JPH0370497B2 - - Google Patents

Info

Publication number
JPH0370497B2
JPH0370497B2 JP59042465A JP4246584A JPH0370497B2 JP H0370497 B2 JPH0370497 B2 JP H0370497B2 JP 59042465 A JP59042465 A JP 59042465A JP 4246584 A JP4246584 A JP 4246584A JP H0370497 B2 JPH0370497 B2 JP H0370497B2
Authority
JP
Japan
Prior art keywords
optical system
slit
optical
irradiation
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59042465A
Other languages
Japanese (ja)
Other versions
JPS60188150A (en
Inventor
Shinya Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOPUKON KK
Original Assignee
TOPUKON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOPUKON KK filed Critical TOPUKON KK
Priority to JP59042465A priority Critical patent/JPS60188150A/en
Publication of JPS60188150A publication Critical patent/JPS60188150A/en
Publication of JPH0370497B2 publication Critical patent/JPH0370497B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laser Surgery Devices (AREA)
  • Radiation-Therapy Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は眼底、硝子体あるいは紅彩を局部的に
凝固あるいは切開するために使用する眼科用光治
療器、さらに詳しくはスリツトランプ顕微鏡付の
眼科用光治療器に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an ophthalmological phototherapy device used to locally coagulate or incise the fundus, vitreous body, or erythema, and more specifically to an ophthalmological phototherapy device equipped with a slit lamp microscope. Regarding phototherapy equipment.

〔従来技術〕[Prior art]

従来のスリツトランプ顕微鏡付の眼科用治療器
の例としては、照射光源としてアルゴンレーザー
を使用した第1図に示すものが知られている。す
なわち、該光治療器は、第1図に示すように、被
検眼の眼底等の被凝固点Pを通る鉛直軸線O,
O′を中心に軸支された双眼実体顕微鏡系10と、
光治療用光束を照射する照射光学系20と、被検
眼をスリツト照明するスリツト照明光学系30と
からなる。
As an example of a conventional ophthalmic treatment device equipped with a slit lamp microscope, the one shown in FIG. 1 that uses an argon laser as the irradiation light source is known. That is, as shown in FIG.
a binocular stereoscopic microscope system 10 pivoted around O';
It consists of an irradiation optical system 20 that irradiates a light beam for phototherapy, and a slit illumination optical system 30 that slit-illuminates the eye to be examined.

双眼実体顕微鏡系10は、対物レンズ12と接
眼レンズ14とからなり、点Pを観察するために
利用される。照射光学系20は、アルゴンレーザ
ー光を該光学系に導くために設けられたオプテイ
カルフアイバーの出射端22から発せられたレー
ザー光束を、その光軸を投影レンズ24及びミラ
ー26によつて双眼実体顕微鏡系10の光軸と同
軸として、点Pに照射させる。スリツト照明光学
系30は、光源ランプ32から発せられた光束ミ
ラー34及び集光レンズ35、続いて可変スリツ
ト絞り36を通過させ、さらに対物レンズ37及
び半円補助対物レンズ38、ミラー40,42に
よつてスリツト36の像を点Pに合焦させる。
The binocular stereomicroscope system 10 includes an objective lens 12 and an eyepiece lens 14, and is used to observe a point P. The irradiation optical system 20 converts the laser beam emitted from the output end 22 of an optical fiber provided to guide the argon laser beam to the optical system, and converts the optical axis of the laser beam into a binocular object using a projection lens 24 and a mirror 26. The point P is irradiated coaxially with the optical axis of the microscope system 10. The slit illumination optical system 30 allows the light beam emitted from the light source lamp 32 to pass through a mirror 34 and a condenser lens 35, then through a variable slit diaphragm 36, and then to an objective lens 37, a semicircular auxiliary objective lens 38, and mirrors 40, 42. The image of the slit 36 is thus focused on the point P.

ここで、半円補助対物レンズ38は、光束4
4,46の光路長差を補償して両光束44,46
の合焦位置を点Pに一致させる作用をなすが、両
光束44,46の投影倍率が異なるものとなるた
め、スリツト像が2重像として観察されてしま
い、スリツトランプとしては不適当であつた。ま
た、この問題を解決するためにミラー40,42
のいずれか一方を無くして光束44,46のいず
れか一方のみでスリツト像を投影することが考え
られるが、これはスリツト像の光量不足という新
たな問題が発生する。さらに、この光量不足の問
題を解決するため全スリツト投影光束すなわち光
束44,46に対応する光束の両方を合せたもの
をミラー40,42のいずれか一方で反射させて
投影してもよいが、この場合スリツト像が点Pの
像面に対し傾斜するという問題が発生する。この
問題は本装置を従来のように眼底疾患の治療のみ
に使用する場合には大きな障害とならなかつた
が、最近のように眼科用光治療装置を虹彩切除術
前眼部疾患の治療に使用するようになると、該ス
リツト像面が点Pにおける双眼実体顕微鏡の光軸
に対し垂直な面に一致することが強く望まれるよ
うになつている。
Here, the semicircular auxiliary objective lens 38 has a luminous flux of 4
By compensating for the difference in optical path length between 44 and 46, both light beams 44 and 46
However, since the projection magnifications of the two light beams 44 and 46 are different, the slit image is observed as a double image, making it unsuitable as a slit lamp. . In addition, in order to solve this problem, mirrors 40, 42
It is conceivable to eliminate either one of them and project the slit image using only one of the light beams 44 and 46, but this creates a new problem of insufficient light quantity for the slit image. Furthermore, in order to solve this problem of insufficient light quantity, the entire slit projection light beam, that is, the combination of both light beams corresponding to the light beams 44 and 46 may be reflected by either mirror 40 or 42 and projected. In this case, a problem arises in that the slit image is tilted with respect to the image plane of point P. This problem did not pose a major problem when this device was conventionally used only for the treatment of ocular fundus diseases, but recently, ophthalmic phototherapy devices have been used to treat ocular diseases before iridectomy. As a result, it is strongly desired that the slit image plane coincide with a plane perpendicular to the optical axis of the binocular stereomicroscope at point P.

従来のスリツトランプ顕微鏡付の眼科用光治療
器の他の例としては、治療用光源としてパルスレ
ーザーを使用した装置が提案されている。該装置
は、第2図の側面図及び第3図の平面図に示すよ
うに、上記従来の光治療器と同様に、双眼実体顕
微鏡系110と、照射光学系130と、スリツト
照明光学系150とからなる。
As another example of a conventional ophthalmic phototherapy device equipped with a slit lamp microscope, a device using a pulsed laser as a therapeutic light source has been proposed. As shown in the side view of FIG. 2 and the plan view of FIG. 3, this device includes a binocular stereoscopic microscope system 110, an irradiation optical system 130, and a slit illumination optical system 150, similar to the conventional phototherapy device described above. It consists of.

双眼実体顕微鏡系110は、対物レンズ112
及び接眼レンズ114からなり、双眼の見込み角
αは13°〜15°である。双眼実体顕微鏡系110は
第3図に実線で示す正面位置と、想像線116,
118で示す左側位置及び右側位置に移動可能
で、正面位置110、左側位置116及び右側位
置118にある双眼実体顕微鏡系は、それぞれ後
述するダイクロイツクミラー120及び光路長補
正板122,124を包含する。光路長補正板1
22,124はダイクロイツクミラー120と同
一の光路長を有し、左、右側位置116,118
にある双眼実体顕微鏡系の光路長を正面位置11
0にある該光路長に一致させる。
The binocular stereomicroscope system 110 includes an objective lens 112
and eyepiece lenses 114, and the viewing angle α of the binoculars is 13° to 15°. The binocular stereomicroscope system 110 has a front position shown by a solid line in FIG. 3, an imaginary line 116,
The binocular stereomicroscope system, which is movable to the left and right positions indicated by 118 and located at the front position 110, the left position 116, and the right position 118, includes a dichroic mirror 120 and optical path length correction plates 122 and 124, respectively, which will be described later. . Optical path length correction plate 1
22, 124 have the same optical path length as the dichroic mirror 120, and are located at left and right positions 116, 118.
The optical path length of the binocular stereoscopic microscope system at the front position 11
The optical path length is made to match the optical path length at 0.

照射光学系130は、エネルギーの高い不可視
光のヤグレーザー(YAG Leser)を光源131
として使用しているため、患眼保護のため照射角
度を大きな立体角、例えば双眼実体顕微鏡系11
0の上記見込み角13°〜15°にほぼ等しくする必要
性がある。光源131を発した治療用光束は、集
光レンズ群132,133及びダイムロイツクミ
ラー120を介して双眼実体顕微鏡系110の光
軸との光軸と同軸に点Pに集光させられる。ダイ
クロイツクミラー120は双眼実体顕微鏡110
の可視光を透過し、照射光学系130の不可視レ
ーザ光を照射する。
The irradiation optical system 130 uses a YAG laser (YAG Laser) of invisible light with high energy as a light source 131.
Because it is used as
It is necessary to make the above-mentioned angle of view approximately equal to 13° to 15° at zero. The therapeutic light beam emitted from the light source 131 is focused on a point P coaxially with the optical axis of the binocular stereoscopic microscope system 110 via a group of condensing lenses 132 and 133 and a dimeroic mirror 120. The dichroic mirror 120 is a binocular stereomicroscope 110
visible light is transmitted therethrough, and invisible laser light from the irradiation optical system 130 is irradiated.

スリツト照明系150は、上記従来例と同様に
光源152を発した光束を、集光レンズ154、
可変スリツト絞り156、投影レンズ158及び
ミラー160を介して、双眼実体顕微鏡系110
と同軸に点Pに到達させて、スリツト像を結像さ
せる。なお、ここでミラー160は正面位置にあ
る双眼実体顕微鏡系110の両眼用光束の間に位
置するように配置されている。
The slit illumination system 150 converts the light beam emitted from the light source 152 into a condenser lens 154, as in the conventional example described above.
Binocular stereomicroscope system 110 via variable slit diaphragm 156, projection lens 158 and mirror 160
A slit image is formed by reaching point P coaxially with the point P. Note that the mirror 160 is arranged so as to be located between the binocular light beams of the binocular stereoscopic microscope system 110 located at the front position.

上記構成の眼科用光治療器においては、双眼実
体顕微鏡系110が収束状態で斜設されたダイク
ロイツクミラー120を通過するため双眼実体顕
微鏡系110により良好な観察像が得られない傾
向がある。また、双眼実体顕微鏡系110はダイ
クロイツクミラー120に関する光路長補正が必
要であるから、正面位置110及び光路長補正板
122,124のある左・右側位置116,11
8のみで観察可能であり、これら以外の中間位置
では観察不可能であるとともに、光路長補正板1
22,124が術者の作業空間を制限する問題が
ある。一方、スリツト照明光学系150もダイク
ロイツクミラー120を通過するため、良好なス
リツト像を得にくく、かつ光量不足になる問題が
ある。さらに、照射光学系130と双眼実体顕微
鏡系110の光束をダイクロイツクミラー120
により同軸系としているため、照射光学系に可視
光を使用することができない問題がある。
In the ophthalmological phototherapy device having the above configuration, since the binocular stereoscopic microscope system 110 passes through the obliquely disposed dichroic mirror 120 in a converging state, there is a tendency that a good observation image cannot be obtained by the binocular stereoscopic microscope system 110. Furthermore, since the binocular stereoscopic microscope system 110 requires optical path length correction regarding the dichroic mirror 120, the front position 110 and the left and right positions 116 and 11 where the optical path length correction plates 122 and 124 are located
8, and cannot be observed at intermediate positions other than these, and the optical path length correction plate 1
22 and 124, there is a problem that the operator's work space is limited. On the other hand, since the slit illumination optical system 150 also passes through the dichroic mirror 120, there are problems in that it is difficult to obtain a good slit image and the amount of light is insufficient. Furthermore, the light beams from the irradiation optical system 130 and the binocular stereoscopic microscope system 110 are transferred to a dichroic mirror 120.
Since it is a coaxial system, there is a problem that visible light cannot be used in the irradiation optical system.

〔発明の目的〕[Purpose of the invention]

本発明は従来のスリツトランプ顕微鏡付の眼科
用光治療器の上記問題に鑑みてなされたものであ
つて、その第1の目的はスリツト照射光学系のス
リツトの像面が双眼実体顕微鏡の光軸と直角をな
す観察像面と一致し、かつシヤープなスリツト像
が投影できる眼科用光治療器を提供することにあ
る 本発明の第2の目的は、一般のスリツトランプ
とほとんど同じ作業空間及び観察光学系の被治療
部観察の観察角の自由度を保証しうる眼科用光治
療器を提供することにある。
The present invention was made in view of the above-mentioned problems of the conventional ophthalmic phototherapy device equipped with a slit lamp microscope, and its first purpose is to ensure that the image plane of the slit of the slit irradiation optical system coincides with the optical axis of the binocular stereomicroscope. It is an object of the present invention to provide an ophthalmological phototherapeutic device that can project a sharp slit image that coincides with an observation image plane forming a right angle.A second object of the present invention is to provide a working space and an observation optical system that are almost the same as those of a general slit lamp. An object of the present invention is to provide an ophthalmologic phototherapy device that can guarantee a degree of freedom in observation angle for observing a treated area.

〔発明の構成〕[Structure of the invention]

本発明は以上の目的を達成するため次の構成上
の特徴を有する。すなわち、本発明は、双眼実体
顕微鏡系光学と、スリツト照明用光源、スリツト
絞り、該スリツト絞りを投影するための第1対物
レンズを有するスリツト照明系と、光治療用光源
及び該光治療用光源から発せられた光治療用光束
を投光するための第2対物光学系を有する照射光
学系と、前記双眼実体顕微鏡光学系の物側焦点位
置にその像側焦点を有し、かつその光軸の少なく
とも一部を該双眼実体顕微鏡光学系の光軸と一致
させた補助光学部材とを有し、前記スリツト照明
系の前記第1対物レンズと前記照射光学系の第2
対物レンズの少なくとも一方は、その光軸を前記
補助光学部材の光軸に対し偏心するように配置さ
れ、前記スリツト絞りまたは光治療用光源を前記
補助光学部材に向け、無限遠に写像するよう構成
される。
The present invention has the following structural features in order to achieve the above object. That is, the present invention provides a binocular stereoscopic microscope optical system, a slit illumination system having a light source for slit illumination, a slit aperture, a first objective lens for projecting the slit aperture, a light source for phototherapy, and a light source for phototherapy. an irradiation optical system having a second objective optical system for projecting a light beam for phototherapy emitted from the binocular stereoscopic microscope optical system; the first objective lens of the slit illumination system and the second objective lens of the irradiation optical system;
At least one of the objective lenses is arranged such that its optical axis is decentered with respect to the optical axis of the auxiliary optical member, and is configured to direct the slit diaphragm or the light therapy light source toward the auxiliary optical member and map it to infinity. be done.

従つて、上記偏心光学系を通過した光束による
スリツト像あるいは治療用光源像は上記双眼実体
顕微鏡の光軸に対し垂直な平面に結像し、その像
画質は極めて良好にすることができる。
Therefore, the slit image or therapeutic light source image formed by the light beam passing through the decentered optical system is formed on a plane perpendicular to the optical axis of the binocular stereomicroscope, and the image quality can be extremely good.

また、照明あるいは照射光学系の射出側の光学
構成を従来のように複雑にする必要がないため、
作業空間と被治療部観察のための顕微鏡部の旋回
観察位置の許容範囲を一般のスリツトランプと同
程度にまで高めることができる。
In addition, there is no need to complicate the optical configuration on the exit side of the illumination or irradiation optical system as in the past.
The allowable range of the working space and the rotating observation position of the microscope section for observing the treated area can be increased to the same level as that of a general slit lamp.

〔実施例〕〔Example〕

以下、本発明の実施例を図にもとづいて説明す
る。
Embodiments of the present invention will be described below based on the drawings.

第1実施例 第1実施例は、第4図に示すように、双眼実体
顕微鏡系310、双眼実体顕微鏡系310の光軸
312上に配置されたミラー314の上方に配置
された補助光学系である凸レンズ318、凸レン
ズ318に対し偏心して配置されたスリツト照明
光学系320及び照射光学系322からなる。
First Embodiment As shown in FIG. 4, the first embodiment includes a binocular stereoscopic microscope system 310 and an auxiliary optical system disposed above a mirror 314 disposed on the optical axis 312 of the binocular stereoscopic microscope system 310. It consists of a certain convex lens 318, a slit illumination optical system 320 and an irradiation optical system 322, which are arranged eccentrically with respect to the convex lens 318.

双眼実体顕微鏡系310は被治療部位である点
Pを中心に回動可能に配置され、第5図に示すよ
うに、左右の顕微鏡系324,326は共通の対
物レンズ328を有する。点Pを発し対物レンズ
328に入る左右顕微鏡系324,326の光軸
330,332の間にはミラー314が配置され
ている。
The binocular stereoscopic microscope system 310 is arranged so as to be rotatable around a point P, which is the treated area, and as shown in FIG. 5, the left and right microscope systems 324 and 326 have a common objective lens 328. A mirror 314 is arranged between the optical axes 330 and 332 of the left and right microscope systems 324 and 326, which emit a point P and enter an objective lens 328.

凸レンズ318は点Pに焦点があるように配置
され、かつその光軸316は双眼実体顕微鏡系3
10の光軸312と一致するように配置されてい
る。
The convex lens 318 is arranged so that its focal point is at a point P, and its optical axis 316 is connected to the binocular stereoscopic microscope system 3.
It is arranged so as to coincide with the optical axis 312 of No. 10.

スリツト照明光学系320は、光源340、焦
光レンズ342、可変スリツト絞り344及び対
物レンズ346をスリツト照明光軸348上に配
置してなり、焦光レンズ342は光源340から
発せられた光束を集束させて可変スリツト絞り3
44を照明し、可変スリツト絞り344は対物レ
ンズ346の焦点位置に配置されており、ために
対物レンズ346により無限遠に写像される。ス
リツト照明系320は、その光軸348が凸レン
ズ318の光軸316に対し平行でかつ位置ずれ
をもつて配置された、偏心光学系として形成され
ている。従つて、以上の構成において、可変スリ
ツト絞り344を通過した光束は対物レンズ34
6、凸レンズ318及びミラー314によつて点
Pに到達して結像するが、その像面にはミラー3
14で反射された凸レンズ318の光軸316と
直角に交わる。
The slit illumination optical system 320 includes a light source 340, a focusing lens 342, a variable slit aperture 344, and an objective lens 346 arranged on a slit illumination optical axis 348, and the focusing lens 342 focuses the light beam emitted from the light source 340. Variable slit aperture 3
44, the variable slit diaphragm 344 is located at the focal point of the objective lens 346, and is therefore imaged to infinity by the objective lens 346. The slit illumination system 320 is formed as a decentered optical system whose optical axis 348 is parallel to and offset from the optical axis 316 of the convex lens 318 . Therefore, in the above configuration, the light beam passing through the variable slit diaphragm 344 is directed to the objective lens 34.
6. The convex lens 318 and the mirror 314 reach the point P and form an image, but the mirror 3 is on the image plane.
The optical axis 316 of the convex lens 318 reflected by the lens 14 intersects at right angles.

なお、上述したように、この光軸316は顕微
鏡310の光軸312と同軸であるため、結局、
スリツト像面は光軸312と直交させることがで
きる。
Note that, as described above, since this optical axis 316 is coaxial with the optical axis 312 of the microscope 310, in the end,
The slit image plane can be orthogonal to the optical axis 312.

照射光学系322は、可視光の照射光源360
例えばアルゴンレーザー光を導光するオプテイカ
ルフアイバーの出射端、及び対物レンズ362を
照射光軸364上に配置してなり、照射光源36
0は対物レンズ362の焦点位置に配置されてお
り、その光源を無限遠に写像される。照射光学系
360は、その光軸364がスリツト照明光軸3
48と同様に、凸レンズ318の光軸316に対
し平行かつ位置ずれをもつて配置された偏心光学
系を形成している。従つて、以上の構成によつ
て、照射光源360から出射された光束は対物レ
ンズ362、凸レンズ318及びミラー314に
よつて点Pに到達して結像され、その像面はミラ
ー314で屈曲された凸レンズ318の光軸31
6と直角に交わる。これにより前記スリツト照明
系と同様にその像面は、顕微鏡系310の光軸3
12とも直交する。
The irradiation optical system 322 includes a visible light irradiation light source 360
For example, the output end of an optical fiber that guides the argon laser beam and the objective lens 362 are arranged on the irradiation optical axis 364, and the irradiation light source 36
0 is placed at the focal point of the objective lens 362, and the light source is mapped to infinity. The irradiation optical system 360 has an optical axis 364 that is the slit illumination optical axis 3.
48, a decentered optical system is formed which is arranged parallel to and offset from the optical axis 316 of the convex lens 318. Therefore, with the above configuration, the light beam emitted from the irradiation light source 360 reaches the point P and is imaged by the objective lens 362, the convex lens 318, and the mirror 314, and the image plane is bent by the mirror 314. The optical axis 31 of the convex lens 318
Intersects 6 at a right angle. As a result, similarly to the slit illumination system, the image plane is set to the optical axis 3 of the microscope system 310.
It is also perpendicular to 12.

第1実施例では、スリツト照明光学系及び照射
光学系の両方とも偏心光学系を形成しているが、
その変形としてスリツト照明光学系又は照射光学
系のいずれか一方のみを偏心光学系として形成し
てもよい。
In the first embodiment, both the slit illumination optical system and the irradiation optical system form decentered optical systems.
As a modification thereof, only either the slit illumination optical system or the irradiation optical system may be formed as an eccentric optical system.

第2実施例 第1実施例において、第5図に示すように、ス
リツト照射光学系320と照射光学系322に関
し、ミラー314で反射される位置における光束
の幅がほぼ等しい場合であつたが、本実施例は同
所において照射光学系322の光束がスリツト照
明光学系320に比較して極めて大きい第6図及
び第7図に示す場合、すなわち患眼を照射光束か
ら保護するため照射光学系の立体角を大きくした
場合のものである。
Second Embodiment In the first embodiment, as shown in FIG. 5, regarding the slit irradiation optical system 320 and the irradiation optical system 322, the width of the luminous flux at the position reflected by the mirror 314 was approximately equal; In this embodiment, in the case shown in FIGS. 6 and 7 where the luminous flux of the irradiation optical system 322 is extremely large compared to the slit illumination optical system 320 at the same location, that is, in order to protect the affected eye from the irradiation luminous flux, the irradiation optical system is This is the case when the solid angle is increased.

第6図及び第7図において、スリツト照明光学
系の光束400は対物レンズ402によつて無限
遠写像光束となつてダイクロイツクミラー404
を透過後、凸レンズ406及びミラー408を介
して点Pに到達し、スリツト像を結像する(スリ
ツト光形成手段は第1実施例と同様のため図示せ
ず)。一方、照射光学系の例えばYAGレーザ光源
(図示せず)からの不可視光束410は対物レン
ズ412によつて無限遠写像光束となり、ダイク
ロイツクミラー404によつて反射された後、凸
レンズ406及びミラー408を介して点Pに焦
光される。さらに、双眼実体顕微鏡系の観察光束
420は、第6図に示すように、ミラー408に
おいてスリツト照明光学系の光束400の両側を
通過し、第一実施例と同様に顕微鏡系324,3
26に対物レンズ328を介して入射される。ミ
ラー408は、第6図に示すように、逆羽子板形
であつて、上方の幅の狭い部分でスリツト照明光
学系の光束400を反射し、下方の幅の広い部分
で照射光学系の不可視光束410を反射する。従
つて、本実施例においては、第8図Aに示すよう
に、従来に比較して極めて幅の広い照射光束を使
用しているにもかかわらず、双眼実体顕微鏡系の
光束420はスリツト照明光学系の光束400の
両側を通過する。なお、本実施例では、スリツト
照明光学系の光軸は補助光学部材である凸レンズ
406の光軸と同軸とし、照射光学系の光軸のみ
を凸レンズ406の光軸から偏心させた構成とし
た。これにより光束幅の大きい照射光束を反射さ
せるミラー408の大面積反射部を顕微鏡32
4,326の光軸330,332を含む平面Dよ
り下方にほり出させることができ、光束幅の狭い
スリツト照明光束を反射させる小面積部のみ平面
Dと交差するように構成することができる。これ
により第8図Bに示すように一般のスリツトラン
プと同じ程度に双眼実体顕微鏡系310を左右に
旋回しても、その観察光束420の一方がミラー
408のスリツト照明光反射用の小面積部と干渉
するまでは顕微鏡310を移動して斜めの観察が
可能である。
In FIGS. 6 and 7, a light beam 400 from the slit illumination optical system is converted into an infinitely mapped light beam by an objective lens 402, and is transferred to a dichroic mirror 404.
After passing through, the light reaches point P via a convex lens 406 and mirror 408, and forms a slit image (the slit light forming means is not shown because it is the same as in the first embodiment). On the other hand, an invisible light beam 410 from, for example, a YAG laser light source (not shown) in the irradiation optical system is turned into an infinitely mapped light beam by an objective lens 412, reflected by a dichroic mirror 404, and then transferred to a convex lens 406 and a mirror 408. The light is focused on point P via . Furthermore, as shown in FIG. 6, the observation light beam 420 of the binocular stereoscopic microscope system passes through the mirror 408 on both sides of the light beam 400 of the slit illumination optical system, and the microscope system 324, 3
26 through an objective lens 328. As shown in FIG. 6, the mirror 408 has an inverted battledore shape, and reflects the light beam 400 from the slit illumination optical system at its narrow upper part, and reflects the invisible light beam from the illumination optical system at its wide lower part. Reflect 410. Therefore, in this embodiment, as shown in FIG. 8A, although an extremely wide illumination light beam is used compared to the conventional one, the light beam 420 of the binocular stereoscopic microscope system is transmitted through the slit illumination optical system. It passes through both sides of the beam 400 of the system. In this embodiment, the optical axis of the slit illumination optical system is coaxial with the optical axis of the convex lens 406, which is an auxiliary optical member, and only the optical axis of the irradiation optical system is decentered from the optical axis of the convex lens 406. As a result, the large-area reflecting portion of the mirror 408 that reflects the irradiation light beam having a large beam width can be transferred to the microscope 32.
It can be made to project downward from the plane D including the 4,326 optical axes 330, 332, and can be configured so that only the small area portion that reflects the slit illumination light beam having a narrow beam width intersects the plane D. As a result, as shown in FIG. 8B, even if the binocular stereoscopic microscope system 310 is turned left and right to the same degree as a general slit lamp, one of the observation light beams 420 will be reflected by the small area portion of the mirror 408 that reflects the slit illumination light. Oblique observation is possible by moving the microscope 310 until interference occurs.

第3実施例 第1実施例のミラー314、第2実施例のミラ
ー408が大型化して双眼実体顕微鏡の光軸方向
に大きな空間を要するようになると、点Pから術
者までの距離が増大して術者の作業性が低下す
る。これを防ぐために上記ミラー314又は40
8に対応したミラーを2分割して小型化したのが
第3実施例である。
Third Embodiment When the mirror 314 of the first embodiment and the mirror 408 of the second embodiment become larger and require a larger space in the optical axis direction of the binocular stereomicroscope, the distance from point P to the operator increases. This reduces the operator's work efficiency. To prevent this, the mirror 314 or 40
In the third embodiment, a mirror corresponding to 8 is divided into two to make it smaller.

第9図において、双眼実体顕微鏡系500の光
軸502を挾んで上下方向の両側に、スリツト照
明光学系504のミラー506と、照射光学系5
08のミラー510が配置される。スリツト照明
光学系504には補助光学部材である凸レンズ5
12を包含している。スリツト照明光学系の対物
レンズ520は可変スリツト絞り(図示せず)の
無限遠写像光束を形成するために作用し凸レンズ
512に対し、その光軸521を偏心して配置さ
れた偏心光学系を形成している。そして、凸レン
ズ512の光軸513はミラー506の反射光軸
502及び双眼実体顕微鏡系の光軸502′に一
致するから、スリツト像は光軸502に対し直角
に結像される。一方、照射光学系508は結像点
Pにおいて微小面積のスポツトに集光され、いわ
ゆる像を倒れが問題とならないため、偏心光学系
を包含していなくともよい。さらに、双眼実体顕
微鏡系500、スリツト照明光学系504及び照
射光学系508をそれぞれ支持する支持アーム5
01,505,509を点Pを含む鉛直軸に対
し、独立に旋回可能に構成することにより顕微鏡
系500、スリツト照明光学系504、及び照射
光学系508を点Pを中心に互に独立に回動させ
ることができ、診断、治療の一連の作業の自由度
を増すものである。
In FIG. 9, a mirror 506 of a slit illumination optical system 504 and an illumination optical system 5 are arranged on both sides of the optical axis 502 of a binocular stereoscopic microscope system 500 in the vertical direction.
08 mirrors 510 are arranged. The slit illumination optical system 504 includes a convex lens 5 which is an auxiliary optical member.
It includes 12. The objective lens 520 of the slit illumination optical system acts to form an infinity mapping light beam of a variable slit diaphragm (not shown), and forms a decentered optical system arranged with its optical axis 521 decentered with respect to the convex lens 512. ing. Since the optical axis 513 of the convex lens 512 coincides with the reflective optical axis 502 of the mirror 506 and the optical axis 502' of the binocular stereoscopic microscope system, the slit image is formed perpendicular to the optical axis 502. On the other hand, the irradiation optical system 508 does not need to include a decentered optical system because the light is focused on a spot with a minute area at the imaging point P, and so-called tilting of the image does not pose a problem. Further, a support arm 5 supports the binocular stereoscopic microscope system 500, the slit illumination optical system 504, and the irradiation optical system 508, respectively.
By configuring the components 01, 505, and 509 to be able to rotate independently about the vertical axis that includes point P, the microscope system 500, slit illumination optical system 504, and irradiation optical system 508 can be rotated independently of each other around point P. This increases the degree of freedom in the series of diagnostic and therapeutic tasks.

なお、上記第1ないし第3実施例において、補
助光学部材である凸レンズ512と双眼実体顕微
鏡光学系の対物レンズ328とを共用させスリツ
ト照明光学系または照射光学系の対物レンズを顕
微鏡光学系内に前記対物レンズ328の光軸と偏
心させて組込む構成をとつてもよい。
In the first to third embodiments described above, the convex lens 512, which is an auxiliary optical member, and the objective lens 328 of the binocular stereoscopic microscope optical system are used together, and the objective lens of the slit illumination optical system or the irradiation optical system is placed inside the microscope optical system. A configuration may be adopted in which the optical axis of the objective lens 328 is eccentrically incorporated.

第4実施例 第4実施例は、第3実施例の補助光学部材であ
る凸レンズ512を使用せずに、スリツトを鮮明
に被治療部に投影するための実施例である。すな
わち、第10図において、スリツト照明光学系6
00は可変スリツト絞り602及び対物レンズ6
04、さらに双眼実体顕微鏡系606の光軸60
8の一方の側に配置されたミラー610を包含す
る。可変スリツト絞り602と点Pとは対物レン
ズ604に関し共役であり、また対物レンズ60
4は以下に説明する角度θ2だけスリツト照明光学
系600の光軸612に対する垂直面に対し傾斜
している。すなわち、ミラー610で反射された
スリツト照明光学系600の光軸620が双眼実
体顕微鏡系606の光軸608に対しθ1だけ傾斜
していて、点Pのミラー610による虚像P′にお
ける可変スリツト絞り602の虚像の像平面62
2と可変スリツト絞り602の平面624との交
線Oを対物レンズ604の主平面626が通過す
るようにθ2を定める。これはシヤインプルーフの
原理に基づく配置である。このように構成するこ
とによつて、点Pにおける可変スリツト絞り像は
双眼実体顕微鏡系606の光軸608に対し垂直
となる。これにより、スリツトを鮮明に被治療部
に投影することができる。
Fourth Embodiment The fourth embodiment is an embodiment for clearly projecting the slit onto the treated area without using the convex lens 512, which is the auxiliary optical member of the third embodiment. That is, in FIG. 10, the slit illumination optical system 6
00 is a variable slit diaphragm 602 and an objective lens 6
04, and the optical axis 60 of the binocular stereoscopic microscope system 606
8 includes a mirror 610 located on one side of the 8. Variable slit aperture 602 and point P are conjugate with respect to objective lens 604, and
4 is inclined with respect to a plane perpendicular to the optical axis 612 of the slit illumination optical system 600 by an angle θ 2 to be explained below. That is, the optical axis 620 of the slit illumination optical system 600 reflected by the mirror 610 is inclined by θ 1 with respect to the optical axis 608 of the binocular stereoscopic microscope system 606, and the variable slit aperture in the virtual image P' by the mirror 610 at point P is Image plane 62 of virtual image 602
2 and the plane 624 of the variable slit diaphragm 602 so that the main plane 626 of the objective lens 604 passes through it . This is an arrangement based on the shear-proof principle. With this configuration, the variable slit aperture image at point P is perpendicular to the optical axis 608 of the binocular stereoscopic microscope system 606. Thereby, the slit can be clearly projected onto the treated area.

なお、本実施例において、照射光源は前述の第
3実施例と同一の構成をとるため、図示及び説明
は省略した。
Note that in this embodiment, the irradiation light source has the same configuration as the third embodiment described above, so illustration and description thereof are omitted.

〔発明の効果〕〔Effect of the invention〕

本発明は以上詳細に説明したように、スリツト
照明系からのスリツト光束と照射光学系からの光
治療用光束とが、双眼実体顕微鏡光学系の患眼側
に配置された光学部材を介して上記双眼実体顕微
鏡光学系の焦点位置へ導かれ、かつ上記スリツト
照明光学系と照射光学系の少なくとも一方の対物
レンズを無限写像光学系とし、かつその光軸を双
眼実体顕微鏡の光軸と同軸の光軸をもつ補助光学
部材に対しスリツト像あるいは治療用光源像は上
記双眼実体顕微鏡の光軸に対し垂直な平面に結像
し、その像画質は極めて良好となる。
As described in detail above, the present invention allows the slit light flux from the slit illumination system and the light therapy light flux from the irradiation optical system to be transmitted through the optical member disposed on the affected eye side of the binocular stereomicroscope optical system. Light is guided to the focal position of the binocular stereomicroscope optical system, and at least one of the objective lenses of the slit illumination optical system and the irradiation optical system is an infinite mapping optical system, and the optical axis thereof is coaxial with the optical axis of the binocular stereomicroscope. For the auxiliary optical member having an axis, the slit image or the therapeutic light source image is formed on a plane perpendicular to the optical axis of the binocular stereomicroscope, and the image quality is extremely good.

また照明あるいは照射光学系の射出側の光学構
成を従来のように複雑にする必要がないため、作
業空間と被治療部観察のための顕微鏡部の旋回観
察位置の許容範囲を一般のスリツトランプと同程
度にまで高めることができる。
In addition, since there is no need to complicate the optical configuration on the exit side of the illumination or irradiation optical system as in the past, the allowable range of the working space and the rotation observation position of the microscope section for observing the treated area is the same as that of a general slit lamp. It can be increased to a certain extent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の眼科用光治療器の光学側面図、
第2図は従来の他の眼科用光治療器の光学側面
図、第3図は第2図の眼科用光治療器の光学平面
図、第4図は本発明の第1実施例の光学側面図、
第5図は第4図に示した第1実施例の光学平面
図、第6図は本発明の第2実施例の光学平面図、
第7図は第6図に示した第2実施例の光学側面
図、第8図は第2実施例の各光束の関係を示す説
明図、第9図は本発明の第3実施例の光学側面
図、第10図は本発明の第4実施例の光学的原理
の説明図である。 310……双眼実体顕微鏡、314……ミラ
ー、318……凸レンズ、320……スリツト照
明光学系、322……照射光学系、324……左
顕微鏡、326……右顕微鏡、344……可変ス
リツト絞り、360……照射光源。
Figure 1 is an optical side view of a conventional ophthalmic phototherapy device.
FIG. 2 is an optical side view of another conventional ophthalmic phototherapy device, FIG. 3 is an optical plan view of the ophthalmologic phototherapy device of FIG. 2, and FIG. 4 is an optical side view of the first embodiment of the present invention. figure,
5 is an optical plan view of the first embodiment shown in FIG. 4, FIG. 6 is an optical plan view of the second embodiment of the present invention,
FIG. 7 is an optical side view of the second embodiment shown in FIG. 6, FIG. 8 is an explanatory diagram showing the relationship between each luminous flux of the second embodiment, and FIG. 9 is an optical side view of the second embodiment of the present invention. The side view, FIG. 10, is an explanatory diagram of the optical principle of the fourth embodiment of the present invention. 310... Binocular stereo microscope, 314... Mirror, 318... Convex lens, 320... Slit illumination optical system, 322... Illumination optical system, 324... Left microscope, 326... Right microscope, 344... Variable slit aperture , 360...irradiation light source.

Claims (1)

【特許請求の範囲】 1 双眼実体顕微鏡光学系と; スリツト照明用光源、スリツト絞り、該スリツ
ト絞りを投影するための第1対物レンズを有する
スリツト照明系と; 光治療用光源と、該光治療用光源から発せられ
た光治療用光束を投光するための第2対物光学系
を有する照射光学系と; 前記双眼実体顕微鏡光学系の物側焦点位置にそ
の像側焦点を有し、かつその光軸の少なくとも一
部を該双眼実体顕微鏡光学系の光軸と一致させた
補助光学部材とを有し; 前記スリツト照明系の前記第1対物レンズと前
記照射光学系の第2対物レンズの少なくとも一方
は、その光軸を前記補助光学部材の光軸に対し偏
心するように配置され、前記スリツト絞りまたは
光治療用光源を前記補助光学部材に向け無限遠に
写像するよう構成されたことを特徴とする眼科用
光治療器。 2 照射光学系の第2対物レンズの光軸は、双眼
実体顕微鏡光学系の両光軸を含む平面に含まれ
ず、かつ該双眼実体顕微鏡の物側焦点位置におい
て前記平面と交わることを特徴とする特許請求の
範囲第1項記載の眼科用光治療器置。 3 補助光学部材の光軸の一部と双眼実体顕微鏡
光学系の光軸とは反射光学部材を介して一致させ
られることを特徴とする特許請求の範囲第1項ま
たは第2項記載の眼科用光治療装置。 4 照射光学系の照射光束の立体角が双眼実体顕
微鏡光学系の見込み角とほぼ同等以上であり、か
つ該照射光束が該双眼実体顕微鏡光学系の物側焦
点位置以外では双眼実体顕微鏡光学系の光軸を包
含しないように構成されたことを特徴とする特許
請求の範囲第1項ないし第3項いずれかに記載の
眼科用光治療装置。 5 照射光学系とスリツト照明光学系とは互いに
反射光学部材をはさんで対向配置させたことを特
徴とする特許請求の範囲第3項または第4項いず
れかに記載の眼科用光治療装置。 6 照射光学系とスリツト照明光学系とは双眼実
体顕微鏡光学系の物側焦点位置を通る軸を旋回軸
として互いに旋回可能に構成されたことを特徴と
する特許請求の範囲第1項ないし第5項いずれか
に記載の眼科用光治療装置。 7 双眼実体顕微鏡光学系と; スリツト照明用光源、スリツト絞り、該スリツ
ト絞りを投影するための対物レンズを有するスリ
ツト照明系と; 光治療用の照射光学系を有するものであつて、
前記対物レンズは、その主平面が前記スリツト絞
りを包む平面と該スリツト絞りの前記対物レンズ
による像面との交線と交わるように配置されたこ
とを特徴とする眼科用光治療器。
[Scope of Claims] 1. A binocular stereomicroscope optical system; A slit illumination system having a light source for slit illumination, a slit aperture, and a first objective lens for projecting the slit aperture; A light source for phototherapy, and the phototherapy an irradiation optical system having a second objective optical system for projecting a light beam for phototherapy emitted from a light source; an auxiliary optical member having at least a part of its optical axis aligned with the optical axis of the binocular stereomicroscope optical system; at least the first objective lens of the slit illumination system and the second objective lens of the irradiation optical system; One is arranged so that its optical axis is decentered with respect to the optical axis of the auxiliary optical member, and is configured to direct the slit diaphragm or the light therapy light source toward the auxiliary optical member and map it to infinity. A light therapy device for ophthalmology. 2. The optical axis of the second objective lens of the irradiation optical system is not included in a plane including both optical axes of the binocular stereomicroscope optical system, and intersects with the plane at the object side focal position of the binocular stereomicroscope. An ophthalmic phototherapy device according to claim 1. 3. The ophthalmological device according to claim 1 or 2, wherein a part of the optical axis of the auxiliary optical member and the optical axis of the binocular stereoscopic microscope optical system are made to coincide with each other via a reflective optical member. Light therapy device. 4. The solid angle of the irradiation light beam of the irradiation optical system is approximately equal to or greater than the viewing angle of the binocular stereomicroscope optical system, and the irradiation light beam is at a position other than the object side focal point of the binocular stereomicroscope optical system. The ophthalmologic phototherapy device according to any one of claims 1 to 3, characterized in that it is configured so as not to include the optical axis. 5. The ophthalmologic phototherapy device according to claim 3 or 4, wherein the irradiation optical system and the slit illumination optical system are disposed facing each other with a reflective optical member in between. 6. Claims 1 to 5, characterized in that the irradiation optical system and the slit illumination optical system are configured to be able to rotate with respect to each other about an axis that passes through the object-side focal position of the binocular stereoscopic microscope optical system. The ophthalmological phototherapy device according to any one of the items. 7. A binocular stereomicroscope optical system; A slit illumination system having a light source for slit illumination, a slit diaphragm, and an objective lens for projecting the slit diaphragm; An irradiation optical system for phototherapy, comprising:
The ophthalmic phototherapy device, wherein the objective lens is arranged such that its principal plane intersects with a line of intersection between a plane surrounding the slit diaphragm and an image plane of the slit diaphragm formed by the objective lens.
JP59042465A 1984-03-06 1984-03-06 Opthalmic laser treatment device Granted JPS60188150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59042465A JPS60188150A (en) 1984-03-06 1984-03-06 Opthalmic laser treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59042465A JPS60188150A (en) 1984-03-06 1984-03-06 Opthalmic laser treatment device

Publications (2)

Publication Number Publication Date
JPS60188150A JPS60188150A (en) 1985-09-25
JPH0370497B2 true JPH0370497B2 (en) 1991-11-07

Family

ID=12636818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59042465A Granted JPS60188150A (en) 1984-03-06 1984-03-06 Opthalmic laser treatment device

Country Status (1)

Country Link
JP (1) JPS60188150A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290153A (en) * 1985-10-16 1987-04-24 興和株式会社 Laser beam coagulation apparatus
ATE86460T1 (en) * 1988-04-20 1993-03-15 Haag Ag Streit DEVICE FOR EXAMINATION AND TREATMENT OF THE EYE.
US5076470A (en) * 1989-07-26 1991-12-31 Yoshida Industry Co., Ltd. Tube container
US5219373A (en) * 1989-07-26 1993-06-15 Yoshida Industry Co., Ltd. Method of fabricating tube container
FR2688488B1 (en) * 1992-03-16 1994-05-06 Cebal Sa TUBE AND DISPENSER COMPRISING SAME FOR STORING AND DISPENSING TWO CREAMY OR PASTY PRODUCTS.
US6176395B1 (en) 1999-04-21 2001-01-23 Pechiney Plastic Packaging, Inc. Dual dispense container
RU2662385C2 (en) 2012-12-28 2018-07-25 Крафт Фудс Груп Брэндс Ллк Containers and methods for isolating liquids prior to dispensing

Also Published As

Publication number Publication date
JPS60188150A (en) 1985-09-25

Similar Documents

Publication Publication Date Title
US4638801A (en) Laser ophthalmic surgical system
US4565197A (en) Laser ophthalmic surgical system
JP3008359B2 (en) Illumination means for surgical microscope
JP3165144B2 (en) Binocular indirect mirror laser treatment system
EP0293126A1 (en) Photocoagulation apparatus
JPH0432663B2 (en)
JP2017522112A (en) Mobile wide-angle ophthalmic surgery system
JPH04244151A (en) Laser operation apparatus for ophthalmology
JP7014450B2 (en) Therapeutic laser with reflective mirror
US4397310A (en) Anastigmatic high magnification, wide-angle binocular indirect attachment for laser photocoagulator
US4776335A (en) Laser spot projector
JPH0563526U (en) Phototherapy device
JP7048156B2 (en) Therapeutic laser with reflective mirror and safety interlock
US4520824A (en) Instrument for ophthalmic laser surgery
CN106420160A (en) Femtosecond laser cataract surgery device
US4786161A (en) Apparatus for examination and surgery of the anterior and posterior portions of the eye
US4015906A (en) Method and apparatus for aligning an invisible beam particularly a laser bear
JPS6290153A (en) Laser beam coagulation apparatus
JPH0370497B2 (en)
GB2143052A (en) Laser ophthalmic surgical system
JPH03128033A (en) Ophthalmological machinery
WO2000021475A1 (en) Laser system with projected reference pattern
JP2828212B2 (en) Ophthalmic laser treatment device
JP3255711B2 (en) Fundus camera
JP2004229965A (en) Laser medical treatment device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term