JPH0370335B2 - - Google Patents

Info

Publication number
JPH0370335B2
JPH0370335B2 JP58165382A JP16538283A JPH0370335B2 JP H0370335 B2 JPH0370335 B2 JP H0370335B2 JP 58165382 A JP58165382 A JP 58165382A JP 16538283 A JP16538283 A JP 16538283A JP H0370335 B2 JPH0370335 B2 JP H0370335B2
Authority
JP
Japan
Prior art keywords
neck
magnet
magnetizing
magnetization
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58165382A
Other languages
Japanese (ja)
Other versions
JPS6056337A (en
Inventor
Takeo Fujimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16538283A priority Critical patent/JPS6056337A/en
Publication of JPS6056337A publication Critical patent/JPS6056337A/en
Publication of JPH0370335B2 publication Critical patent/JPH0370335B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/44Factory adjustment of completed discharge tubes or lamps to comply with desired tolerances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/58Arrangements for focusing or reflecting ray or beam
    • H01J29/64Magnetic lenses
    • H01J29/68Magnetic lenses using permanent magnets only

Description

【発明の詳細な説明】 [発明の技術分野] この発明は、電子銃を収納したネツク部の外周
に装着されたネツク磁石を着磁するカラー陰極線
管のネツク磁石の着磁方法に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for magnetizing a neck magnet of a color cathode ray tube, which magnetizes a neck magnet attached to the outer periphery of a neck portion housing an electron gun. .

[従来技術] 従来、カラー陰極線管において、複数本(通常
3本)の電子銃を同一平面内に配置したインライ
ン型が多く用いられているが、この種のカラー陰
極線管では、外装装置として、ピユリテイ調整に
用いる2極磁石とスタテイツクコンバーゼンス調
整を行なうための4極または6極磁石を必要とし
ている。
[Prior Art] Conventionally, in-line type color cathode ray tubes in which multiple (usually three) electron guns are arranged in the same plane are often used. It requires a two-pole magnet used for power adjustment and a four-pole or six-pole magnet for static convergence adjustment.

この装置はカラー陰極線管の組立に伴なう誤差
を解消するために、すなわち、3本の電子ビーム
が蛍光面に対して相対的に所定の位置からずれた
場合、蛍光面上の所定位置で完全に一致するよう
に補正する機能を持つている。通常、上記磁石
は、リング状の2極、4極および6極に着磁した
ものをそれぞれ2枚づつ反対方向に磁極がくるよ
うに重ね合せ、これをネツク部の外周に装着して
なり、その調整方法として、各磁極が完全に重な
つた状態で磁化を打ち消し合い、一方、1対の2
枚の磁石を完全な重なりの状態から開き角度を調
整するようにずらせ、その開き角度で発生する磁
界の強さを設定したり、また、開き角度を一定に
保持したまま磁石を一体に回転させることにより
磁界の向きを変えている。そして、2極磁石によ
つて、3本の電子ビームを同じ方向に同量だけ動
かし、各電子ビームが所定の蛍光体ドツトに正確
に射突し発光させる、いわゆるピユリテイ調整を
行なつている。
This device is designed to eliminate errors associated with the assembly of color cathode ray tubes. In other words, when the three electron beams deviate from their predetermined positions relative to the phosphor screen, It has a correction function to ensure a perfect match. Usually, the above-mentioned magnet is made by stacking two ring-shaped magnetized two-pole, four-pole, and six-pole magnets so that the magnetic poles are in opposite directions, and attaching these to the outer periphery of the neck. The adjustment method is to have the magnetic poles completely overlap each other and cancel out their magnetization, while a pair of two
You can shift the two magnets from a completely overlapping state to adjust the opening angle and set the strength of the magnetic field generated at that opening angle, or you can rotate the magnets together while keeping the opening angle constant. This changes the direction of the magnetic field. Then, the three electron beams are moved by the same amount in the same direction using a bipolar magnet, and each electron beam accurately strikes a predetermined phosphor dot to cause it to emit light, thereby performing so-called purity adjustment.

また、4極磁石は、3本の電子ビームのうち中
央に位置するものには影響を与えることなく、両
側のものに互いに逆向きへ同量の変化を与えるこ
とができ、これによつて両側の電子ビームを蛍光
面の中央で重ね合わすことができる。さらに、6
極磁石は、同じく中央の電子ビームに影響を与え
ることなく、両側のものに同方向へ同量の変化を
与えることができ、これによつて両側の電子ビー
ムを中央の電子ビームに重ね合わすことが可能に
なる。上記4、6極磁石によるスタテイツクコン
バーゼンス調整を行なつている。
In addition, a quadrupole magnet can give the same amount of change to the electron beams on both sides in opposite directions without affecting the center one of the three electron beams. electron beams can be overlapped at the center of the phosphor screen. Furthermore, 6
Polar magnets can also make the same amount of change in the same direction on both sides without affecting the central electron beam, thereby superimposing the electron beams on both sides onto the central electron beam. becomes possible. Static convergence adjustment is performed using the 4- and 6-pole magnets mentioned above.

上記インライン型のカラー陰極線管では、最初
の動作開始前に上記した3種の計6枚の磁石をネ
ツク部上で回動させて最良点に固定する調整が必
要である。
In the above-described in-line type color cathode ray tube, before the first operation starts, it is necessary to rotate a total of six magnets of the three types described above on the neck portion and fix them at the best points.

この調整は、通常、カラー陰極線管の画面を見
ながら個々に行なつているが、完全な自動化が困
難で、そのうえ、6枚の磁石をネツク部上で調整
時に回動可能にし、調整後に固定するためには複
雑な保持機構を必要とし、カラー陰極線管のコス
トアツプの原因となつていた。この対策として、
近年、ネツク部に1個のリング状の磁石部材(た
とえば、シート状の磁石材料をネツク部の外周に
嵌合したもの)を配置し、これを個々のカラー陰
極線管の特性に応じて着磁する方法が提案されて
いる。
This adjustment is normally done individually while looking at the color cathode ray tube screen, but it is difficult to fully automate it, and in addition, six magnets are made to be rotatable on the neck during adjustment, and fixed after adjustment. This requires a complicated holding mechanism, which increases the cost of color cathode ray tubes. As a countermeasure for this,
In recent years, a ring-shaped magnet member (for example, a sheet-shaped magnetic material fitted around the outer periphery of the neck part) is placed in the neck part, and this is magnetized according to the characteristics of each color cathode ray tube. A method has been proposed.

この方法によれば、磁化の行なわれていない磁
石部材をネツク部に装着し、しかる後、着磁装置
を磁石部材に近づけ、着磁装置に電流を流して着
磁している。
According to this method, a magnet member that has not been magnetized is attached to the neck portion, and then a magnetizing device is brought close to the magnet member, and a current is passed through the magnetizing device to magnetize it.

以下この種の着磁方法を説明する。 This type of magnetization method will be explained below.

第1図はネツク磁石を装着したカラー陰極線管
を示す図であり、カラー陰極線管1は、蛍光面の
設けられたパネル2と、このパネル2に接合され
てほぼ錐体形状をなすフアンネル3と、このフア
ンネル3に接続された筒状のネツク部4とが一体
化してなり、ネツク部4の内側には、複数本の電
子ビームを発射する電子銃5が同一直線上に取り
付けられている。また、フアンネル3とネツク部
4の接続部分の付近には、偏向ヨーク6が取り付
けられており、一方その後方のネツク部4の外周
に電子ビームの軌道調整用のネツク磁石10が装
着されている。ネツク磁石10は保磁力の大きい
磁石材料からなり、たとえば典型的な材料とし
て、バリウムフエライトを樹脂中に混入して成形
した、いわゆるプラスチック磁石またはゴム磁石
が用いられている。
FIG. 1 is a diagram showing a color cathode ray tube equipped with a net magnet, and the color cathode ray tube 1 includes a panel 2 provided with a fluorescent screen, and a funnel 3 joined to the panel 2 to form an approximately pyramidal shape. , and a cylindrical neck portion 4 connected to the funnel 3 are integrated, and an electron gun 5 for emitting a plurality of electron beams is installed on the same straight line inside the neck portion 4. Further, a deflection yoke 6 is attached near the connecting portion between the funnel 3 and the neck portion 4, and on the other hand, a neck magnet 10 for adjusting the orbit of the electron beam is attached to the outer periphery of the neck portion 4 behind the deflection yoke 6. . The net magnet 10 is made of a magnetic material with a large coercive force, such as a so-called plastic magnet or a rubber magnet formed by mixing barium ferrite into a resin.

ネツク磁石10の着磁法として、たとえば、静
止着磁法では、第2図に示すように、コア24
と、このコア24に巻回され、かつ、導線21、
開閉器22を介して可変電源23に接続されたコ
イル20からなる着磁ヘツド30を用いて、この
着磁ヘツド30を複数個(一般に8〜12個または
それ以上の個数)のネツク磁石10に対応させて
設定して着磁している。すなわち、カラー陰極線
管を動作させて必要な電子ビームの修正量を決定
し適当な方法によつてネツク磁石10の部分的な
着磁量を計算し、この着磁に必要な電流が流れる
ように個々のコイル20に接続した可変電源23
を設定し開閉器22によつて適当な時間電流を流
し、必要な着磁を得ている。
As a method of magnetizing the net magnet 10, for example, in the static magnetization method, as shown in FIG.
The conductor 21 is wound around the core 24, and
Using a magnetizing head 30 consisting of a coil 20 connected to a variable power source 23 via a switch 22, this magnetizing head 30 is connected to a plurality of (generally 8 to 12 or more) net magnets 10. They are set and magnetized accordingly. That is, the color cathode ray tube is operated to determine the necessary correction amount of the electron beam, the amount of partial magnetization of the net magnet 10 is calculated by an appropriate method, and the current necessary for this magnetization is made to flow. Variable power supply 23 connected to individual coils 20
is set and current is applied for an appropriate time using the switch 22 to obtain the required magnetization.

しかし、上記方法の最大の欠点としては、ネツ
ク磁石の軸方向全体にわたつてネツク磁石を着磁
しなければならないため、着磁に用いる磁束を非
常に大きいものとする必要があり、着磁装置が大
型化するということである。また、着磁ヘツド3
0を繰り返して使用しているうちに、電流による
コイル20およびコア24の温度が上昇し、一定
の電流値を必要とするのに電流値が温度に伴なつ
て変化するため正確な着磁量を得ることができな
かつた。さらに、コア24のもつ磁界により、地
磁気などのカラー陰極線管の周辺にある磁界を乱
すことから、着磁量の決定のために行なわれるカ
ラー陰極線管の動作状況を測定するために、着磁
ヘツド30をカラー陰極線管からかなり遠ざける
必要がある。このため、複数個の着磁ヘツド30
を移動させるのに、大がかりな機構を必要とする
欠点もあつた。
However, the biggest drawback of the above method is that the net magnet must be magnetized over the entire axial direction of the net magnet, so the magnetic flux used for magnetization must be extremely large, and a magnetizing device is required. This means that it will become larger. Also, the magnetizing head 3
0 is used repeatedly, the temperature of the coil 20 and core 24 due to the current increases, and although a constant current value is required, the current value changes with the temperature, making it difficult to obtain an accurate amount of magnetization. I couldn't get it. Furthermore, since the magnetic field of the core 24 disturbs the magnetic field around the color cathode ray tube, such as the earth's magnetism, the magnetization head is 30 must be placed quite far away from the color cathode ray tube. Therefore, a plurality of magnetizing heads 30
It also had the disadvantage of requiring a large-scale mechanism to move it.

一方、いわゆる回転着磁法を用いた従来方法で
は、第3図に示すように、コア26と、コア26
に巻回し、かつギヤツプ25を有するとともに、
ネツク部4を周回可能な着磁ヘツド30を用い
て、上記着磁ヘツド30をネツク磁石10に対し
て一定の距離を保持するとともに、ギヤツプ25
の中心面T(ギヤツプ25に生じる主磁束に直交
する中心面をいう。)を常にネツク部4の中心軸
を通るように設定する。この状態で、ネツク磁石
10の周囲を周回させながら、可変電源23から
供給される電流の量を必要の着磁分布にしたがつ
て増減させることにより行なつている。
On the other hand, in the conventional method using the so-called rotational magnetization method, as shown in FIG.
and has a gap 25,
Using a magnetizing head 30 that can go around the neck part 4, the magnetizing head 30 is maintained at a constant distance from the neck magnet 10, and the gap 25 is
The central plane T (meaning the central plane perpendicular to the main magnetic flux generated in the gap 25) is set so as to always pass through the central axis of the neck portion 4. In this state, while circulating around the neck magnet 10, the amount of current supplied from the variable power source 23 is increased or decreased in accordance with the required magnetization distribution.

この方法においては、ギヤツプ25の近傍での
ネツク磁石10の着磁分布は、微視的には、非常
に複雑であるが、一方向に周回移動させた場合
に、ネツク磁石10の各部分は、ギヤツプ25を
通過してその影響がなくなる直前に受けた着磁が
最終的に残ることになる。たとえば、第3図に示
すように、着磁ベクトルをネツク部4の中央から
外向きにして着磁したいとき、コイル27に流す
電流を適当な向きに固定して着磁ヘツド30を移
動させると、ギヤツプ25が近づきつつある部分
では所望と逆に中心に向いた着磁が生じ、一方、
ギヤツプ25の直下では所望と直角の着磁が生
じ、ギヤツプ25がほとんど通過してから、所望
の外向きの着磁が生じる。ここで、上記所望と直
角から所望の方向への着磁の変化が確実に行なわ
れるためには、ネツク磁石10の材料に磁化容易
軸がネツク部4の中心から放射状の方向にある磁
気異方性材料を用いるのが好ましい。
In this method, the magnetization distribution of the neck magnet 10 in the vicinity of the gap 25 is microscopically very complicated, but when the neck magnet 10 is moved around in one direction, each part of the neck magnet 10 is , the magnetization received just before passing through the gap 25 and losing its influence will ultimately remain. For example, as shown in FIG. 3, if you want to magnetize with the magnetization vector pointing outward from the center of the neck part 4, you can fix the current flowing through the coil 27 in an appropriate direction and move the magnetization head 30. , where the gap 25 is approaching, the magnetization is directed toward the center, contrary to the desired direction, and on the other hand,
Immediately below the gap 25, the desired perpendicular magnetization occurs, and after the gap 25 has almost passed, the desired outward magnetization occurs. Here, in order to reliably change the magnetization from the desired direction perpendicular to the desired direction, the material of the neck magnet 10 must have a magnetic anisotropy in which the axis of easy magnetization is in a radial direction from the center of the neck portion 4. It is preferable to use a flexible material.

上記回転着磁法にあつては、着磁用磁束は、ギ
ヤツプ25へ集中させればよいので、着磁装置自
体は比較的小型でよいという長所がある。しか
し、この方法の欠点は、最後に着磁ヘツド30を
停止させた位置の近くに、着磁ベクトルが反転し
ない状態の所望しない着磁が残り、その後に必要
な補正を完全に得ることが困難なことがあげられ
る。また、この方法にあつては、同様な理由で着
磁量の分布が不適当であつたときに、ネツク磁石
10を部分的に修正することが困難であつて、着
磁の修正は、全周にわたつて再着磁をする必要が
あるという欠点もある。
In the above-mentioned rotary magnetization method, since the magnetic flux for magnetization can be concentrated in the gap 25, there is an advantage that the magnetization device itself can be relatively small. However, the disadvantage of this method is that undesired magnetization remains near the position where the magnetization head 30 was last stopped, with the magnetization vector not reversing, making it difficult to obtain the necessary correction completely thereafter. There are many things that can be mentioned. In addition, with this method, when the distribution of the amount of magnetization is inappropriate for the same reason, it is difficult to partially correct the net magnet 10, and the magnetization cannot be corrected completely. Another drawback is that it is necessary to re-magnetize the entire circumference.

[発明の概要] この発明は、上記従来の欠点を解消するために
なされたもので、ギヤツプに生じる主磁束に直交
するギヤツプ中心面をネツク部の中心軸に直交さ
せかつ上記ギヤツプを近接させて、コイルに電流
を流しながら上記中心軸に平行に着磁ヘツドを移
動させることにより、比較的簡単な構造の着磁機
でもつてネツク磁石に所望の着磁が確実に得られ
るとともに、着磁の修正やカラー陰極線管の動作
の後の調整作業を自動化できるカラー陰極線管の
ネツク磁石の着磁方法を提供することを目的とす
る。
[Summary of the Invention] The present invention has been made in order to eliminate the above-mentioned conventional drawbacks, and the present invention is made by making the center plane of the gap perpendicular to the main magnetic flux generated in the gap perpendicular to the central axis of the neck part and making the gap close to each other. By moving the magnetizing head parallel to the central axis while applying current to the coil, it is possible to reliably obtain the desired magnetization of the neck magnet even with a magnetizer with a relatively simple structure, and to improve the magnetization. It is an object of the present invention to provide a method for magnetizing a neck magnet of a color cathode ray tube, which can automate correction and adjustment work after the operation of the color cathode ray tube.

[発明の実施例] 以下、この発明の一実施例を図面にしたがつて
説明する。第4図において、着磁ヘツド30は、
第3図の従来例と同様に、コア26に巻回された
コイル27にギヤツプ25を有して構成されてい
る。しかし、着磁ヘツド30のギヤツプ25は、
その中心面Tがネツク部4の中心軸に直交し、か
つ、ネツク磁石10に近接して配置されている。
ここで、ギヤツプ25はネツク磁石10に密着し
ていてもよいことはいうまでもない。
[Embodiment of the Invention] An embodiment of the invention will be described below with reference to the drawings. In FIG. 4, the magnetizing head 30 is
Similar to the conventional example shown in FIG. 3, the coil 27 is wound around a core 26 and has a gap 25. However, the gap 25 of the magnetizing head 30 is
Its central plane T is perpendicular to the central axis of the neck portion 4 and is disposed close to the neck magnet 10.
Here, it goes without saying that the gap 25 may be in close contact with the neck magnet 10.

この実施例による着磁にあたつては、上記着磁
ヘツド30をネツク磁石10の幅Wより大きい範
囲にわたつてネツク部4の長手方向に、たとえ
ば、AからBに至るまで、コイル27に適当な電
流を流しながら移動させる。つまり、着磁ヘツド
30の移動はギヤツプ25がネツク磁石10の後
方から始まつて前方へ矢印方向へ行なわれて終
る。これによる着磁ヘツド30上における着磁の
プロセスは、従来例の第3図で説明したと同様で
あるが、ギヤツプ25が最初に位置していた場所
や最後に停止した場所の付近に所望しない磁化が
残ることなく、正確な着磁分布を得ることができ
る。
In magnetizing according to this embodiment, the magnetizing head 30 is attached to the coil 27 in the longitudinal direction of the neck portion 4 over a range larger than the width W of the neck magnet 10, for example, from A to B. Move it while applying an appropriate current. That is, the movement of the magnetizing head 30 ends with the gap 25 starting from behind the neck magnet 10 and moving forward in the direction of the arrow. The process of magnetization on the magnetizing head 30 due to this is the same as that explained in FIG. Accurate magnetization distribution can be obtained without residual magnetization.

このとき、着磁ヘツド30は、当然のことなが
ら、たとえば、第4図BのDに示す幅の部分しか
着磁できない。したがつて、全周にわたつて着磁
するには、着磁ヘツド30をネツク磁石10の上
方で少しずつ周方向へ移動させて複数回繰り返す
ことによつて行なわれる。
At this time, as a matter of course, the magnetizing head 30 can only magnetize, for example, a width portion indicated by D in FIG. 4B. Therefore, magnetization over the entire circumference is carried out by moving the magnetizing head 30 little by little in the circumferential direction above the neck magnet 10 and repeating the movement several times.

したがつて、上記方法によれば、ネツク磁石1
0の上に着磁の最後に所望しない着磁状態を回避
できるだけでなく、ネツク部4の中心軸に沿つた
1本の着磁部分だけを再着磁することができ、画
面の状況に応じた着磁量の正確な修正が簡単に行
なえる。さらに、必要によつては、先に着磁ヘツ
ド30を走行させた部分とあらたに着磁ヘツド3
0を走行させる部分を若干ずらせて修正の自由度
を増すことも可能である。
Therefore, according to the above method, the net magnet 1
Not only can you avoid an undesired magnetized state at the end of magnetization above 0, but you can also re-magnetize only one magnetized part along the central axis of the network part 4, depending on the screen situation. The amount of magnetization can be easily corrected accurately. Furthermore, if necessary, the part where the magnetizing head 30 was run previously and the part where the magnetizing head 30 was moved may be
It is also possible to increase the degree of freedom in correction by slightly shifting the part where 0 is run.

なお、上記実施例では、1つの着磁ヘツド30
を用いたが、これに限らず、複数個の同形の着磁
ヘツド30をネツク磁石10の周囲に取り囲んで
配置して行なつてもよい。この場合、多数の着磁
ヘツド30を用いても個々の着磁ヘツド30によ
り発生する磁束がギヤツプ25に集中するので、
着磁ヘツド30が第2図で説明した着磁ヘツド3
0より大型化することはない。
In addition, in the above embodiment, one magnetizing head 30
However, the present invention is not limited to this, and a plurality of magnetizing heads 30 of the same shape may be arranged surrounding the neck magnet 10. In this case, even if a large number of magnetizing heads 30 are used, the magnetic flux generated by each magnetizing head 30 is concentrated in the gap 25, so that
The magnetizing head 30 is the magnetizing head 3 explained in FIG.
It never becomes larger than 0.

また、ネツク磁石10の材料として、磁化容易
軸がネツク部4の中心軸から放射状の方向にある
磁気異方性材料を用いることが好ましい。これに
より、一体化したネツク磁石10を使用できるの
で、コストダウンも実現できる。
Further, as the material for the neck magnet 10, it is preferable to use a magnetically anisotropic material whose axis of easy magnetization is in a radial direction from the central axis of the neck portion 4. As a result, an integrated neck magnet 10 can be used, and cost reduction can also be realized.

また、上記ネツク磁石10を着磁する典型的な
手順として、カラー陰極線管をカラーテレビジヨ
ン(図示せず)に取り付けた後に、着磁すること
が考えられているが、この場合には、ネツク部4
の周辺に充分なスペースの確保が困難なことがあ
る。このような場合には、磁気ヘツド30のコア
26を第5図に示すように、蛍光面の方向Aと反
対側に折曲したものを用いれば、キヤビネツト
(図示せず)の後方のわずかなスペースを利用し
て着磁することができる。
Furthermore, a typical procedure for magnetizing the net magnet 10 is to attach the color cathode ray tube to a color television (not shown) and then magnetize it. Part 4
It may be difficult to secure sufficient space around the In such a case, if the core 26 of the magnetic head 30 is bent in the opposite direction to the direction A of the phosphor screen, as shown in FIG. The space can be used for magnetization.

[発明の効果] この発明によれば、比較的簡単な構造の着磁機
でもつてネツク磁石に所望の着磁が正確に得られ
るとともに、着磁の修正やカラー陰極線管の動作
の後の調整作業を自動化できる。
[Effects of the Invention] According to the present invention, it is possible to accurately obtain the desired magnetization of the net magnet with a magnetization machine having a relatively simple structure, and it is also possible to correct the magnetization and make adjustments after the operation of the color cathode ray tube. Work can be automated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のカラー陰極線管を示す概略図、
第2図は従来のカラー陰極線管のネツク磁石の着
磁方法を示す説明図、第3図は従来の他の着磁方
法を説明する説明図、第4図はこの発明の一実施
例のよるカラー陰極線管のネツク磁石の着磁方法
を示し、第4図Aは側面図、第4図Bは断面図、
第5図はこの発明の他の実施例を示す側面図であ
る。 4……ネツク部、5……電子銃、10……ネツ
ク磁石、25……ギヤツプ、26……コア、27
……コイル、30……着磁ヘツド(着磁装置)。
なお、図中同一符号は同一または相当部分を示
す。
Figure 1 is a schematic diagram showing a conventional color cathode ray tube.
Fig. 2 is an explanatory diagram showing a conventional method of magnetizing the neck magnet of a color cathode ray tube, Fig. 3 is an explanatory diagram illustrating another conventional magnetizing method, and Fig. 4 is an explanatory diagram showing an embodiment of the present invention. The method of magnetizing the neck magnet of a color cathode ray tube is shown, FIG. 4A is a side view, FIG. 4B is a cross-sectional view,
FIG. 5 is a side view showing another embodiment of the invention. 4...Network portion, 5...Electron gun, 10...Network magnet, 25...Gap, 26...Core, 27
... Coil, 30 ... Magnetizing head (magnetizing device).
Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 電子銃を収納したネツク部の外周に装着され
たネツク磁石を着磁するカラー陰極線管のネツク
磁石の着磁方法において、上記着磁は、コアに巻
回されたコイルにギヤツプを有して構成された着
磁ヘツドを用いて、上記ギヤツプに生じる主磁束
に直交するギヤツプ中心面を上記ネツク部の中心
軸に直交させかつ上記ギヤツプをネツク磁石に近
接させて、上記コイルに電流を流しながら上記中
心軸に平行に着磁ヘツドを移動させることを特徴
とするカラー陰極線管のネツク磁石の着磁方法。 2 上記着磁ヘツドの移動距離をネツク磁石のネ
ツク部の中心軸の方向の幅よりも大きく設定した
特許請求の範囲第1項記載のカラー陰極線管のネ
ツク磁石の着磁方法。
[Claims] 1. In a method for magnetizing a neck magnet of a color cathode ray tube, which magnetizes a neck magnet attached to the outer periphery of a neck portion housing an electron gun, the magnetization is performed using a coil wound around a core. Using a magnetizing head configured with a gap at the top, the center plane of the gap, which is perpendicular to the main magnetic flux generated in the gap, is made perpendicular to the central axis of the neck part, and the gap is brought close to the neck magnet, A method for magnetizing a neck magnet for a color cathode ray tube, which comprises moving a magnetizing head parallel to the central axis while passing a current through the coil. 2. A method of magnetizing a neck magnet for a color cathode ray tube according to claim 1, wherein the moving distance of the magnetizing head is set to be larger than the width of the neck portion of the neck magnet in the direction of the central axis.
JP16538283A 1983-09-06 1983-09-06 Magnetizing of neck magnet for color cathode-ray tube Granted JPS6056337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16538283A JPS6056337A (en) 1983-09-06 1983-09-06 Magnetizing of neck magnet for color cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16538283A JPS6056337A (en) 1983-09-06 1983-09-06 Magnetizing of neck magnet for color cathode-ray tube

Publications (2)

Publication Number Publication Date
JPS6056337A JPS6056337A (en) 1985-04-01
JPH0370335B2 true JPH0370335B2 (en) 1991-11-07

Family

ID=15811319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16538283A Granted JPS6056337A (en) 1983-09-06 1983-09-06 Magnetizing of neck magnet for color cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS6056337A (en)

Also Published As

Publication number Publication date
JPS6056337A (en) 1985-04-01

Similar Documents

Publication Publication Date Title
US2717323A (en) Electron beam centering apparatus
US4162470A (en) Magnetizing apparatus and method for producing a statically converged cathode ray tube and product thereof
FI67007C (en) FOERFARANDE OCH ANORDNING FOER INSTAELLNING AV FOERGRENHET AV ETT IN-LINE-FAERGTELEVISIONBILDROER
US4296359A (en) Television display error correction
US4641062A (en) Method and apparatus for adjusting the static convergence and purity of color television tubes
US4295110A (en) Adjusting device for color cathode ray tube
US4198614A (en) Deflection yoke assembly including a beam positioning magnet arrangement
US4894593A (en) Method of correcting electron beam misconvergence in a color display tube and a color display tube system
US3098942A (en) Magnetic centering device for cathode ray tubes
JPH0370335B2 (en)
US5176556A (en) Method of manufacturing color cathode ray tube apparatus
KR100313208B1 (en) Color cathode ray tube having a convergence device capable of correction of convergence without landing transition or raster rotation
JP3101107B2 (en) Deflection yoke
US3363127A (en) Permanent magnet beam control apparatus for a color television cathoderay tube
KR820001110B1 (en) Magnetizing apparatus and method for use in correcting color purity in a cathode ray tube and product thereof
JP3041898B2 (en) Deflection yoke
JPS637419B2 (en)
JPH1140079A (en) Color cathode-ray tube and mis-convergence correcting method
JPS6042445Y2 (en) color cathode ray tube device
JP2557854B2 (en) Deflection device for color cathode ray tube
KR100439505B1 (en) Deflection yoke
JPH0364834A (en) Deflecting yoke
JPH09237591A (en) Deflection yoke device
JPH01276546A (en) Focusing magnet
JPS59173932A (en) Production method of crt