in Example 4 at a surface pressure of 30 mN/m, a Z-type membrane was obtained. The cumulative ratio was 0695 for 10 times.
実施例7
外径0.41m、内径0.33m、孔径が重量平均分子
量70,000のデキストランを90%排除できる多孔
性ポリスルホン中空系の先端をエポキシ樹脂で固めた後
、40’Cで加熱して液状にしたn−オクタデカンに浸
漬し、中空糸内o、05mHHの減圧にして、3分間保
持して中空糸表面を処理した。Example 7 The tip of a porous polysulfone hollow system with an outer diameter of 0.41 m, an inner diameter of 0.33 m, and a pore diameter capable of excluding 90% of dextran with a weight average molecular weight of 70,000 was hardened with epoxy resin, and then heated at 40'C. The hollow fiber surface was treated by immersing it in liquid n-octadecane, reducing the pressure inside the hollow fiber to 05 mHH, and holding it for 3 minutes.
この中空糸に、実施例1と同様の方法で調整したポリア
ミド酸誘導体単分子膜を25mN/mの圧力下で垂直浸
漬法で累積したところ、Y型膜となった。10回Jll
l、たとこる累積比は1.0だった。When a polyamic acid derivative monomolecular film prepared in the same manner as in Example 1 was deposited on this hollow fiber by a vertical dipping method under a pressure of 25 mN/m, a Y-shaped film was obtained. 10 times Jll
l, the cumulative ratio was 1.0.
実施例8
実施例7と同様の方法で表面処理した中空糸に実施例1
と同じ条件で単分子膜を調整してlo。Example 8 Example 1 was applied to hollow fibers surface-treated in the same manner as Example 7.
Prepare a monolayer under the same conditions as lo.
回累積した。累積膜型はY型膜で、累積比は1゜0だっ
た。Accumulated times. The cumulative film type was a Y-type film, and the cumulative ratio was 1°0.
実施例9
実施例7と同様の方法で表面処理した同様の規格のポリ
スルホン中空系にアルドリッチ社製(Aldrich社
)ポリビニルステアレートの0゜1mmol/j!のト
ルエン溶液を水面上に展開し、25mN/mに圧縮して
形成させた単分子層を110回累積させたところ、Y型
膜となった。110回での累積比は0.86だった。Example 9 A polysulfone hollow system of the same specifications that was surface-treated in the same manner as in Example 7 was coated with 0.1 mmol/j! of polyvinyl stearate (manufactured by Aldrich). A toluene solution of was spread on the water surface and a monomolecular layer formed by compressing it to 25 mN/m was accumulated 110 times, resulting in a Y-shaped film. The cumulative ratio for 110 times was 0.86.
第5図は、ポリビニルステアレートノ表面圧−面積曲線
で、この図より曲線が鋭い立ち上がりを示している。こ
のことにより、この単分子膜構成物質はきれいな単分子
膜であることが判る。FIG. 5 is a surface pressure-area curve for polyvinyl stearate, and the curve has a sharper rise than this figure. This shows that this monomolecular film constituent material is a clean monomolecular film.
実施例IO
実施例7と同様の方法で表面処理した外径0゜41閣、
内径0.33mmの多孔性ポリスルホン中空糸に実施例
9で調製したポリビニルステアレート単分子膜を30m
N/mの圧力下で95回累積した。累積膜型はY型膜と
なり、95回での累積比は0.91であった。Example IO: Surface treated in the same manner as in Example 7, with an outer diameter of 0°41,
A 30 m polyvinyl stearate monolayer prepared in Example 9 was coated on a porous polysulfone hollow fiber with an inner diameter of 0.33 mm.
It was accumulated 95 times under a pressure of N/m. The cumulative film type was a Y-type film, and the cumulative ratio after 95 times was 0.91.
実施例11
室温、0.2mg/f!の寒天水溶液で実施例7と同様
の方法で表面処理をした。外径0.41M、内径0.3
3m++の多孔性ポリスルホン中空糸に実施例Iで調製
したポリアミドM誘導体単分子膜を表面圧25mN/m
で10回累積したところ、累積比0.94となり、累積
膜型はZ型膜となった。Example 11 Room temperature, 0.2 mg/f! The surface was treated in the same manner as in Example 7 using an agar aqueous solution. Outer diameter 0.41M, inner diameter 0.3
A polyamide M derivative monolayer prepared in Example I was applied to a 3 m++ porous polysulfone hollow fiber at a surface pressure of 25 mN/m.
When the film was accumulated 10 times, the cumulative ratio was 0.94, and the cumulative film type was a Z-type film.
実施例12
n−オクタンを用いて、実施例7と同様の方法で表面処
理した外径0.41m5、内径0.33閣の多孔性ポリ
スルホン中空糸に、実施例1で調製したポリアミド酸誘
導体単分子膜を表面圧25mN / mで累積したとこ
ろ、累積回数10回で累積比0.93だった。累積膜型
はY型膜となった。Example 12 The polyamic acid derivative monomer prepared in Example 1 was applied to a porous polysulfone hollow fiber with an outer diameter of 0.41 m5 and an inner diameter of 0.33 m, which had been surface-treated using n-octane in the same manner as in Example 7. When the molecular film was accumulated at a surface pressure of 25 mN/m, the cumulative ratio was 0.93 after 10 accumulations. The cumulative film type was a Y-type film.
実施例13
1.1,2.2−テトラフルオロ−1,2−ジクロロエ
タンを40℃に加熱して液状にした後、外径0.41閣
、内径0.33mの多孔性ポリスルホン中空糸に、実施
例7と同様の操作手順で表面処理し、表面圧30mN/
mで実施例11で調製したポリアミド酸単分子膜を累積
したところ、累積比は0.85となり、累積膜型はY型
膜となった。Example 13 1.1,2.2-Tetrafluoro-1,2-dichloroethane was heated to 40°C to make it liquid, and then it was applied to a porous polysulfone hollow fiber with an outer diameter of 0.41 m and an inner diameter of 0.33 m. The surface was treated in the same manner as in Example 7, and the surface pressure was 30 mN/
When the polyamic acid monomolecular film prepared in Example 11 was accumulated using m, the cumulative ratio was 0.85, and the cumulative film type was a Y-type film.
実施例14
実施例7で得た中空糸を80℃に加熱し、中空系内側を
0.05閣Hg減圧で3時間処理した後、ガス透過量を
測定し、Qo□−3,48X10″6(c4−5TP/
ca−cmmHg〜sec )、 Q Hz −1,3
5x 10−’ (cd−3TP/c11−cmHg・
sec ) 、 aR”z =2.6を得た。Example 14 The hollow fiber obtained in Example 7 was heated to 80°C, and the inside of the hollow system was treated with a reduced pressure of 0.05 kg Hg for 3 hours, and the amount of gas permeation was measured. (c4-5TP/
ca-cmmHg~sec), Q Hz -1,3
5x 10-' (cd-3TP/c11-cmHg・
sec), aR”z=2.6 was obtained.
実施例15
実施例8で得た中空糸を実施例14と同様な方法でガス
透過量を測定し、Q ox −6,22X10−’
(d−5TP/d −CmmHg〜5eC) 、
Q sz −1゜97XIQ−″(d−3TP/
cd −cmNg−sec ) 、α詩=3.2を得た
。Example 15 The gas permeation amount of the hollow fiber obtained in Example 8 was measured in the same manner as in Example 14, and Q ox -6,22X10-'
(d-5TP/d-CmmHg~5eC),
Q sz -1゜97XIQ-''(d-3TP/
cd -cmNg-sec), α verse = 3.2 was obtained.
実施例16
実施例9で得た中空糸を実施例14と同様な方法でガス
透過量を測定し、Q、□−5,23X10−’ (d
・ 5TP)c(・ cmHg −sec )
、 Q sz =2゜04 X 10−’ (a
i−3TP/cd−cmmHg〜sec ) 、α:”
z−2,56を得た。Example 16 The gas permeation amount of the hollow fiber obtained in Example 9 was measured in the same manner as in Example 14, and Q, □-5, 23X10-' (d
・5TP)c(・cmHg-sec)
, Q sz =2゜04X10-' (a
i-3TP/cd-cmmHg~sec), α:”
z-2,56 was obtained.
実施例17
実施例IOで得た中空糸を実施例14と同様な方法でガ
ス透過量を測定し、Q at −5,34x10−’
(cd−3TP/cd ・cmmHg〜sec ) %
Q 旧= 1゜65 X 10−” (cd−5TP
/cd−ctsHg−sec 〕、α二S=a、2を得
た。Example 17 The gas permeation amount of the hollow fiber obtained in Example IO was measured in the same manner as in Example 14, and Q at -5,34x10-'
(cd-3TP/cd ・cmHg~sec) %
Q old = 1゜65 x 10-” (cd-5TP
/cd-ctsHg-sec], α2S=a,2 was obtained.
(発明の効果)
本発明の方法により、各種エレクトロニクス材料、ある
いはガスセンサーをはじめ高表面積を必要とする各種セ
ンサー材料等に有用な円筒形状あるいは円柱形状基膜に
LB膜を累積することが可能である。(Effects of the Invention) By the method of the present invention, it is possible to accumulate an LB film on a cylindrical or cylindrical base film useful for various electronic materials or various sensor materials that require a high surface area including gas sensors. be.
また、多孔性円筒状(中空糸状)の基膜にLB膜を累積
した複合膜は、高透過性の分離膜材料として有用である
。Further, a composite membrane in which an LB membrane is accumulated on a porous cylindrical (hollow fiber) base membrane is useful as a highly permeable separation membrane material.
体単分子膜の表面圧(m N / m )−面積(人2
/unit)の関係を示す曲線グラフである。Surface pressure of body monolayer (m N/m) - area (person 2
/unit) is a curve graph showing the relationship.
第2図は、実施例1に従う、ポリアミド酸誘導体単分子
膜の累積操作回数−吸光係数との関係を示す曲線グラフ
である。FIG. 2 is a curve graph showing the relationship between the cumulative number of operations and the extinction coefficient of the polyamic acid derivative monolayer according to Example 1.
第3図は、実施例4に従う、10.12−ペンタコサシ
イオニツク酸とポリアリルアミンの表面圧−面積の関係
を示す曲線グラフである。FIG. 3 is a curve graph showing the relationship between surface pressure and area of 10.12-pentacosasioninic acid and polyallylamine according to Example 4.
第4図は、ポリスチレンスルホン酸とジメチルジスチア
リルアンモニウムの表面積−表面圧の関係を示す曲線グ
ラフである。FIG. 4 is a curve graph showing the relationship between surface area and surface pressure of polystyrene sulfonic acid and dimethyldistyallylammonium.
第5図は、実施例9に従う、ポリビニルステアレートの
表面圧(m N / m )−面積(人”/unit)
の関係を示す曲線グラフである。FIG. 5 shows the surface pressure (mN/m)-area (person”/unit) of polyvinyl stearate according to Example 9.
It is a curve graph showing the relationship.
第1図は、実施例1に従う、ポリアミド酸誘導第1図 面 積 ()<2/untt ) 第2図 累積操作回数 表面圧力 FIG. 1 is a polyamic acid derivation according to Example 1. area ()<2/untt) Figure 2 Cumulative number of operations surface pressure
Claims (3)
両親媒性物質を展開し、圧縮することにより単分子層を
形成し、当該単分子層を基膜上へ逐次累積するラングミ
ュア・プロジェット法において、基膜が円筒形状或いは
円柱形状であることを特徴とする、有機薄膜の製造方法
。(1) A Langmuir method in which an amphiphilic substance consisting of a hydrophilic part and a hydrophobic part is spread on the water surface in an aquarium and compressed to form a monomolecular layer, and the monomolecular layer is sequentially accumulated on a base film. A method for producing an organic thin film in the Projet method, characterized in that the base film has a cylindrical or cylindrical shape.
50℃/760mmHg〜150℃/10^−^4mm
Hgの範囲である物質を主成分とする材料で充填あるい
は被覆した基膜を使用し、当該基膜上に有機薄膜形成後
に、充填あるいは被覆した材料を蒸発により除去するこ
とを特徴とする、請求項(1)記載の有機薄膜の製造方
法。(2) The pores of the porous cylindrical base membrane are prepared in advance so that the boiling point is 50℃/760mmHg to 150℃/10^-^4mm.
A claim characterized in that a base film filled or coated with a material whose main component is a substance in the Hg range is used, and after forming an organic thin film on the base film, the filled or coated material is removed by evaporation. The method for producing an organic thin film according to item (1).
より作成された複合膜を用いた、気体選択透過膜。(3) A gas selective permeation membrane using a composite membrane produced by the method according to any one of claims (1) and (2).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20686789A JPH0370742A (en) | 1989-08-11 | 1989-08-11 | Preparation of organic thin film and its use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20686789A JPH0370742A (en) | 1989-08-11 | 1989-08-11 | Preparation of organic thin film and its use |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0370742A true JPH0370742A (en) | 1991-03-26 |
Family
ID=16530352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20686789A Pending JPH0370742A (en) | 1989-08-11 | 1989-08-11 | Preparation of organic thin film and its use |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0370742A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5688562A (en) * | 1995-06-20 | 1997-11-18 | E. I. Du Pont De Nemours And Company | Method for modifying uncoated synthetic polymer fibers using a Langmuir-Blodgett film coating process |
US7604869B2 (en) | 2003-12-05 | 2009-10-20 | Mitsui Chemicals, Inc. | Olefinic thermoplastic elastomer laminate |
US8008401B2 (en) | 2006-09-20 | 2011-08-30 | Mitsui Chemicals, Inc. | Polyolefin composition |
JP2012509760A (en) * | 2008-11-21 | 2012-04-26 | コーニング インコーポレイテッド | Tube coating method using self-assembly process |
CN113097384A (en) * | 2021-03-31 | 2021-07-09 | 南京大学 | Method for preparing two-dimensional molecular monolayer |
-
1989
- 1989-08-11 JP JP20686789A patent/JPH0370742A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5688562A (en) * | 1995-06-20 | 1997-11-18 | E. I. Du Pont De Nemours And Company | Method for modifying uncoated synthetic polymer fibers using a Langmuir-Blodgett film coating process |
US7604869B2 (en) | 2003-12-05 | 2009-10-20 | Mitsui Chemicals, Inc. | Olefinic thermoplastic elastomer laminate |
US8008401B2 (en) | 2006-09-20 | 2011-08-30 | Mitsui Chemicals, Inc. | Polyolefin composition |
JP2012509760A (en) * | 2008-11-21 | 2012-04-26 | コーニング インコーポレイテッド | Tube coating method using self-assembly process |
CN113097384A (en) * | 2021-03-31 | 2021-07-09 | 南京大学 | Method for preparing two-dimensional molecular monolayer |
CN113097384B (en) * | 2021-03-31 | 2023-11-21 | 南京大学 | Method for preparing two-dimensional molecular monolayer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ong et al. | Recent membrane development for pervaporation processes | |
Khulbe et al. | The art of surface modification of synthetic polymeric membranes | |
Zhao et al. | Polymeric pH-sensitive membranes—A review | |
Nunes et al. | From charge-mosaic to micelle self-assembly: block copolymer membranes in the last 40 years | |
de Grooth et al. | Building polyzwitterion-based multilayers for responsive membranes | |
KR101306478B1 (en) | Porous membranes made up of organopolysiloxane copolymers | |
Ni et al. | Highly hydrophilic thin-film composition forward osmosis (FO) membranes functionalized with aniline sulfonate/bisulfonate for desalination | |
JPH057749A (en) | Fluorine-containing polyimide type composite membrane and asymmetric membrane, preparation of them and gas separating/concentrating method using said membranes | |
McVerry et al. | Next-generation asymmetric membranes using thin-film liftoff | |
US20230060093A1 (en) | High-flux water permeable membranes | |
KR101961344B1 (en) | Composition for interfacial polymerizing polyamide, method for manufacturing reverse osmosis membrane using the same | |
US20140311347A1 (en) | Polaniline based membranes for separation of carbon dioxide and methane | |
Zuo et al. | The development of novel Nexar block copolymer/Ultem composite membranes for C2–C4 alcohols dehydration via pervaporation | |
Wang et al. | Improving the permselectivity and antifouling performance of reverse osmosis membrane based on a semi-interpenetrating polymer network | |
US20230330604A1 (en) | Molecularly porous cross-linked membranes | |
Zhang et al. | Dynamic pressure‐driven covalent assembly of inner skin hollow fiber multilayer membrane | |
Le et al. | 1.6 Advanced Polymeric and Organic–Inorganic Membranes for Pressure-Driven Processes | |
CZ308872B6 (en) | Composite membrane for separating gaseous mixtures and preparation them | |
Ma et al. | A cross-linking modification toward a high-performance polyimide nanofiltration membrane for efficient desalination | |
CN112368066A (en) | Carbon dioxide separation membrane having amino group-containing graft polymer surface | |
WO2018221684A1 (en) | Gas separation membrane, gas separation membrane element, gas separator, and gas separation method | |
JPH0370742A (en) | Preparation of organic thin film and its use | |
JPS6153090B2 (en) | ||
Shi et al. | Pervaporation and vapor separation | |
Liu et al. | Microporous and functional group Co-designed polyesteramide membranes for efficient and broad-spectrum organic solvent nanofiltration |