JPH0370499B2 - - Google Patents

Info

Publication number
JPH0370499B2
JPH0370499B2 JP57126844A JP12684482A JPH0370499B2 JP H0370499 B2 JPH0370499 B2 JP H0370499B2 JP 57126844 A JP57126844 A JP 57126844A JP 12684482 A JP12684482 A JP 12684482A JP H0370499 B2 JPH0370499 B2 JP H0370499B2
Authority
JP
Japan
Prior art keywords
clip
clips
surgical
strength
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57126844A
Other languages
Japanese (ja)
Other versions
JPS5827548A (en
Inventor
Arubaato Gerutsuman Aasaa
Robaato Tonpuson Dareru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethicon Inc
Original Assignee
Ethicon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ethicon Inc filed Critical Ethicon Inc
Publication of JPS5827548A publication Critical patent/JPS5827548A/en
Publication of JPH0370499B2 publication Critical patent/JPH0370499B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/664Polyesters containing oxygen in the form of ether groups derived from hydroxy carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L17/00Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
    • A61L17/06At least partially resorbable materials
    • A61L17/10At least partially resorbable materials containing macromolecular materials
    • A61L17/105Polyesters not covered by A61L17/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L17/00Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
    • A61L17/14Post-treatment to improve physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、p−ジオキサノンの重合体から製造
した外科器具に関し、更に詳細には向上した生体
内性能特性を有する、かかる重合体の成形した外
科器具に関するものである。 多くの且つ種々の外科的処置においては、合成
器具、すなわち、異物材料から成る器具、の移植
がきわめてしばしば行なわれるということはよく
知られている。このような処置の例は、外科処置
の間に種々の血管またはその他の管状器官を結紮
することによつて出血を抑制するためにタンタル
またはステンレス鋼あるいはその他の金属クリツ
プを用いる手術である。その上、その他の外科的
処置においては、各種のその他の金属棒、ホチキ
ス針、クリツプまたは材料のシートを、外科処置
の間の種々の支持のため、またはその他の理由
で、移植する。大部分の場合に、これらの器具
は、かなりの期間にわたつて患者の体内にとどま
つているけれども、場合によつては、その後何時
かそれらを取除くか、または人体の自然の生理的
機能によつて拒絶されることすらある。 多くは、これらの金属器具は、医療上の見地か
らは何らの害を生じることはないけれども、患者
の手術後のX線処置及びその後の患者の診断のた
めの撮像を著るしく妨害するから、人体中にとど
まらせないことが望ましい。金属材料はX線撮像
を妨害するばかりでなく、最近のコンピユータ制
御軸的断層撮影、及びその他の新式の診断撮像処
置をも妨害する。それ故、外科的器具を新しい診
断用撮像処置に対する妨害作用を有していない非
金属の生体適合性材料で置換することが望まし
い。多くの場合に、希望した機能を果したのちに
人体によつて吸収され、かくして、その後の診断
のための撮像などに対して影響を及ぼすことがな
いように、吸収性の重合体から成る治療器具を製
造することは、更に望ましいことである。吸収性
の重合体から成る器具は、組織中に存在する異物
を保有することによつて生じるおそれのある長期
にわたる問題をも防止する。 外科用器具及び望ましい吸収性の重合体は、参
考としてここに挙げる、1977年10月11日公告の米
国特許第4052988号に更に詳細に開示されている。
これらの吸収性の重合体から成るこのような外科
器具の製造のための特定的な方法は、本明細書と
同一の日付で出願した、共願中の特許願
号中に開示されている。この特許願においては、
p−ジオキサノンの重合体から成形した外科器具
を製造する方法を記している。上記特許願に記し
た方法に従つて製造した外科器具は、多くの外科
的処置に対して望まれる強度及びその他の性質を
有してはいるけれども、これらの重合体から成る
外科器具の強度、機能的統合性、たわみ性、及び
特に触覚性と可聴性を更に改良することは、なお
重要なことである。これらの改良した性質は、器
具について可能性のある用途を広げると共に、こ
のような外科器具の信頼性、安定性及び生体内挙
動を向上させる。 われわれが発見したことは、器具の可聴性と触
覚性をも改良しながら器具の強度と機能的統合性
を向上させる、p−ジオキサノンの重合体から製
造した熱的に成形した外科器具のための焼きもど
し、すなわち熱処理方法である。器具の可聴性と
触覚性は、多くの外科的処置において、外科医は
限られた視野で仕事をするということを理解する
ことによつて、更に説明することができる。その
ようにして仕事をする場合に、本発明によるクリ
ツプが従来のクリツプと比較して有する利点は、
外科処置の特定段階が完了したことを知るために
外科医は触覚と聴覚にたよることができるという
ことである。たとえば、血管を掛けがね式のクリ
ツプで閉じるときに、外科医はこの段階を見るこ
とができず、それ故、クリツプを閉じるための抵
抗(触覚性)及び掛けがねを閉じるときのかちり
またはぱちりという音(可聴性)にたよらざるを
得ない。本発明者は本発明の新規方法が意外にも
p−ジオキサノンの重合体から成る外科器具にお
けるこれらの性質を改良するということを見出し
た。本発明の新規方法は、器具が包装中の残留す
る水分によつて生じる加水分解により良く耐える
という点で、改良した貯蔵寿命を有する外科器具
をも与える。 本発明に従つて、前記の両性質を改良するため
にp−ジオキサノンの重合体から成る射出に成形
した外科器具を処理するための新規方法は、次の
ことから成つている:射出に成形した器具を、器
具から全水分を実質的に除去するために十分な時
間にわたり30℃を超えない温度で窒素雰囲気下に
乾燥する。乾燥した器具を拘束することなく酸素
のない、不活性な乾燥雰囲気、好ましくは窒素の
雰囲気中で、50〜90℃の温度で、好ましくは80〜
85℃の温度で、少なくとも7時間加熱する。 かくして取得する本発明の新規製品は、少なく
とも1.384g/cm3の密度と少なくとも43%、好ま
しくは少なくとも45%の結晶化度を有するp−ジ
オキサノンの重合体から成る、射出成形した外科
器具である。 本発明の新規外科器具は、一般式 を有する単位から成る重合体により製造するが、
上式中でxは望ましい重合体における重合度であ
る。 この重合体は、下式 を有するモノマーから製造する。 本発明の外科器具は射出成形方法によつて製造
する。射出成形の特性的且つ好適方法は、参考の
ために本明細書中に包含せしめる、本発明と同日
に出願した共願する特許願第 号中に記さ
れている。成形後の重合体を乾燥することによつ
て、成形した製品中の水分の実質的に全部を除去
する。実質的にすべての水分を除去して吸収性重
合体の加水分解の可能性を低下させるように、窒
素パージと共に30℃未満の温度で重合体を乾燥す
る。 成形製品を乾燥したのち、それを、乾燥した、
不活性の、酸素が存在しない気体、好ましくは経
済のために、窒素の雰囲気中に置くが、窒素以外
の不活性ガスを使用してもよい。乾燥した不活性
雰囲気中で成形した製品を、50℃以上90℃以下の
温度、好ましくは80〜85℃の温度で、少なくとも
7時間加熱する。この加熱操作の間には、器具を
拘束しない条件下に置く。ここで「器具を拘束し
ない条件下に置く」とは、外科器具を熱処理する
際に外科器具は拘束手段で保持されないことを意
味する。この拘束手段はしばしば「アニーリング
ラツク」と呼ばれる。従来のアニーリングラツク
の目的は熱処理中に器具の変形を防止することで
ある。このような従来の熱処理工程とは異なり、
本発明ではアニーリングラツクのような拘束手段
は使用されず、外科器具は拘束されることなく熱
処理される。本発明では、外科器具はたとえば単
に炉中に置かれ、所望の温度に加熱されることに
よつて熱処理される。次いで成形製品を包装し、
滅菌し、乾燥して、使用に供する。一般に、本発
明に従つて使用する重合体は、この分野で公知の
ように、酸化エチレン処理によつて滅菌する。上
記の処理は、外科器具において用いられる種々の
形態の強度を改良する。この方法は器具の基準強
度すなわち初期強度を改善するばかりでなく、生
体内にある間に器具が失なう強度の大きさをも低
下させる。本発明による焼きもどし処理は、更
に、本発明の方法によつて製造した外科器具の触
覚及び可聴応答の両者を改良し且つその耐加水分
解性を高めることによつて器具の貯蔵寿命を大い
に改善する。本発明の焼きもどし方法は、成形製
品内にその耐加水分解性を増強し且つ成形製品の
強度と機能的統合性を改善させるクリスタリツト
を生じさせるものと考えられる。 p−ジオキサノンの重合体及び共重合体から製
造した本発明の新規外科器具は、少なくとも
1.3845g/cm3の密度を有している。前記の改良し
た性質を有するためには器具がこの密度を有する
ことが不可欠である。更に、本発明の新規外科器
具は、少なくとも43%、好ましくは45%の結晶化
度を有している。 クリツプの結晶化度は、クリツプの強度と機能
的統合性の尺度となる。X線回折は、クリツプ中
の結晶化の量と種類を決定するための便利な方法
である。X線結晶化度のデータは、黒鉛結晶モノ
クロメーター及びストリツプチヤート記録計に接
続したシンチレーシヨン検出器を備えたフイリツ
プス垂直ゴニオメーターを用いて取得する。
CuKa線を使用し且つ試料を取り付けて、パラフ
オーカシング幾何学を用いて測定する。試料につ
いて得た回折図をデユポン曲線解析器を用いて結
晶化度と無定形含量に対して分析する。 図面を参照すると、本発明の方法によつて製造
することができる本発明の外科器具のいくつかの
特定のタイプを示している。第1図は結紮用のク
リツプ10を示している。このクリツプは種々の
外科的処置の間に血管を結紮するために用いる。
このクリツプは蝶つがいの部分13によつて基部
末端において結合した2脚部材11及び12から
成つている。この脚部材は、両末端14及び15
で引つかけて固定する。第2図には第1図のクリ
ツプを血管16の内腔をふさいでいるその閉じた
位置で示している。外科医は、このクリツプを用
いる場合に、目で見ることができないところにそ
れを配置しなければならないことがきわめて多
く、そのために蝶つがい部分と掛けがね機構の抵
抗を感じることが重要である:すなわち外科器具
において触覚によるフイードバツクを必要とす
る。また外科医は脚部材11をそらして反対側の
脚部材12をつかまえるときに、かちつという音
が聞きとれることを欲する。もう一つの熱的に成
形した外科器具を第3図に示す。この器具は、傷
などを閉じるための2部分から成る留め具であ
る。この留め具は、ホチキス針21及びこの針に
対する受け具22から成つている。第4図におい
ては、皮膚、筋膜または筋肉中の何れに傷がある
場合でも、それらの傷を閉じるために用いる、更
にもう一つの熱的に成形した器具25を示す。こ
の器具は、薄い細長い部分26と、その両端に位
置する横棒27から成つている。この器具を保持
するための中空の針を有する適当な道具を用い
て、針を組織中に挿入し、第5図に示すように、
この器具を用いて傷の区域をまたぐ長い部分26
と傷の区域の両側をつかむ横木27によつて傷を
閉じる。 本発明の範囲内にあるその他の外科器具は、整
形外科用のピン、クランプ、ねじ及び板のような
固形の製品;クリツプ、留めがね、かぎ、ボタン
及び締めがね;あごの補綴物のような骨の代用
品;針;子宮内器具;たとえば尿管、包嚢管など
のような各種の管類;外科器械、脈管挿入管、結
合器または支持器;及び椎骨盤、ならびにその他
の類似の器具である。 本発明による外科器具の生体内強度特性は、き
わめて重要である。器具を、たとえば生体組織の
ような徐々に吸収される環境中に配置したとき
に、その外科器具が長期間にわたつて望ましい機
能を保持するということは、絶対に必要なことで
ある。器具は、そのような環境中で所望の仕事を
果たすために十分な時間にわたつて強度を保たな
ければならない。本発明による新規器具は、以下
の特定的な実施例中で更に例証するように、卓越
した生体内特性を有している。 実施例 共願中の特許願第 号に記すようにして
多数のクリツプを射出成形する。これらのクリツ
プは第1図に示すような形態を有し且つ本発明に
従つて処理する。これらのクリツプをイソプロパ
ノール浴中で撹拌しながら15分間2回洗浄する。
洗浄工程においては、1個のクリツプについて約
1mlのイソプロパノールを用いる。アルコールを
流し出し、1層のクリツプを平らな皿中に入れ、
減圧下に16時間乾燥して、アルコールを除く。20
個の洗浄したクリツプを取り出し、それらの密度
を測定し且つ開く力と蝶つがいの力について試験
する。 密度はASTM D−1505の方法に従つて準備し
た密度勾配カラムを用いて測定する。(使用する
密度勾配は、ポリジオキサノンクリツプに対して
認められる一般的な範囲を包含する1350〜1400の
密度にわたつている)。標準的な較正した密度の
浮きをミリメートルで目盛つてあるカラム中に入
れ、勾配カラム中で種々の位置まで沈降させる。
各標準密度浮きの密度と位置を記録する。密度と
カラム中の位置の関係をプロツトして直線的な関
係を得る。3個のクリツプを勾配密度カラム中に
入れ、5〜10分間沈降させる。クリツプの位置を
記録する。クリツプ位置の平均を求める。相当す
るクリツプの密度は密度とカラムの位置との直線
的関係によつて決定することができる。 クリツプの蝶つがい強度は、蝶つがいの区域で
クリツプを破壊するために要する力であり、次の
ようにして測定される。クリツプの先端における
掛けがね機構を切り去り、脚部材の切断端をイン
ストロン引張試験機の相対するつかみ中に置く。
つかみは鋼製の表面を有している。5mm/分の伸
張速度を用いてつかみを移動させ、蝶つがいを破
壊するために必要な力をKg単位で測定する。 クリツプの開き力はクリツプを閉じた後それを
開くに要する力であり、次のようにして測定され
る。クリツプを一列に並んだ2枚のマイラーポリ
エステルフイルム片の上で閉じる。フイルム片は
幅4mm、長さ178mm、厚さ0.076mmである。フイル
ム片の両端において分離しそして相対するU字形
に曲げる。U字形片の一つの端をインストロン引
張り試験機のつかみ中に置き、一方反対側のU字
形片の端部をインストロン引張り試験機の反対側
のつかみ中に置く。つかみは鋼製の表面を有す
る。5mm/分の伸長速度を用いてつかみを移動さ
せ、クリツプを開くために必要な力をKg単位で測
定する。 クリツプの結晶化度は前記のようにして求め
る。 残りのクリツプを加熱器中に入れて熱処理す
る。クリツプ上に窒素を室温で1分間当り250立
方フイートの速度で通じる。次いで加熱器中の温
度を85℃に上げ、1分間当り50立方フイートの窒
素流下にその温度に保つ。8時間と16時間ののち
に、クリツプを取り出してデシケーター中に入
れ、減圧下に冷却する。クリツプをホイル袋中に
1袋当り10個ずつ入れる。袋を酸化エチレンで滅
菌し、脱気したのち窒素雰囲気中で封じる。クリ
ツプの密度と結晶化度を測定し且つ開く強さと蝶
つがいの強さについて試験する。試験の結果を下
記第1表に示す。
The present invention relates to surgical instruments made from polymers of p-dioxanone, and more particularly to surgical instruments formed from such polymers having improved in-vivo performance characteristics. It is well known that many and various surgical procedures very often involve the implantation of synthetic devices, ie, devices made of foreign materials. An example of such a procedure is surgery that uses tantalum or stainless steel or other metal clips to control bleeding by ligating various blood vessels or other tubular organs during the surgical procedure. Additionally, in other surgical procedures, various other metal rods, staples, clips or sheets of material are implanted for various supports during the surgical procedure or for other reasons. Although in most cases these devices remain in the patient's body for a significant period of time, in some cases they must be removed at some later time or the natural physiology of the human body They may even be rejected. In many cases, these metal instruments, while not causing any harm from a medical standpoint, seriously interfere with the patient's post-operative X-ray procedure and subsequent diagnostic imaging of the patient. , it is desirable not to allow it to remain in the human body. Metallic materials not only interfere with X-ray imaging, but also modern computer-controlled axial tomography and other new diagnostic imaging procedures. Therefore, it is desirable to replace surgical instruments with non-metallic, biocompatible materials that do not have an interfering effect on new diagnostic imaging procedures. In many cases, treatments are made of absorbable polymers that are absorbed by the human body after they have performed their desired function and thus do not affect subsequent diagnostic imaging, etc. It is further desirable to manufacture devices. Absorbable polymer devices also prevent long-term problems that can result from retaining foreign material in the tissue. Surgical instruments and desirable absorbable polymers are disclosed in more detail in US Pat. No. 4,052,988, issued October 11, 1977, which is incorporated herein by reference.
Specific methods for the manufacture of such surgical instruments made of these absorbable polymers are described in co-pending patent application filed on the same date as this specification.
Disclosed in the issue. In this patent application,
A method for manufacturing molded surgical instruments from polymers of p-dioxanone is described. Although surgical instruments made according to the methods described in the above patent applications have strength and other properties desirable for many surgical procedures, the strength and other properties of surgical instruments made from these polymers are limited. Further improvements in functional integrity, flexibility, and especially tactility and audibility are still important. These improved properties expand the potential applications for the instrument and improve the reliability, stability, and in-vivo behavior of such surgical instruments. What we have discovered is a method for thermally molded surgical instruments made from polymers of p-dioxanone that increases the strength and functional integrity of the instrument while also improving its audibility and tactility. Tempering is a heat treatment method. The audibility and tactility of instruments can be further explained by understanding that in many surgical procedures, surgeons work with a limited field of view. The advantages that the clip according to the invention has compared to conventional clips when working in this way are:
This means that surgeons can rely on touch and hearing to know when a particular step in a surgical procedure is complete. For example, when closing a blood vessel with a latch clip, the surgeon cannot see this step and therefore there is no resistance (tactile) to closing the clip and a click or snap when closing the latch. I have no choice but to rely on the sound (audibility). The inventors have found that the novel method of the present invention surprisingly improves these properties in surgical instruments made of polymers of p-dioxanone. The novel method of the present invention also provides surgical instruments with improved shelf life in that the instruments are better resistant to hydrolysis caused by residual moisture in the packaging. In accordance with the present invention, a novel method for treating injection molded surgical instruments made of polymers of p-dioxanone to improve both of the aforementioned properties consists of: The device is dried under a nitrogen atmosphere at a temperature not exceeding 30° C. for a period sufficient to substantially remove all moisture from the device. Dry the utensils in an oxygen-free, inert dry atmosphere, preferably a nitrogen atmosphere, at a temperature of 50-90 °C, preferably 80-80 °C without constraining the dry equipment.
Heat at a temperature of 85°C for at least 7 hours. The novel product of the invention thus obtained is an injection molded surgical instrument consisting of a polymer of p-dioxanone having a density of at least 1.384 g/cm 3 and a crystallinity of at least 43%, preferably at least 45%. . The novel surgical instrument of the present invention has the general formula produced by a polymer consisting of units having
In the above formula, x is the degree of polymerization in the desired polymer. This polymer has the following formula Manufactured from monomers with The surgical instrument of the present invention is manufactured by an injection molding process. A specific and preferred method of injection molding is described in co-filed patent application Ser. By drying the molded polymer, substantially all of the moisture in the molded product is removed. The polymer is dried at a temperature below 30° C. with a nitrogen purge to remove substantially all moisture and reduce the potential for hydrolysis of the absorbent polymer. After drying the molded product, it is
The atmosphere is an inert, oxygen-free gas, preferably nitrogen for economy, although inert gases other than nitrogen may be used. The molded article in a dry, inert atmosphere is heated at a temperature of 50°C to 90°C, preferably 80 to 85°C, for at least 7 hours. During this heating operation, the equipment is placed under unrestrained conditions. Here, "placing the instrument under unrestrained conditions" means that the surgical instrument is not held by restraint means when the surgical instrument is heat treated. This restraining means is often referred to as an "annealing rack." The purpose of conventional annealing racks is to prevent deformation of the device during heat treatment. Unlike this conventional heat treatment process,
In the present invention, restraints such as annealing racks are not used and the surgical instrument is heat treated without restraint. In the present invention, the surgical instrument is heat treated, for example by simply placing it in an oven and heating it to the desired temperature. The molded product is then packaged,
Sterilize, dry and prepare for use. Generally, the polymers used in accordance with the present invention are sterilized by treatment with ethylene oxide, as is known in the art. The above treatments improve the strength of various forms used in surgical instruments. This method not only improves the baseline or initial strength of the device, but also reduces the amount of strength that the device loses while in vivo. The tempering process according to the present invention further improves both the tactile and audible response of surgical instruments manufactured by the method of the present invention and greatly improves the shelf life of the instruments by increasing their hydrolytic resistance. do. The tempering process of the present invention is believed to produce crystallites within the molded article that enhance its hydrolysis resistance and improve the strength and functional integrity of the molded article. The novel surgical instruments of the present invention made from polymers and copolymers of p-dioxanone comprise at least
It has a density of 1.3845g/ cm3 . It is essential that the device has this density in order to have the improved properties mentioned above. Furthermore, the novel surgical instruments of the present invention have a crystallinity of at least 43%, preferably 45%. Clip crystallinity is a measure of clip strength and functional integrity. X-ray diffraction is a convenient method for determining the amount and type of crystallization in clips. X-ray crystallinity data are obtained using a Phillips vertical goniometer equipped with a graphite crystal monochromator and a scintillation detector connected to a strip chart recorder.
Using CuKa radiation and mounting the sample, measurements are made using parafocusing geometry. The diffractogram obtained for the sample is analyzed for crystallinity and amorphous content using a DuPont curve analyzer. Reference is now made to the drawings, which illustrate some specific types of surgical instruments of the present invention that can be manufactured by the method of the present invention. FIG. 1 shows a ligating clip 10. This clip is used to ligate blood vessels during various surgical procedures.
The clip consists of two leg members 11 and 12 joined at their proximal ends by a hinged portion 13. This leg member has both ends 14 and 15
to secure it. FIG. 2 shows the clip of FIG. 1 in its closed position, occluding the lumen of blood vessel 16. When using this clip, the surgeon very often has to position it where the eye cannot see, so it is important to feel the resistance of the hinge and latching mechanism: That is, surgical instruments require tactile feedback. The surgeon also desires to hear an audible click as he deflects the leg member 11 and grabs the opposite leg member 12. Another thermally shaped surgical instrument is shown in FIG. This device is a two-part fastener for closing wounds and the like. The fastener consists of a staple 21 and a receiver 22 for the staple. FIG. 4 shows yet another thermally formed device 25 for use in closing wounds, whether in the skin, fascia, or muscles. The device consists of a thin elongated section 26 and crossbars 27 located at its ends. Using a suitable tool with a hollow needle to hold the device, insert the needle into the tissue, as shown in FIG.
A long section 26 that spans the wound area using this instrument.
The wound is closed by crossbars 27 which grip both sides of the wound area. Other surgical instruments within the scope of the invention include solid articles such as orthopedic pins, clamps, screws and plates; clips, clasps, hooks, buttons and clamps; jaw prostheses and the like. needles; intrauterine instruments; various tubes such as ureters, cystic ducts, etc.; surgical instruments, vascular tubes, connectors or supports; and vertebral pelvises, and other similar It is a device of. The in-vivo strength properties of the surgical instrument according to the invention are of critical importance. It is imperative that a surgical instrument retain its desired functionality over an extended period of time when placed in a slowly absorbing environment, such as biological tissue. The instrument must remain strong for a sufficient period of time to perform the desired job in such an environment. The novel device according to the invention has excellent in-vivo properties, as further illustrated in the specific examples below. EXAMPLE A large number of clips are injection molded as described in co-pending patent application no. These clips have the configuration shown in FIG. 1 and are processed in accordance with the present invention. The clips are washed twice for 15 minutes in an isopropanol bath with agitation.
Approximately 1 ml of isopropanol is used per clip in the washing step. Pour off the alcohol and place one layer of paper clips in a flat dish.
Dry under reduced pressure for 16 hours to remove alcohol. 20
Remove individual cleaned clips, measure their density and test for opening and hinge forces. Density is measured using a density gradient column prepared according to the method of ASTM D-1505. (The density gradient used spans densities from 1350 to 1400, encompassing the typical range observed for polydioxanone clips). A standard calibrated density float is placed in a column graduated in millimeters and allowed to settle to various positions in the gradient column.
Record the density and location of each standard density float. Plot the relationship between density and position in the column to obtain a linear relationship. Place the three clips into the gradient density column and allow to settle for 5-10 minutes. Record the position of the clip. Find the average clip position. The corresponding clip density can be determined by the linear relationship between density and column position. Clip hinge strength is the force required to break the clip in the hinge area and is measured as follows: Cut off the latching mechanism at the tip of the clip and place the cut end of the leg member into the opposing grips of the Instron tensile tester.
The grip has a steel surface. Move the grip using an extension rate of 5 mm/min and measure the force in Kg required to break the hinge. The opening force of a clip is the force required to open the clip after it has been closed, and is measured as follows. Close the clip over two pieces of mylar polyester film in a row. The film piece is 4 mm wide, 178 mm long, and 0.076 mm thick. Separate the ends of the film strip and bend into opposing U shapes. One end of the U-shaped piece is placed in the grip of the Instron tensile tester, while the opposite end of the U-shaped piece is placed in the opposite grip of the Instron tensile tester. The grip has a steel surface. Move the grip using an extension rate of 5 mm/min and measure the force in Kg required to open the clip. The crystallinity of the clip is determined as described above. Place the remaining clips in a heater and heat treat. Nitrogen is passed over the clip at a rate of 250 cubic feet per minute at room temperature. The temperature in the heater is then raised to 85°C and maintained at that temperature under a nitrogen flow of 50 cubic feet per minute. After 8 and 16 hours, the clips are removed, placed in a desiccator, and cooled under vacuum. Place 10 paper clips in each bag in foil bags. The bag is sterilized with ethylene oxide, degassed and sealed in a nitrogen atmosphere. The clips are measured for density and crystallinity and tested for opening strength and hinge strength. The results of the test are shown in Table 1 below.

【表】 可聴/触覚応答 なし 顕著 顕著
上表から明らかなように、本発明に従つて処理
したクリツプは、未処理のクリツプよりも大きな
結晶化度を有し、より密度が大であり且つ向上し
た強さを有している。 焼きもどししないもの、8時間焼きもどしした
もの及び16時間焼きもどししたもののそれぞれの
クリツプを、生体内強度保持性について試験す
る。生体内強度特性は次のようにして測定する。
各ロツトからのクリツプを含有する包装を開いて
クリツプを取り出す。これらのクリツプを、明ら
かなかたよりがないようにして、それぞれ10個ず
つから成るグループに分ける。各グループは蝶つ
がい強度試験の1間隔に相当する。150〜300gの
体重の特別なロングエバンスネズミを手術前に最
低1週間環境に順応させる。それぞれのねずみに
手術の準備をしたのち、麻酔をかけてから2クリ
ツプを各ねずみ中に移植する。クリツプはネズミ
の右と左の臀部の背側の皮膚中に移植する。移植
後の種々の時間に5匹のネズミを安楽死させてク
リツプを注意して取り出す。クリツプの先端にお
ける掛けがね機構を切除し、脚部分の切断端をイ
ンストロン引張試験機の相対するつかみ中にはさ
むことによつてクリツプの蝶つがい強さを測定す
る。つかみは鋼製の表面を有する。5mm/分の伸
張速度を用いてつかみを移動させて、蝶つがいを
破壊するために要する力をKg単位で測定する。試
験の結果を下記第2表に示す。
[Table] Audible/tactile response None Significant Significant
As can be seen from the table above, the clips treated according to the invention have a greater degree of crystallinity, are denser and have improved strength than the untreated clips. Untempered, 8 hour tempered, and 16 hour tempered clips are tested for in vivo strength retention. In-vivo strength properties are measured as follows.
Open the package containing the clips from each lot and remove the clips. Divide these clips into groups of 10 each without any obvious bias. Each group corresponds to one interval of the hinge strength test. Specialized Long-Evans rats weighing 150-300 g are allowed to acclimate for at least 1 week before surgery. After each mouse is prepared for surgery and anesthetized, two clips are implanted into each mouse. The clips are implanted into the dorsal skin of the right and left buttocks of the rat. Five mice are euthanized at various times after implantation and the clips are carefully removed. The hinge strength of the clip is measured by cutting off the latching mechanism at the tip of the clip and placing the cut end of the leg portion between the opposing grips of an Instron tensile tester. The grip has a steel surface. The force required to break the hinge is measured in Kg by moving the grip using an extension rate of 5 mm/min. The results of the test are shown in Table 2 below.

【表】 上記の結果は本発明に従つて処理したクリツプ
の生体内における性質の予想外に大きな改善を明
白に示している。 ここにいくつかの特定的な実施形態を含めて本
発明を説明したが、この技術分野の熟練者には、
本発明の精神及び範囲から逸脱することなく、本
発明に対する修飾と変更が可能であることは明白
であろう。
TABLE The above results clearly demonstrate an unexpectedly large improvement in the in vivo properties of the clips treated according to the invention. Having described the invention herein in terms of several specific embodiments, those skilled in the art will understand that
It will be apparent that modifications and variations to this invention are possible without departing from its spirit and scope.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による結紮クリツプの拡大した
遠近図である。第2図は血管を閉じた位置にある
第1図のクリツプを示す拡大した遠近図である。
第3図は本発明いよるもう一つの外科器具の拡大
した遠近図である。第4図は本発明による更に他
の外科器具の遠近図である。第5図は傷を閉じた
位置にある第4図の器具を示す断面図である。 10:結紮クリツプ、11,12:脚部材、1
3:蝶つがい部分、16:血管、20:留め具、
21:ホツチキス針、22:受け具。
FIG. 1 is an enlarged perspective view of a ligation clip according to the invention. FIG. 2 is an enlarged perspective view showing the clip of FIG. 1 in a closed vessel position.
FIG. 3 is an enlarged perspective view of another surgical instrument according to the present invention. FIG. 4 is a perspective view of yet another surgical instrument according to the present invention. FIG. 5 is a cross-sectional view of the device of FIG. 4 in a closed wound position; 10: Ligation clip, 11, 12: Leg member, 1
3: Hinge part, 16: Blood vessel, 20: Fastener,
21: Staple, 22: Receiver.

Claims (1)

【特許請求の範囲】 1 式 を有するモノマーから製造した重合体から成る、
少なくとも1.3845g/cm3の密度と少なくとも43%
の結晶化度を有する、射出成形した外科器具。 2 少なくとも45%の結晶化度を有する、特許請
求の範囲第1項記載の器具。 3 器具は結紮クリツプである、特許請求の範囲
第1または2項記載の器具。 4 蝶つがい部分により基部末端で結合した一対
の脚部材から成る、特許請求の範囲第3項記載の
結紮クリツプ。 5 脚部材の先端は掛けがね手段を包含する、特
許請求の範囲第4項記載の結紮クリツプ。 6 (a) 射出成形した器具を30℃未満の温度で乾
燥することによつて器具から実質的にすべての
水分を除き;且つ (b) 乾燥した器具を拘束することなく50〜90℃の
温度で乾燥不活性雰囲気中で少なくとも7時間
加熱し、それによつて器具の強度と機能的統合
性を改良することを特徴とする、式 を有するモノマーから製造した重合体から成る射
出成形した外科器具の処理方法。 7 器具は結紮クリツプである、特許請求の範囲
第6項記載の方法。 8 乾燥した器具を80〜85℃の温度に加熱する、
特許請求の範囲第6項記載の方法。 9 不活性雰囲気は実質的に水分を含有しない窒
素雰囲気である、特許請求の範囲第6項または8
項記載の方法。
[Claims] 1 formula consisting of a polymer made from a monomer having
Density of at least 1.3845g/ cm3 and at least 43%
An injection molded surgical instrument having a crystallinity of . 2. The device of claim 1 having a crystallinity of at least 45%. 3. The device according to claim 1 or 2, wherein the device is a ligation clip. 4. The ligating clip of claim 3, comprising a pair of leg members joined at their proximal ends by a hinge portion. 5. The ligation clip of claim 4, wherein the distal end of the leg member includes a hooking means. 6 (a) Drying the injection molded device at a temperature below 30°C to remove substantially all moisture from the device; and (b) Drying the device at a temperature between 50 and 90°C without constraining the dried device. for at least 7 hours in a dry inert atmosphere, thereby improving the strength and functional integrity of the device. A method of treating an injection molded surgical device comprising a polymer made from a monomer having 7. The method of claim 6, wherein the device is a ligation clip. 8. Heat the dry utensils to a temperature of 80-85℃,
A method according to claim 6. 9. Claim 6 or 8, wherein the inert atmosphere is a nitrogen atmosphere containing substantially no moisture.
The method described in section.
JP57126844A 1981-07-30 1982-07-22 Annealed polydioxane surgical instrument and production thereof Granted JPS5827548A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US28827581A 1981-07-30 1981-07-30
US288275 1981-07-30

Publications (2)

Publication Number Publication Date
JPS5827548A JPS5827548A (en) 1983-02-18
JPH0370499B2 true JPH0370499B2 (en) 1991-11-07

Family

ID=23106456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57126844A Granted JPS5827548A (en) 1981-07-30 1982-07-22 Annealed polydioxane surgical instrument and production thereof

Country Status (7)

Country Link
JP (1) JPS5827548A (en)
AU (1) AU555385B2 (en)
BR (1) BR8204468A (en)
CA (1) CA1196158A (en)
DE (1) DE3227828A1 (en)
FR (1) FR2510411B1 (en)
GB (1) GB2102827B (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014861A (en) * 1983-07-05 1985-01-25 株式会社日本メデイカル・サプライ Adhesion preventing material
ES2091185T3 (en) * 1984-03-06 1996-11-01 United States Surgical Corp A PROCEDURE FOR THE PREPARATION OF TWO-PHASE COMPOSITIONS FOR ABSORBABLE SURGICAL DEVICES.
US4646741A (en) * 1984-11-09 1987-03-03 Ethicon, Inc. Surgical fastener made from polymeric blends
US4955913A (en) * 1985-03-28 1990-09-11 Robinson Walter C Surgical tie
US4671280A (en) * 1985-05-13 1987-06-09 Ethicon, Inc. Surgical fastening device and method for manufacture
DE3517456A1 (en) * 1985-05-14 1986-11-20 Serapharm GmbH & Co KG, 4400 Münster Bone replacement material and process for its production
US4744365A (en) * 1986-07-17 1988-05-17 United States Surgical Corporation Two-phase compositions for absorbable surgical devices
US6228954B1 (en) 1991-02-12 2001-05-08 United States Surgical Corporation Blends of glycolide and/or lactide polymers and caprolactone and/or trimethylene carbonate polymers and absorabable surgical devices made therefrom
US5320624A (en) * 1991-02-12 1994-06-14 United States Surgical Corporation Blends of glycolide and/or lactide polymers and caprolactone and/or trimethylene carbonate polymers and absorbable surgical devices made therefrom
US5403347A (en) * 1993-05-27 1995-04-04 United States Surgical Corporation Absorbable block copolymers and surgical articles fabricated therefrom
US5522841A (en) * 1993-05-27 1996-06-04 United States Surgical Corporation Absorbable block copolymers and surgical articles fabricated therefrom
US5431679A (en) * 1994-03-10 1995-07-11 United States Surgical Corporation Absorbable block copolymers and surgical articles fabricated therefrom
US5611986A (en) * 1994-07-05 1997-03-18 Ethicon, Inc. Medical devices containing high inherent viscosity poly(p-dioxanone)
US5578662A (en) 1994-07-22 1996-11-26 United States Surgical Corporation Bioabsorbable branched polymers containing units derived from dioxanone and medical/surgical devices manufactured therefrom
US6206908B1 (en) 1994-09-16 2001-03-27 United States Surgical Corporation Absorbable polymer and surgical articles fabricated therefrom
US5618313A (en) * 1994-10-11 1997-04-08 United States Surgical Corporation Absorbable polymer and surgical articles fabricated therefrom
DE19601477C2 (en) * 1996-01-17 1999-12-16 Axel Kirsch Fastening nail
EP0786259B1 (en) * 1996-01-19 2004-03-31 United States Surgical Corporation Absorbable polymer blends and surgical articles fabricated therefrom
US6191236B1 (en) 1996-10-11 2001-02-20 United States Surgical Corporation Bioabsorbable suture and method of its manufacture
US6007565A (en) * 1997-09-05 1999-12-28 United States Surgical Absorbable block copolymers and surgical articles fabricated therefrom
US6277927B1 (en) 1997-11-26 2001-08-21 United States Surgical Corporation Absorbable block copolymers and surgical articles fabricated therefrom
JPH11203837A (en) 1998-01-16 1999-07-30 Sony Corp Editing system and method therefor
US20140107761A1 (en) 2004-07-26 2014-04-17 Abbott Cardiovascular Systems Inc. Biodegradable stent with enhanced fracture toughness
US20060020330A1 (en) 2004-07-26 2006-01-26 Bin Huang Method of fabricating an implantable medical device with biaxially oriented polymers
US8747878B2 (en) * 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device by controlling crystalline structure
US8268228B2 (en) 2007-12-11 2012-09-18 Abbott Cardiovascular Systems Inc. Method of fabricating stents from blow molded tubing
US8778256B1 (en) 2004-09-30 2014-07-15 Advanced Cardiovascular Systems, Inc. Deformation of a polymer tube in the fabrication of a medical article
US7971333B2 (en) 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US8012402B2 (en) 2008-08-04 2011-09-06 Abbott Cardiovascular Systems Inc. Tube expansion process for semicrystalline polymers to maximize fracture toughness
US8501079B2 (en) 2009-09-14 2013-08-06 Abbott Cardiovascular Systems Inc. Controlling crystalline morphology of a bioabsorbable stent
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US7731890B2 (en) 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
BRPI0514166A (en) 2004-08-09 2008-06-03 Univ Michigan State improved process for forming a poly (1,4-dioxan-2-one) copolymer with a cyclic ester monomer, process for forming a poly (1,4-dioxan-2-one) copolymer and a cyclic ester, process for forming a poly (1,4-dioxan-2-one) copolymer and a cyclic ester mixed with additional ingredients, anhydrous poly (1,4-dioxan-2-one) copolymer, and a copolymer of poly (1,4-dioxan-2-one) with a cyclic ester monomer
US8043553B1 (en) 2004-09-30 2011-10-25 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article
US8173062B1 (en) 2004-09-30 2012-05-08 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube in fabricating a medical article
US7875233B2 (en) 2004-09-30 2011-01-25 Advanced Cardiovascular Systems, Inc. Method of fabricating a biaxially oriented implantable medical device
US7740791B2 (en) 2006-06-30 2010-06-22 Advanced Cardiovascular Systems, Inc. Method of fabricating a stent with features by blow molding
US7666342B2 (en) 2007-06-29 2010-02-23 Abbott Cardiovascular Systems Inc. Method of manufacturing a stent from a polymer tube
US8370120B2 (en) 2010-04-30 2013-02-05 Abbott Cardiovascular Systems Inc. Polymeric stents and method of manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5290183A (en) * 1976-01-12 1977-07-28 Ethicon Inc Absorptive binding synthetic yarn

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN151996B (en) * 1979-06-18 1983-09-17 Ethicon Inc
CA1157335A (en) * 1979-06-18 1983-11-22 Namassivaya Doddi Plastic ligating clips

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5290183A (en) * 1976-01-12 1977-07-28 Ethicon Inc Absorptive binding synthetic yarn

Also Published As

Publication number Publication date
FR2510411B1 (en) 1986-09-12
GB2102827A (en) 1983-02-09
DE3227828C2 (en) 1992-03-19
GB2102827B (en) 1984-12-19
AU8641782A (en) 1983-02-03
DE3227828A1 (en) 1983-02-17
AU555385B2 (en) 1986-09-25
BR8204468A (en) 1983-07-19
FR2510411A1 (en) 1983-02-04
CA1196158A (en) 1985-11-05
JPS5827548A (en) 1983-02-18

Similar Documents

Publication Publication Date Title
JPH0370499B2 (en)
US4620541A (en) Annealed polydioxanone surgical device having a resilient portion and an interlocking portion and method for producing the same
EP0072232B1 (en) Polyolefin surgical devices and method for producing the same
US4591630A (en) Annealed polydioxanone surgical device and method for producing the same
EP0579495B1 (en) Suture clip with reduced hinge mass
US4412617A (en) Ligating clip package
US5160339A (en) Endoscopic suture clip
EP0635241A2 (en) Biocompatible suture knot clip
US4527562A (en) Non-metallic, bio-compatible hemostatic clips
JPS59168848A (en) Antiseptic surgical apparatus made of nonmetal having affinity to organism
US7604609B2 (en) Bendable, reusable medical instruments with improved fatigue life
US4449531A (en) Non-metallic, bio-compatible hemostatic clips with interlocking latch means
US4519501A (en) Ligating clip and clip applier package
US6074380A (en) Device and method for transcutaneous surgery
US4602632A (en) Bio absorbable metal hemostatic clip
Tator et al. Value of normothermic perfusion, hypothermic perfusion, and durotomy in the treatment of experimental acute spinal cord trauma
JP2004107670A (en) Coating reducing resistance of tissue
JPH0254103B2 (en)
GB2124502A (en) Surgical clips
EP0519703B1 (en) Endoscopic suture clip
CN112120753A (en) Absorbable polymer hemostatic clamp
CN215938772U (en) Radioactive particle chain silica gel sheet device
CN213217391U (en) High-reliability degradable magnesium alloy vascular clamp
Nachemson et al. Wound strength in a clinical material
JPH0112497B2 (en)