JPH0369980B2 - - Google Patents
Info
- Publication number
- JPH0369980B2 JPH0369980B2 JP58022578A JP2257883A JPH0369980B2 JP H0369980 B2 JPH0369980 B2 JP H0369980B2 JP 58022578 A JP58022578 A JP 58022578A JP 2257883 A JP2257883 A JP 2257883A JP H0369980 B2 JPH0369980 B2 JP H0369980B2
- Authority
- JP
- Japan
- Prior art keywords
- toughness
- seamless steel
- strength
- pipes
- pearlite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 22
- 239000010959 steel Substances 0.000 claims description 22
- 229910001562 pearlite Inorganic materials 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 238000000034 method Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 7
- 229910000859 α-Fe Inorganic materials 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 238000005275 alloying Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910001563 bainite Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 229910001021 Ferroalloy Inorganic materials 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Heat Treatment Of Articles (AREA)
Description
【発明の詳細な説明】
この発明は、製管後の格別な熱処理を要するこ
となしに、優れた靭性値と良好な溶接性を示す高
靭性継目無鋼管に関するものである。
近年、世界のエネルギー事情の変化により、ア
ラスカ、カナダ、シベリア等の苛酷な気象条件の
地にも大規模な油田、天然ガス田が開発され、そ
のための輸送用鋼管(ラインパイプ)の需要も大
幅に増加してきているが、これら寒冷地向けライ
ンパイプには、単に極寒に耐えるということだけ
ではなく、輸送能率向上のために更なる高強度・
高靭性が要求されるようになつてきた。
ところで、通常、このようなラインパイプ等の
油井管として重要な位置を占めている継目無鋼管
を製造するには、次の第1表に示すような工程が
とられていた。
【表】
【表】
そして、従来、このように製造された継目無鋼
管に高靭性やより高い強度が要求される場合に
は、品種やグレードによつても異なるが、C含有
量を可能な限り高く維持し、更に溶接性等を考慮
しながらMnその他の合金元素の適当量を添加し
た鋼を製管後、焼入れ・焼戻し、或いは焼ならし
等の熱処理に付すという処理を施して対処するの
が普通であつた。
しかしながら、靭性や強度の確保のためにこの
ような熱処理法を採用すると、熱処理作業工程の
増加や、添加する焼入れ性を良くするための合金
鉄の増加により、継目無鋼管製品自体のコストア
ツプを避けることができないばかりでなく、焼入
れ・焼戻しによるものは熱影響による製品寸法精
度のバラツキが大きくなつてしまい、また焼なら
し法では、強度確保のために焼入れ性を良くする
ための合金元素を多く使用するので溶接性を劣化
してしまうという困難な問題をも免れることがで
きなかつた。
一方、板材の製造においては、圧延のままで高
強度・高靭性を達成するために、A3変態点の直
下で低温仕上圧延を行つて、ベイナイトの生成を
防止しながら微細フエライト・パーライト組織を
得るというコントロールローリング法が実施され
ているが、このコントロールローリング法をマン
ネスマンプラグミル方式による継目無鋼管の製造
に適用しようとすると、加工率の関係で、どうし
ても第1表のB及びCで示す穿孔工程で低温加工
を行う必要があり、従来の装置では設備の特徴か
ら実施が困難である上、この工程の処理温度を下
げてしまうと後に続くリーラーやサイザー仕上工
程での所要温度を確保できなくなるという問題が
あつた。
本発明者等は、上述のような観点から、コスト
アツプにつながる製管後の熱処理工程を要するこ
となく、しかも従来の製管設備をそのまま使用す
るのみで、優れた靭性と強度を備え、しかも良好
な溶接性をも有する継目無鋼管を製造すべく、特
に、従来高級油井管等として使用されている高靭
性・高強度鋼が微細なフエライト・パーライト組
織を有していることに着目して、圧延のままの状
態で優れた靭性値を具備する継目無鋼管を製造す
るには、圧延のままの鋼材組織を微細フエライ
ト・パーライト組織にする必要があるとの認識に
立つて、種々の実験・研究を重ねた結果、
通常の継目無鋼管製管工程における温度降下速
度程度によつては鋼材の靭性を劣化させるベイナ
イトの生成が起らないように、ラインパイプ用等
として従来使用されていたものよりも鋼のC及び
Mn含有量を低く抑え、これによつて生ずる強度
低下を、フエライト基質の強化元素であるCu及
びNiの添加で補い、更に、炭化物形成元素であ
るTi及びNbを添加して、初期オーステナイト粒
の微細化、冷却時の初析セメンタイト析出の遅
延、及び炭化物を核とした微細フエライトの生成
を図れば、この鋼材を従来の条件で製管するのみ
で、パーライト占有面積率の低いフエライト・パ
ーライト組織の高靭性・高強度継目無鋼管が得ら
れるとの知見を得るに至つたのである。そして、
このようにして得られる鋼管は、合金元素の添加
量が低いこともあつて、良好な溶接性をも備えて
いることがわかつた。
この発明は、上記知見に基づいてなされたもの
であり、
継目無鋼管を、その化学成分組成が、
C:0.02〜0.10%(以下、組成成分割合を示す
%は重量%とする)、
Si:0.10〜0.80%、Mn:0.70〜1.90%、
を含有するとともに、
Ni:0.05〜0.70%、Cu:0.10〜1.00%、
のうちの1種以上を、式
0.15Ni(%)+Cu(%)1.00
を満足する値で含有し、さらに、
Ti:0.01〜0.05%、Nb:0.02〜0.07%、
のうちの1種以上をも含み、
Fe及び不可避不純物:残り
から成るものとし、かつ、製管圧延のままの組織
を、パーライト占有面積率が10%以下であるフエ
ライト・パーライト組織とすることによつて、多
量の合金元素を使用することなく、高強度と優れ
た靭性とを具備せしめたことに特徴を有するもの
である。
つぎに、この発明の継目無鋼管において、その
成分組成及び鋼材組織を上記のように限定した理
由を説明する。
(a) 成分組成
○
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-toughness seamless steel pipe that exhibits excellent toughness and good weldability without requiring special heat treatment after pipe manufacturing. In recent years, due to changes in the world's energy situation, large-scale oil and natural gas fields have been developed in areas with harsh weather conditions such as Alaska, Canada, and Siberia, and the demand for transportation steel pipes (line pipes) for these fields has increased significantly. However, these line pipes for cold regions are not only designed to withstand extreme cold, but also have higher strength and higher strength to improve transportation efficiency.
High toughness is now required. Incidentally, in order to manufacture seamless steel pipes, which occupy an important position as oil country tubular goods such as line pipes, the steps shown in Table 1 below are normally used. [Table] [Table] Conventionally, when seamless steel pipes manufactured in this way are required to have high toughness and higher strength, it is necessary to reduce the C content to the maximum possible level, although this varies depending on the type and grade. This is handled by maintaining the steel as high as possible, and then subjecting it to heat treatment such as quenching, tempering, or normalizing after pipe-making by adding appropriate amounts of Mn and other alloying elements while considering weldability, etc. It was normal. However, if such a heat treatment method is adopted to ensure toughness and strength, the cost of the seamless steel pipe product itself can be avoided due to an increase in the number of heat treatment steps and an increase in the amount of ferroalloy added to improve hardenability. Not only is it impossible to do so, but quenching and tempering results in large variations in product dimensional accuracy due to thermal effects.Also, in the normalizing method, many alloying elements are added to improve hardenability to ensure strength. However, the difficult problem of deterioration of weldability due to the use of these materials could not be avoided. On the other hand, in the manufacture of sheet materials, in order to achieve high strength and toughness as rolled, low-temperature finish rolling is performed just below the A3 transformation point to prevent the formation of bainite and develop a fine ferrite/pearlite structure. However, when this controlled rolling method is applied to the production of seamless steel pipes using the Mannesmann plug mill method, due to the machining rate, the perforations shown in B and C in Table 1 are unavoidable. It is necessary to perform low temperature processing in the process, which is difficult to implement with conventional equipment due to the characteristics of the equipment, and if the processing temperature in this process is lowered, it will not be possible to secure the required temperature in the subsequent reeler and sizer finishing processes. There was a problem. From the above-mentioned viewpoints, the inventors of the present invention have developed a method that provides excellent toughness and strength, without requiring a post-tube-making heat treatment process that increases costs, and by using conventional pipe-making equipment as is. In order to manufacture seamless steel pipes with excellent weldability, we focused on the fact that the high-toughness, high-strength steel conventionally used for high-grade oil country tubular goods has a fine ferrite/pearlite structure. Recognizing that in order to manufacture seamless steel pipes with excellent toughness in the as-rolled state, it is necessary to transform the as-rolled steel structure into a fine ferrite/pearlite structure, we conducted various experiments and As a result of repeated research, we have developed a new method that has been used for line pipes to prevent the formation of bainite, which deteriorates the toughness of steel materials, depending on the rate of temperature drop in the normal seamless steel pipe manufacturing process. Steel C and
By keeping the Mn content low and compensating for the resulting decrease in strength by adding Cu and Ni, which are elements that strengthen the ferrite matrix, and adding Ti and Nb, which are carbide-forming elements, to strengthen the initial austenite grains. By refining the steel, delaying the precipitation of pro-eutectoid cementite during cooling, and producing fine ferrite with carbide as the nucleus, this steel can be made into pipes under conventional conditions, creating a ferrite-pearlite structure with a low pearlite occupation area ratio. This led to the discovery that it is possible to obtain seamless steel pipes with high toughness and high strength. and,
The steel pipe thus obtained was found to have good weldability, partly because the amount of alloying elements added was low. This invention has been made based on the above knowledge, and provides a seamless steel pipe with a chemical composition of C: 0.02 to 0.10% (hereinafter, % indicating the compositional component ratio is % by weight), Si: Contains 0.10 to 0.80%, Mn: 0.70 to 1.90%, Ni: 0.05 to 0.70%, Cu: 0.10 to 1.00%, and one or more of the following, with the formula 0.15Ni (%) + Cu (%) 1.00 It also contains one or more of the following: Ti: 0.01 to 0.05%, Nb: 0.02 to 0.07%, and Fe and unavoidable impurities: the remainder; By changing the original structure to a ferrite/pearlite structure with a pearlite occupation area ratio of 10% or less, we have achieved high strength and excellent toughness without using large amounts of alloying elements. It has characteristics. Next, the reason why the component composition and steel structure of the seamless steel pipe of the present invention are limited as described above will be explained. (a) Ingredient composition ○…
Claims (1)
パーライト占有面積率が10%以下であるフエライ
ト・パーライト組織を有することを特徴とする高
靭性継目無鋼管。[Claims] 1 Contains C: 0.02 to 0.10%, Si: 0.10 to 0.80%, Mn: 0.70 to 1.80%, Ni: 0.05 to 0.70%, Cu: 0.10 to 1.00%, of the following. Fe A high-toughness seamless steel pipe characterized by having a ferrite-pearlite structure consisting of (more than % by weight) and unavoidable impurities: the remainder, and having a pearlite occupation area ratio of 10% or less as rolled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2257883A JPS59150066A (en) | 1983-02-14 | 1983-02-14 | Seamless steel pipe having high toughness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2257883A JPS59150066A (en) | 1983-02-14 | 1983-02-14 | Seamless steel pipe having high toughness |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59150066A JPS59150066A (en) | 1984-08-28 |
JPH0369980B2 true JPH0369980B2 (en) | 1991-11-06 |
Family
ID=12086738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2257883A Granted JPS59150066A (en) | 1983-02-14 | 1983-02-14 | Seamless steel pipe having high toughness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59150066A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998024942A1 (en) * | 1996-12-06 | 1998-06-11 | Kawasaki Steel Corporation | Steel sheet for double wound pipe and method of producing the pipe |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AR096272A1 (en) * | 2013-05-31 | 2015-12-16 | Nippon Steel & Sumitomo Metal Corp | SEAMLESS STEEL TUBE FOR DRIVING PIPES USED IN AGRICULTURAL ENVIRONMENTS |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5779125A (en) * | 1980-10-16 | 1982-05-18 | Arbed | Manufacture of steel rolled product |
-
1983
- 1983-02-14 JP JP2257883A patent/JPS59150066A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5779125A (en) * | 1980-10-16 | 1982-05-18 | Arbed | Manufacture of steel rolled product |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998024942A1 (en) * | 1996-12-06 | 1998-06-11 | Kawasaki Steel Corporation | Steel sheet for double wound pipe and method of producing the pipe |
Also Published As
Publication number | Publication date |
---|---|
JPS59150066A (en) | 1984-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2599868C (en) | Steel for oil well pipe having excellent sulfide stress cracking resistance and method for manufacturing seamless steel pipe for oil well | |
JP4945946B2 (en) | Seamless steel pipe and manufacturing method thereof | |
US8852366B2 (en) | Method for producing steel pipe with excellent expandability | |
US3926687A (en) | Method for producing a killed steel wire rod | |
CN111996449B (en) | Pipeline thick plate with excellent plastic toughness and production method thereof | |
CN104532155A (en) | X90 level heterogeneous structure pipeline steel plate for longitudinal welded pipe and manufacturing method of pipeline steel plate | |
JPH0598350A (en) | Production of line pipe material having high strength and low yield ratio for low temperature use | |
JP3620326B2 (en) | Seamless steel pipe with fine grain structure and small strength variation | |
KR20190076782A (en) | Hot rolled steel plate having exellent strength and high dwtt toughness at low temperature and method for manufacturing the same | |
CN109554625B (en) | Hot-rolled steel strip for continuous pipe with yield strength of 800-1000 MPa and manufacturing method thereof | |
CN104073744A (en) | High-toughness X80 pipeline steel plate coil with thickness greater than or equal to 18.5mm and production method | |
CN112795755B (en) | Method for flexibly producing low-alloy high-strength hot-rolled H-shaped steel | |
JPH0369980B2 (en) | ||
JP2687841B2 (en) | Low yield ratio high strength steel pipe manufacturing method | |
JP3558198B2 (en) | High strength riser steel pipe with excellent high temperature SR characteristics | |
JP3077567B2 (en) | Method of manufacturing steel for low-temperature rebar | |
CN115323265B (en) | Superfine crystal steel plate and preparation method thereof | |
JPH07150247A (en) | Production of steel tube with high strength and low yield ratio for construction use | |
JP3077568B2 (en) | Method of manufacturing steel for low-temperature rebar | |
JPH07150245A (en) | Production of thick-walled steel tube having high toughness and low yield ratio | |
JPH07242944A (en) | Production of sour resistant high strength steel plate having excellent low temperature toughness | |
JPS602364B2 (en) | Manufacturing method of non-thermal high tensile strength steel plate with excellent low-temperature toughness | |
JPS5952207B2 (en) | Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate | |
KR100946046B1 (en) | Manufacturing of fine-grained low-carbon ferritic steels | |
JP2564425B2 (en) | Manufacturing method of high toughness 40kg class steel pipe with excellent SSC resistance |