JPH0369813A - Bearing with dynamic pressure slot and manufacturing method thereof - Google Patents

Bearing with dynamic pressure slot and manufacturing method thereof

Info

Publication number
JPH0369813A
JPH0369813A JP1206572A JP20657289A JPH0369813A JP H0369813 A JPH0369813 A JP H0369813A JP 1206572 A JP1206572 A JP 1206572A JP 20657289 A JP20657289 A JP 20657289A JP H0369813 A JPH0369813 A JP H0369813A
Authority
JP
Japan
Prior art keywords
dynamic pressure
sheet
ptfe
outer cylinder
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1206572A
Other languages
Japanese (ja)
Other versions
JP2754769B2 (en
Inventor
Hiromitsu Asai
拡光 浅井
Hiromi Sugi
杉 博美
Takashi Nagato
永戸 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP1206572A priority Critical patent/JP2754769B2/en
Priority to GB9017106A priority patent/GB2235736B/en
Publication of JPH0369813A publication Critical patent/JPH0369813A/en
Priority to US07/807,421 priority patent/US5129739A/en
Application granted granted Critical
Publication of JP2754769B2 publication Critical patent/JP2754769B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To improve friction characteristic and dimensional accuracy by bonding resin sheets made of PTFE(polytetrafluoroethylene resin) as a main component to the bore face of an outer pipe and forming dynamic pressure generating recesses in the inner surfaces of the sheets. CONSTITUTION:A bearing 20 with dynamic pressure slots consists of resin sheets 22, made of PTFE as the main component and wear resisting material mixed therein, bonded to the bore surface of an outer metal pipe 21 in axial direction with an interval, and dynamic pressure generating recesses 60, 70 of arrowhead shapes formed in the inner surfaces of the sheets 22. In manufacturing thereof, first, dynamic pressure generating recesses 60, 70 are formed in one surface of the sheet 22 by plastic working. Next, the sheet 22 is inserted into the outer pipe 21 so as to face the other surface of the sheet 22 to the inner surface of the outer pipe 21 via adhesive agent, a rod is inserted inside the inner surface of the sheet 22, and the rod is taken out from the inside of inner surface of the sheet 22 after hardening of the adhesive agent. A rubber adhesive agent dissolved with a solvent or a thermohardening adhesive agent and the like is used as the adhesive agent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、事務用機器、音響機器、測定機器等に使用さ
れる合成樹脂製の動圧みぞ付軸受及びその製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hydrodynamic grooved bearing made of synthetic resin used for office equipment, audio equipment, measuring equipment, etc., and a method for manufacturing the same.

〔従来の技術] 従来の合成樹脂よりなる筒状のすべり軸受、特に内径面
に動圧発生用のみぞを設けた動圧みぞ付軸受は、弾性の
ある熱可塑性合成樹脂にグラフディト、炭素繊維、二硫
化モリブデン、フッ素樹脂などの潤滑性物質を混合した
複合材料を用いて成形型により射出成形し、樹脂の弾性
を利用して成形型から引き抜く方法で製造されている。
[Prior art] Conventional cylindrical sliding bearings made of synthetic resin, especially dynamic pressure grooved bearings with grooves for generating dynamic pressure on the inner diameter surface, are made of elastic thermoplastic synthetic resin with graphite, carbon fiber, etc. It is manufactured by injection molding using a mold using a composite material mixed with lubricating substances such as molybdenum disulfide and fluororesin, and then pulling it out of the mold using the elasticity of the resin.

動圧発生用のみぞは上記成形時に同時に形成される。The groove for generating dynamic pressure is formed at the same time as the above molding.

その場合、用いられる熱可塑性合成樹脂のベースの樹脂
としてはPTFE (ポリテトラフルオロエチレン樹脂
)は含まれない。これは、PTFEは加熱しても熔融せ
ず粉末状であり、330″C以上でゲル状となるのみで
射出成形が不能のためである。
In that case, the base resin of the thermoplastic synthetic resin used does not include PTFE (polytetrafluoroethylene resin). This is because PTFE does not melt even when heated and is in powder form, and becomes gelatinous at temperatures above 330''C, making injection molding impossible.

一般に、PTFHの成形は粉末冶金に似た方法で行われ
る。すなわち、金型中にPTFEの粉末材料を入れ徐々
に加圧成形した後、金型から取出し、360〜380°
Cで焼成する。全体がゲル状になったとき取出し、直ち
に別の金型にいれて二次成形を行う。複雑な形状のもの
や寸法精度を要するものは、成形後に機械加工で仕上げ
て製品とする。工程が複雑で手間がかかり、この成形法
による動圧みぞ付軸受の製造は実際問題として行われて
いない。
Generally, forming PTFH is done in a manner similar to powder metallurgy. That is, after putting a PTFE powder material into a mold and gradually pressurizing it, it is taken out from the mold and 360 to 380°
Bake at C. When the entire product becomes gel-like, it is taken out and immediately placed in another mold for secondary molding. Products with complex shapes or requiring dimensional accuracy are finished by machining after molding. The process is complicated and time-consuming, and the production of hydrodynamic grooved bearings using this molding method has not been carried out as a practical matter.

又、パイプやチューブ等の場合、PTFEの粉末に有機
溶媒を加えてペースト状にしたものを押出機でパイプ等
に押し出し成形し、その後溶剤を揮発させてから加熱炉
中で焼成して製品とする成形法も行われる。しかし焼成
には2日位かかるので生産性が悪く、また焼成による形
状の変形が大きく、この方法も動圧みぞ付軸受の製造に
は適用されていない。
In the case of pipes, tubes, etc., an organic solvent is added to PTFE powder to form a paste, which is then extruded into a pipe, etc. using an extruder, and then the solvent is evaporated and then fired in a heating furnace to form the product. A molding method is also used. However, since baking takes about two days, productivity is poor, and the shape is largely deformed by baking, so this method has not been applied to the production of hydrodynamic grooved bearings.

PTFE以外の熱可塑性樹脂材料を用いた動圧みぞ付軸
受については、製造は可能であるが、成形収縮が大きく
寸法精度が不十分であり、また摩擦特性も充分ではなく
、動圧みぞ付軸受としての性能が十分には発揮されてい
ない。これに対して本出願人は、成形精度の良い熱硬化
性樹脂を用いた動圧みぞ付軸受とその製造方法を先に提
案した(特開昭63−203916号)。
It is possible to manufacture dynamic pressure grooved bearings using thermoplastic resin materials other than PTFE, but the molding shrinkage is large and the dimensional accuracy is insufficient, and the friction characteristics are not sufficient. Its performance is not fully demonstrated. In response to this, the present applicant has previously proposed a dynamic pressure grooved bearing using a thermosetting resin with good molding precision and a method for manufacturing the same (Japanese Patent Application Laid-open No. 203916/1983).

これは、エポキシ樹脂、フェノール樹脂、不飽和ポリエ
ステル樹脂、ジアリルフタレート樹脂などの熱硬化樹脂
よりなり、内径面に動圧発生用のみぞが形成された薄肉
内筒体を、金属性の外筒体の内径面に固着した動圧みぞ
付軸受である。
This is made of thermosetting resin such as epoxy resin, phenol resin, unsaturated polyester resin, diallyl phthalate resin, etc., and has a thin inner cylinder with grooves for generating dynamic pressure on the inner diameter surface, and a metal outer cylinder. This is a dynamic pressure grooved bearing that is fixed to the inner diameter surface of the bearing.

この動圧みぞ付軸受の製造に際しては、あらかじめ内径
面に多数条の凹みぞ或いは接着剤等の固着手段が施され
た外筒体を外型に嵌装し、動圧発生用のみぞの形状に対
応する凸条が外周面に配列された内型と前記外型に嵌装
された外筒体との間の細幅の環状空間に、熱硬化性樹脂
を加熱溶融した成形材料を供給し、この成形材料を硬化
させて内筒体を成形するとともに、これを外筒体に固着
手段を介して固着保持せしめて内筒体と外筒体とが一体
となった積層構造とし、しかる後、内筒体と外筒体との
積層構造を外型および内型から軸方向に抜き出して離型
する。
When manufacturing this bearing with hydrodynamic pressure grooves, an outer cylindrical body with many grooves or fixing means such as adhesive applied to the inner diameter surface is fitted into the outer mold in advance, and the grooves for generating dynamic pressure are shaped. A molding material made by heating and melting a thermosetting resin is supplied into a narrow annular space between an inner mold in which protrusions corresponding to the above are arranged on the outer peripheral surface and an outer cylinder fitted in the outer mold. This molding material is cured to form an inner cylindrical body, and this is fixed to the outer cylindrical body via a fixing means to form a laminated structure in which the inner cylindrical body and the outer cylindrical body are integrated. , the laminated structure of the inner cylinder and the outer cylinder is extracted from the outer mold and the inner mold in the axial direction and released from the mold.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、熱硬化性樹脂は成形精度は良いが樹脂自
体の摩擦特性、摩耗特性が低く、たとえグラファイト、
炭素繊維、二硫化モリブデンなどの潤滑性物質を混合し
ても、良好な摩擦特性、摩耗特性は得られないという問
題点があった。
However, although thermosetting resins have good molding accuracy, the resin itself has low friction and wear characteristics, and even graphite,
Even when lubricating substances such as carbon fiber and molybdenum disulfide are mixed, there is a problem in that good friction and wear characteristics cannot be obtained.

また、単体の軸受を複数個組み込んでユニット化する場
合に、複数個の軸受の内径の同軸度をだすことが困難で
あるという問題点があった。
Further, when a plurality of single bearings are assembled into a unit, there is a problem in that it is difficult to achieve coaxiality of the inner diameters of the plurality of bearings.

そこで本発明は、上記従来の問題点に着目してなされた
ものであり、その目的とするところは、摩擦特性がすぐ
れた熱可塑性樹脂であるPTFEを主成分とする樹脂を
用いて、摩擦特性、摩耗特性に優れ、しかも寸法精度に
も優れた動圧みぞ付軸受とその製造方法を提供して上記
従来の問題点を解決することにある。
Therefore, the present invention has been made by focusing on the above-mentioned conventional problems, and its purpose is to improve the frictional properties by using a resin whose main component is PTFE, which is a thermoplastic resin with excellent frictional properties. The object of the present invention is to provide a hydrodynamic grooved bearing having excellent wear characteristics and excellent dimensional accuracy, and a method for manufacturing the same, thereby solving the above-mentioned conventional problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の動圧みぞ付軸受は、外筒の内径面にPTFEを
主成分とする樹脂のシートが接着され、該シートの内面
に動圧発生用のみぞが形成されている。
In the dynamic pressure grooved bearing of the present invention, a resin sheet containing PTFE as a main component is adhered to the inner diameter surface of an outer cylinder, and grooves for generating dynamic pressure are formed on the inner surface of the sheet.

また本発明の他の動圧みぞ付軸受は、外筒の内径面には
PTFEを主成分とする樹脂のシートが軸方向に間隔を
おいてそれぞれ接着され、該シートの内面に動圧発生用
のみぞが形成されている。
In addition, in another dynamic pressure grooved bearing of the present invention, sheets of resin mainly composed of PTFE are adhered to the inner diameter surface of the outer cylinder at intervals in the axial direction, and the inner surface of the sheets is used for generating dynamic pressure. A groove is formed.

本発明の動圧みぞ付軸受の製造方法は、PTFEを主成
分とする樹脂のシートの一方の面に動圧発生用のみぞを
塑性加工によって成形し、前記シートの他方の面と外筒
の内径面とが接着剤を介して対向するようにシートを外
筒内に挿入し、前記シートの内面にロッドを挿入し、前
記接着剤の硬化後にシートの内面からロッドを取り出す
The method for manufacturing a dynamic pressure grooved bearing of the present invention involves forming grooves for generating dynamic pressure on one surface of a resin sheet mainly composed of PTFE by plastic working, and forming a groove between the other surface of the sheet and an outer cylinder. A sheet is inserted into the outer cylinder so that the inner diameter faces are opposed to each other via an adhesive, a rod is inserted into the inner surface of the sheet, and after the adhesive has hardened, the rod is taken out from the inner surface of the sheet.

以下に、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明のPTFEを主成分とする樹脂は、PTFEに摩
耗特性向上物質を混合したものである。
The resin containing PTFE as a main component of the present invention is a mixture of PTFE and a wear property improving substance.

PTFEの含有量は50〜90wt%のものが好ましい
。50wt%より少ないとPTFEの特性である摩擦特
性が低下する。一方、90wL%より多いと摩耗性向上
物質の添加量が過少となり、耐摩耗性が向上しない。し
かしながら、上記の範囲に必ずしも限定されるものでは
なく、50wt%より少なくてもよく、また90wt%
を越えてもよい。
The content of PTFE is preferably 50 to 90 wt%. If it is less than 50 wt%, the frictional properties, which are the characteristics of PTFE, will deteriorate. On the other hand, if it is more than 90wL%, the amount of the abrasion-improving substance added will be too small, and the abrasion resistance will not improve. However, it is not necessarily limited to the above range, and may be less than 50 wt%, or 90 wt%
may exceed.

混合される摩耗特性向上物質としては、例えばグラファ
イト、炭素繊維、二硫化モリブデン、ポリイミド、エコ
ノール、ガラス繊維等を用いることができる。
As the wear property improving substance to be mixed, for example, graphite, carbon fiber, molybdenum disulfide, polyimide, econol, glass fiber, etc. can be used.

本発明のPTFEを主成分とする樹脂のシートは、上記
PTFE樹脂と摩耗特性向上物質との混合材料を用いて
周知の樹脂シート製造法により形成されたものでよく、
例えば、ナフサなどの有機溶媒を加えてペースト状にし
、カレンダでシート状にした後、溶剤を揮発させてから
加熱炉中で焼威したものとか、混合材料の分散液を金属
面上に流し出したのち焼威し、形成されたフィルムを剥
離したものとか、成形した円柱ブロックから切削したも
の等が利用できる。シートの厚さは、0.1〜2. O
tmrrのものが好ましい。
The resin sheet containing PTFE as a main component of the present invention may be formed by a well-known resin sheet manufacturing method using a mixed material of the above-mentioned PTFE resin and a wear property improving substance,
For example, an organic solvent such as naphtha is added to make a paste, the sheet is made into a sheet in a calender, the solvent is evaporated and then burned in a heating furnace, or a dispersion of mixed materials is poured onto a metal surface. After that, it can be burned and the formed film peeled off, or one cut from a molded cylindrical block can be used. The thickness of the sheet is 0.1 to 2. O
tmrr is preferred.

このPTFEを主成分とする樹脂のシートを外筒の内径
面に接着する際には、シートの被接着面に、常法に従っ
てあらかしめ化学処理(脱フツ素処理)を施す。これは
、シートの接着性を改善するための処理であり、フッ素
樹脂専用のプライマを用いた表面処理とか、いわゆるナ
トリウム処理法等が適用できる。
When adhering this sheet of resin whose main component is PTFE to the inner diameter surface of the outer cylinder, the surface of the sheet to be adhered is subjected to a roughening chemical treatment (defluorination treatment) according to a conventional method. This is a treatment for improving the adhesiveness of the sheet, and surface treatment using a primer specifically for fluororesin, a so-called sodium treatment method, etc. can be applied.

接着剤としては、ゴム系接着剤を溶剤で適正粘度に溶か
したもの、あるいは熱硬化性接着剤等が使用できる。こ
れらの接着剤をPTFEを主成分とする樹脂シートの前
記化学処理を施した被接着面に均一に塗布したのち半乾
燥させる。または前記シートに塗布する代わりに、外筒
の内径面に接着剤を塗布するようにしてもよい。
As the adhesive, a rubber adhesive dissolved in a solvent to an appropriate viscosity, a thermosetting adhesive, or the like can be used. These adhesives are uniformly applied to the chemically treated surface of the resin sheet containing PTFE as a main component, and then semi-dried. Alternatively, instead of applying the adhesive to the sheet, the adhesive may be applied to the inner diameter surface of the outer cylinder.

なお、動圧みぞ付軸受の動圧発生用のみぞの深さは、適
正な動圧効果を得るためには5〜60μmが好ましい。
Note that the depth of the grooves for generating dynamic pressure in the dynamic pressure grooved bearing is preferably 5 to 60 μm in order to obtain an appropriate dynamic pressure effect.

しかし、PTFEを主成分とする樹脂のシートの内面に
形成された動圧発生用のみぞの深さは、5〜60μmよ
り多少深い方が好ましい。この動圧発生用のみぞは、P
TFEを主成分とする樹脂のシートの一方の面に塑性加
工によって予め成形される。例えば他方の面である被接
着面に接着のための化学処理を施した後、化学処理され
ない面に転造機により動圧発生用のみぞを転造するとと
もに、シート厚みを均一にする。この転造時の加熱温度
は100〜200″Cが好ましい。もっとも、接着のた
めの化学処理は、上記の動圧発生用のみぞの塑性加工後
に行ってもよい。
However, the depth of the groove for generating dynamic pressure formed on the inner surface of the resin sheet mainly composed of PTFE is preferably slightly deeper than 5 to 60 μm. This groove for generating dynamic pressure is P
It is preformed by plastic working on one side of a resin sheet whose main component is TFE. For example, after chemically treating the other surface to be adhered for adhesion, grooves for generating dynamic pressure are rolled by a rolling machine on the surface that is not chemically treated, and the sheet thickness is made uniform. The heating temperature during this rolling is preferably 100 to 200''C. However, the chemical treatment for adhesion may be performed after the above-mentioned plastic working of the grooves for generating dynamic pressure.

なお、転造ではなくてプレス加工でもよい。Note that pressing may be used instead of rolling.

被接着面に接着剤が塗布されるとともに(接着剤を外筒
側に塗布する場合は、被接着面に接着のための化学処理
を施しただけとなる)、他方の面に上記動圧発生用のみ
ぞが塑性加工されたPTFEを主成分とする樹脂シート
は、必要長さに切断され、被接着面を外側にし、丸めて
外筒内に挿入される。次いで、この丸めたシート内面に
金属製またはプラスチック製のロッドを軽く圧入して挿
入する。
At the same time that the adhesive is applied to the surface to be bonded (if the adhesive is applied to the outer cylinder side, the surface to be bonded is simply subjected to chemical treatment for adhesion), and the above-mentioned dynamic pressure is generated on the other surface. A resin sheet mainly composed of PTFE with plastic grooves is cut to the required length, rolled up and inserted into the outer cylinder with the surface to be adhered facing outward. Next, a metal or plastic rod is lightly press-fitted and inserted into the inner surface of this rolled sheet.

接着剤として例えばゴム系接着剤を使用した場合は、接
着剤の硬化のために60〜150°Cの温度に10〜6
0分間加熱する。
For example, when a rubber adhesive is used as the adhesive, it is heated to a temperature of 60 to 150°C for 10 to 6 hours to harden the adhesive.
Heat for 0 minutes.

なお、外筒よりロッドの線膨張係数を大きくしたり、ま
た外筒よりシートの線膨張係数を大きくしたり、更に外
筒よりロッドとシートとの線膨張係数をいずれも大きく
したりして、加熱時にはシートの内面がロッドに圧迫さ
れて多少の塑性変形を伴うことが好ましい。
In addition, by making the linear expansion coefficient of the rod larger than that of the outer cylinder, making the linear expansion coefficient of the seat larger than that of the outer cylinder, and further making the linear expansion coefficient of both the rod and the seat larger than the outer cylinder, During heating, it is preferable that the inner surface of the sheet is compressed by the rod and undergoes some plastic deformation.

なお、このように外筒とロッドとシートとの線膨張係数
を選定すると、シートの内面にロッドをすきまを隔てて
挿入しても、加熱時にはシートの内面がロッド圧迫され
て多少の塑性変形を伴うようにすることができる。
If the linear expansion coefficients of the outer cylinder, rod, and seat are selected in this way, even if the rod is inserted into the inner surface of the seat with a gap, the inner surface of the seat will be compressed by the rod during heating, resulting in some plastic deformation. It can be made to accompany.

また、アルミニウムは鋼より線膨張係数が大きいが、合
成樹脂よりは線膨張係数が小さい。そして、PTFEを
主成分とする樹脂は鋼やアルミニウムより線膨張係数が
大きい。ロッドと外筒との材質を適宜に選定してシート
の内面がロッドに圧迫されることが好ましい。
Furthermore, aluminum has a higher coefficient of linear expansion than steel, but a lower coefficient of linear expansion than synthetic resin. A resin containing PTFE as a main component has a larger coefficient of linear expansion than steel or aluminum. It is preferable that the inner surface of the seat is pressed by the rod by appropriately selecting materials for the rod and the outer cylinder.

なお、常温硬化型の接着剤を使用した場合は加熱しなく
ても良く、シートの内面にロッド圧入後に硬化に必要な
時間常温放置すれば良い。
Note that when a room temperature curing type adhesive is used, heating is not necessary, and it is sufficient to leave it at room temperature for the time required for curing after the rod is press-fitted into the inner surface of the sheet.

接着剤が硬化した後、シートの内面からロッドを抜き取
る。
After the adhesive has hardened, remove the rod from the inner surface of the sheet.

上記の丸めたシートは、複数枚を外筒に軸方向に間隔を
おいて挿入し、それぞれ接着する構成としてもよい。
A plurality of the above-mentioned rolled sheets may be inserted into the outer cylinder at intervals in the axial direction and adhered to each other.

かくして、シートはロッドの圧迫を受けて多少の塑性変
形を伴って外筒内径面に接着され、優れた内径寸法精度
、同軸度が得られる。
In this way, the sheet is adhered to the inner diameter surface of the outer cylinder with some plastic deformation under the pressure of the rod, and excellent inner diameter dimensional accuracy and coaxiality are obtained.

なお、外筒は金属製でもプラスチック製でもよく、軸受
仕様に基づいて適宜に選択できる。また外筒形状も円筒
状に限らず、角型その他必要に応して任意の形状にでき
る。
Note that the outer cylinder may be made of metal or plastic, and can be appropriately selected based on the bearing specifications. Further, the shape of the outer cylinder is not limited to a cylindrical shape, but can be square or any other shape as required.

〔実施例] 以下、本発明の実施例を図とともに説明する。〔Example] Embodiments of the present invention will be described below with reference to the drawings.

動圧みぞ付軸受は、軸体と軸受とが相互のすべり面を介
して、一方向の回転運動、正逆回転運動。
Dynamic pressure grooved bearings allow the shaft body and bearing to rotate in one direction or in the opposite direction through their mutual sliding surfaces.

軸方向の直線運動またはらせん運動を相対的に行う。し
たがって、動圧発生用のみぞのパターンも、それらの相
対運動の態様に応して定められる。
Performs relative linear or spiral movement in the axial direction. Therefore, the pattern of the grooves for generating dynamic pressure is also determined according to the mode of their relative movement.

第1図(a)ないしくd)は、本発明の第1実施例を示
すもので、同図(a)において、軸体lOと円筒状の動
圧みぞ付軸受20とは、相対的に軸方向の正逆の直線運
動を行う。動圧みぞ付軸受20は、金属製の外筒21の
内径面に、PTFEを主成分とする樹脂のシート22が
軸方向に間隔をおいてそれぞれ接着され、該シートの内
面には、同図(b)、 (C)および(d)に示すよう
なやしり状の動圧発生用のみぞ60,70が形成されて
いる。
1(a) to d) show a first embodiment of the present invention, and in FIG. 1(a), the shaft lO and the cylindrical dynamic pressure grooved bearing 20 are relatively Performs linear motion in the forward and reverse directions of the axis. In the dynamic pressure grooved bearing 20, resin sheets 22 mainly composed of PTFE are adhered to the inner diameter surface of a metal outer cylinder 21 at intervals in the axial direction. Palm-shaped grooves 60, 70 for generating dynamic pressure are formed as shown in (b), (C), and (d).

同図(b)に示すみぞは、矢先方向が軸方向右向きのみ
ぞ60と、軸方向左向きのみぞ70とを軸方向にほぼ同
一の間隔で交互に配設するとともに、軸と直角方向に適
宜の間隔をおいて配列しである。
The grooves shown in FIG. 6(b) include grooves 60 whose arrowheads point to the right in the axial direction and grooves 70 which point to the left in the axial direction alternately at approximately the same intervals in the axial direction, and at appropriate intervals in the direction perpendicular to the axis. They are arranged at intervals of .

同図(C)に示すみぞは、矢先方向が軸方向右向きのみ
ぞ60と、軸方向左向きのみぞ70とを菱形状に向い合
わせに接続して、軸方向にほぼ同一の間隔で、軸と直角
方向に適宜の間隔をおいて配列しである。
The groove shown in Figure (C) connects a groove 60 whose arrowheads point to the right in the axial direction and a groove 70 which points to the left in the axial direction facing each other in a diamond shape, and connects the groove with the shaft at almost the same interval in the axial direction. They are arranged at appropriate intervals in the right angle direction.

同図(d)に示すみぞは、矢先方向が軸方向右向きのみ
ぞ60と、軸方向左向きのみぞ70とを軸と直角方向に
波形状に接続して、軸方向にほぼ同一の間隔で配列しで
ある。
The grooves shown in FIG. 2(d) are grooves 60 whose arrowheads point to the right in the axial direction and grooves 70 which point to the left in the axial direction, connected in a wave shape in a direction perpendicular to the axis, and arranged at approximately the same intervals in the axial direction. It is.

上記のみぞ60,70の深さは数μm〜数十μmの範囲
で適宜に選定されている。
The depth of the grooves 60, 70 is appropriately selected in the range of several μm to several tens of μm.

上記の軸受の潤滑剤としては、油、グリース。The lubricants for the above bearings include oil and grease.

水および空気等のうち何れかが使用される。Either water or air is used.

軸体10が矢符号A方向に直線運動した場合、この運動
方向Aに矢先が一致する軸方向右向きのみぞ60のポン
ピング作用によって矢先部分の流体の圧力が高くなり、
軸受すきま23に流出した潤滑剤の流体膜によって軸体
lOを支持する。軸体10が反対の矢符号B方向に直線
運動した場合は、矢先方向が運動方向Bに一致する軸方
向左向きのみぞ70のボンピング作用によってこのみぞ
70の矢先部分から軸受すきま23に流出した潤滑剤に
よって流体膜が形成される。
When the shaft body 10 moves linearly in the direction of arrow mark A, the pressure of the fluid at the point of the arrow increases due to the pumping action of the groove 60 pointing to the right in the axial direction whose arrow tip coincides with the direction of movement A.
The shaft body 1O is supported by a fluid film of lubricant flowing into the bearing clearance 23. When the shaft body 10 moves linearly in the opposite arrow B direction, the lubricant flows out from the arrow tip of the groove 70 into the bearing clearance 23 due to the pumping action of the groove 70 facing leftward in the axial direction, the arrow tip of which coincides with the movement direction B. A fluid film is formed by the agent.

上記の動圧みぞ付軸受20は以下のようにして製造した
ものである。
The hydrodynamic grooved bearing 20 described above was manufactured as follows.

先ず、PTFEを主成分とし、これに摩耗特性向上物質
としては、例えばガラス繊維を混合してなる樹脂シート
22の一方の面に、接着の前処理である脱フツ素処理を
施す。この実施例では、フッ素樹脂専用のプライマを用
いて常法通りに行った。その後、転造機にかけてシート
22を加圧加熱しつつ、脱フツ素処理しない他方の面に
動圧発生用のみぞ60,70を底形した。次にシート2
2の脱フツ素処理した面に溶剤で適正粘度に調整したゴ
ム系接着剤を均一に塗布し、溶剤を揮発させて半乾燥さ
せた後、シート22を所要の寸法に切断した。全く同一
の2枚のシート22を、接着剤塗布面が外側になるよう
に丸めて金属製(又はプラスチック製)の外筒21内に
、軸方向に間隔をへだてで挿入し、第2図(a)に示す
状態に取付けた。その状態のシート内径をdとする。そ
の後、挿入した前記シート22の内面に外径りのロッド
Rを圧入する。このロッド外径りはシート内径dより若
干大きいが、シート22は弾性変形可能であり、且つま
た、この挿入時点でシート22と外筒21の摩擦係数が
大きくなっているから、ロッドRの挿入は可能である。
First, one surface of a resin sheet 22 made of PTFE as a main component and mixed with, for example, glass fiber as an abrasion property improving substance, is subjected to a fluorine-free treatment as a pretreatment for adhesion. This example was carried out in a conventional manner using a primer specifically designed for fluororesin. Thereafter, while pressing and heating the sheet 22 using a rolling machine, grooves 60 and 70 for generating dynamic pressure were bottom-shaped on the other surface that was not subjected to the fluorination treatment. Next sheet 2
A rubber adhesive adjusted to an appropriate viscosity with a solvent was uniformly applied to the defluorinated surface of No. 2, and after volatilizing the solvent and semi-drying, the sheet 22 was cut into desired dimensions. Two identical sheets 22 are rolled up so that the adhesive-applied surface is on the outside, and inserted into the metal (or plastic) outer cylinder 21 with a gap in the axial direction. It was installed in the state shown in a). Let the inner diameter of the seat in that state be d. Thereafter, a rod R having an outer diameter is press-fitted into the inner surface of the inserted sheet 22. This rod outer diameter is slightly larger than the seat inner diameter d, but since the seat 22 is elastically deformable and the coefficient of friction between the seat 22 and the outer cylinder 21 is large at the time of insertion, the rod R can be inserted. is possible.

その後所定温度に加熱すると、シート22は外筒21よ
り線膨張係数が大きいのでロッドRより受ける圧迫力は
ロッドRのシート22の内面への挿入時以上となる。
After that, when heated to a predetermined temperature, the sheet 22 has a larger coefficient of linear expansion than the outer cylinder 21, so the compressive force received from the rod R becomes greater than when the rod R is inserted into the inner surface of the sheet 22.

なお、外筒21としてアルミニウムを使用し、ロッドR
として鋼を使用すると、外筒21とロッドRとの線膨張
係数の差が小さく、またシニト22は外筒21より線膨
張係数が数倍大きいので、加熱時にシート22がロッド
Rより受ける圧迫力はロッドRのシート22の内面への
圧入時以上となる。
Note that aluminum is used as the outer cylinder 21, and the rod R
If steel is used as the material, the difference in linear expansion coefficient between the outer cylinder 21 and the rod R is small, and the linear expansion coefficient of the SINIT 22 is several times larger than that of the outer cylinder 21, so the compressive force that the sheet 22 receives from the rod R during heating is is greater than when the rod R is press-fitted into the inner surface of the seat 22.

このロッドRの圧迫による塑性変形を利用して、シート
22を外筒21の内面およびロッドRの外径面になじま
せる。所定時間経過して接着剤が硬化したら、ロッドR
をシート22の内径面から抜き取る。
The sheet 22 is made to conform to the inner surface of the outer cylinder 21 and the outer diameter surface of the rod R by utilizing the plastic deformation caused by the compression of the rod R. After the adhesive has hardened after a predetermined period of time, the rod R
is extracted from the inner diameter surface of the sheet 22.

このようにして、軸方向に間隔をおいて接着された2枚
のシート22を、1本のロッドRで共通に圧して塑性変
形せしめることにより、優れた内径寸法精度と、軸方向
両端部の同軸度が保証された動圧みぞ付軸受20が得ら
れる。
In this way, the two sheets 22 glued at intervals in the axial direction are commonly pressed with one rod R and plastically deformed, thereby achieving excellent inner diameter dimensional accuracy and A hydrodynamic grooved bearing 20 with guaranteed coaxiality is obtained.

第3図、第4図は動圧発生用のみぞの変形例を示してい
る。第3図のものは、軸体10と動圧みぞ付軸受20と
が、相対的に正逆のらせん運動を行う場合のみぞパター
ンである。同図(a)は、矢先方向が軸体10のリード
角θ方向に位置する下向きのみぞ60と上向きのみぞ7
0とを、交互にリード角θ方向に平行に配列している。
FIGS. 3 and 4 show modified examples of grooves for generating dynamic pressure. The groove pattern shown in FIG. 3 is a groove pattern in which the shaft body 10 and the dynamic pressure grooved bearing 20 perform relative spiral motion in forward and reverse directions. The figure (a) shows a downward groove 60 and an upward groove 7 whose arrowheads are located in the lead angle θ direction of the shaft body 10.
0 are alternately arranged in parallel to the lead angle θ direction.

同図(b)は、矢先方向がリード角θ方向に位置する下
向きのみぞ60と上向きのみぞ70とを菱形状に接続し
、軸方向に4列となるようにしてリード角θ方向に配列
している。
In the same figure (b), downward grooves 60 and upward grooves 70 whose arrowheads are located in the lead angle θ direction are connected in a diamond shape and arranged in four rows in the axial direction in the lead angle θ direction. are doing.

第4図のものは、軸体1oと動圧みぞ付軸受20とが、
相対的に正逆回転するラジアル動圧みぞ付軸受の場合の
みぞパターンである。同図(a)は、矢先方向が下向き
のみぞ60と上向きのみぞ7゜とを円周方向にほぼ同一
の間隔で交互に配設し、軸方向に適宜の間隔をおいて配
列している。同図(b)は、矢先方向が下向きのみぞ6
0と上向きのみぞ70とを菱形状に向かい合わせに接続
して、円周方向にほぼ同一の間隔で、軸方向に適宜の間
隔をおいて配列している。その菱形状の動圧発生用のみ
ぞ60.70の内側に潤滑剤保持用のみぞ80が設けら
れている。
In the one in FIG. 4, the shaft body 1o and the dynamic pressure grooved bearing 20 are
This is the groove pattern for a radial dynamic pressure grooved bearing that rotates relatively forward and backward. In the same figure (a), grooves 60 whose arrow tips point downward and grooves 7° which point upward are arranged alternately at substantially the same intervals in the circumferential direction, and are arranged at appropriate intervals in the axial direction. . In the same figure (b), the arrow direction is downward facing groove 6.
0 and upwardly facing grooves 70 are connected facing each other in a diamond shape and are arranged at substantially the same intervals in the circumferential direction and at appropriate intervals in the axial direction. A groove 80 for holding lubricant is provided inside the diamond-shaped groove 60, 70 for generating dynamic pressure.

第5図に第2実施例を示す。FIG. 5 shows a second embodiment.

この実施例は、外面が非円筒状の外筒30の内径面に、
動圧発生用のみぞを有し、そしてPTFEを主成分とし
て摩耗特性向上物質を混合してなる樹脂のシート22を
組み込んだものである。動圧みぞ付軸受としての作用・
効果において上記第1実施例と異なる点はない。このよ
うに、外筒体については円筒状に限らず任意の形状のも
のを用いることができる。
In this embodiment, on the inner diameter surface of the outer cylinder 30 whose outer surface is non-cylindrical,
It has grooves for generating dynamic pressure and incorporates a resin sheet 22 made of PTFE as a main component mixed with a wear property improving substance. Function as a hydrodynamic grooved bearing
There is no difference in effect from the first embodiment. In this way, the outer cylinder is not limited to a cylindrical shape, and any shape can be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の動圧みぞ付軸受は、動圧
発生用のみぞを内面に形成したPTFEを主成分とする
樹脂のシートが外筒の内径面に接着された構成であるか
ら、軸受の内径寸法精度が十分に高精度となり、且つ極
めて良好な摩擦特性が得られる。また、動圧発生用のみ
ぞのポンピング作用によって優れた摩耗特性が得られる
As explained above, the dynamic pressure grooved bearing of the present invention has a structure in which a sheet of resin mainly composed of PTFE, which has grooves for generating dynamic pressure formed on the inner surface, is adhered to the inner diameter surface of the outer cylinder. , the dimensional accuracy of the inner diameter of the bearing becomes sufficiently high, and extremely good friction characteristics are obtained. In addition, excellent wear characteristics can be obtained due to the pumping action of the grooves for generating dynamic pressure.

また、本発明の動圧みぞ付軸受の製造方法によれば、P
TFEを主成分とする樹脂のシートの一方の面に、あら
かじめ動圧発生用のみぞを塑性加工によって底形するた
め、みぞ深さ、みぞ形状、シート厚みを所望の寸法で均
一に形成でき、ひいてはシートの内面に挿入したロッド
により軸受すきまを任意にコントロールし、軸および軸
受の振れを抑制して高精度の性能が得られる。
Further, according to the method for manufacturing a dynamic pressure grooved bearing of the present invention, P
Because grooves for generating dynamic pressure are shaped in advance by plastic processing on one side of the resin sheet whose main component is TFE, the groove depth, groove shape, and sheet thickness can be uniformly formed to the desired dimensions. Furthermore, the bearing clearance can be controlled arbitrarily using the rod inserted into the inner surface of the seat, suppressing the runout of the shaft and bearings and achieving high-precision performance.

更に、シートの他方の面と外筒の内径面とが接着剤を介
して対向するようにシートを外筒内に挿入し、前記シー
トの内面にロッドを挿入し、接着剤の硬化後にシートの
内面からロッドを取り出す構成としたため、単体の軸受
を軸方向に間隔をおいて複数個組み込んでユニット化す
る場合にも、複数個の軸受の内径の同軸度をだすことが
容易であり、摩擦特性、摩耗特性に優れ、しかも寸法精
度にも優れた高品質の動圧みぞ付軸受の製造が可能であ
る。
Furthermore, the sheet is inserted into the outer cylinder so that the other surface of the sheet and the inner diameter surface of the outer cylinder face each other with the adhesive interposed therebetween, a rod is inserted into the inner surface of the sheet, and after the adhesive hardens, the sheet is Since the rod is taken out from the inner surface, it is easy to make the inner diameters of the multiple bearings coaxial even when multiple bearings are installed at intervals in the axial direction to form a unit, which improves friction characteristics. , it is possible to manufacture high-quality hydrodynamic grooved bearings with excellent wear characteristics and dimensional accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の第1実施例の動圧みぞ付軸受の
縦断面図、第1図(b)、 (C)、 (d)、第3図
(a)、 (b)、第4図(a)、 (b)はそれぞれ
動圧発生用のみぞのパターンを表した平面図、第2図(
a)、 (b)は本発明の動圧みぞ付軸受の製造工程を
説明する縦断面図、第5図は第2実施例の動圧みぞ付軸
受の縦断面図である。 図中、21は外筒、22はシート、60.70は動圧発
生用のみぞ、Rはロッド。 特許出順人 日本精工株式会社
FIG. 1(a) is a vertical cross-sectional view of a hydrodynamic grooved bearing according to the first embodiment of the present invention, FIG. 1(b), (C), (d), and FIG. 3(a), (b). , Figures 4(a) and (b) are plan views showing groove patterns for generating dynamic pressure, respectively, and Figure 2(
a) and (b) are longitudinal sectional views illustrating the manufacturing process of the hydrodynamic grooved bearing of the present invention, and FIG. 5 is a longitudinal sectional view of the hydrodynamic grooved bearing of the second embodiment. In the figure, 21 is an outer cylinder, 22 is a seat, 60.70 is a groove for generating dynamic pressure, and R is a rod. Patent issued by NSK Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)外筒の内径面にPTFEを主成分とする樹脂のシ
ートが接着され、該シートの内面に動圧発生用のみぞが
形成されている動圧みぞ付軸受。
(1) A hydrodynamic grooved bearing in which a resin sheet containing PTFE as a main component is adhered to the inner diameter surface of an outer cylinder, and grooves for generating dynamic pressure are formed on the inner surface of the sheet.
(2)外筒の内径面にはPTFEを主成分とする樹脂の
シートが軸方向に間隔をおいてそれぞれ接着され、該シ
ートの内面に動圧発生用のみぞが形成されている動圧み
ぞ付軸受。
(2) Dynamic pressure grooves in which sheets of resin whose main component is PTFE are adhered to the inner diameter surface of the outer cylinder at intervals in the axial direction, and grooves for generating dynamic pressure are formed on the inner surface of the sheets. With bearing.
(3)PTFEを主成分とする樹脂のシートの一方の面
に動圧発生用のみぞを塑性加工によって成形し、前記シ
ートの他方の面と外筒の内径面とが接着剤を介して対向
するようにシートを外筒内に挿入し、前記シートの内面
にロッドを挿入し、前記接着剤の硬化後にシートの内面
からロッドを取り出す動圧みぞ付軸受の製造方法。
(3) Grooves for generating dynamic pressure are formed by plastic processing on one side of a resin sheet whose main component is PTFE, and the other side of the sheet and the inner diameter surface of the outer cylinder are opposed to each other via an adhesive. A method for manufacturing a hydrodynamic grooved bearing, in which a sheet is inserted into an outer cylinder as shown in FIG.
JP1206572A 1989-08-09 1989-08-09 Manufacturing method of bearing with dynamic pressure groove Expired - Lifetime JP2754769B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1206572A JP2754769B2 (en) 1989-08-09 1989-08-09 Manufacturing method of bearing with dynamic pressure groove
GB9017106A GB2235736B (en) 1989-08-09 1990-08-03 Bearing with dynamic pressure grooves and method for manufacturing the same
US07/807,421 US5129739A (en) 1989-08-09 1991-12-13 Bearing with dynamic pressure grooves and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1206572A JP2754769B2 (en) 1989-08-09 1989-08-09 Manufacturing method of bearing with dynamic pressure groove

Publications (2)

Publication Number Publication Date
JPH0369813A true JPH0369813A (en) 1991-03-26
JP2754769B2 JP2754769B2 (en) 1998-05-20

Family

ID=16525625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1206572A Expired - Lifetime JP2754769B2 (en) 1989-08-09 1989-08-09 Manufacturing method of bearing with dynamic pressure groove

Country Status (1)

Country Link
JP (1) JP2754769B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007061955A (en) * 2005-08-31 2007-03-15 Mori Seiki Co Ltd Sliding member and machine tool equipped therewith
WO2012105280A1 (en) * 2011-01-31 2012-08-09 Ntn株式会社 Fluid dynamic pressure bearing device
WO2014054544A1 (en) * 2012-10-01 2014-04-10 オイレス工業株式会社 Multilayer sliding member and method for manufacturing multilayer sliding members
WO2020196599A1 (en) * 2019-03-26 2020-10-01 Ntn株式会社 Fluid dynamic bearing device
FR3095767A1 (en) * 2019-05-07 2020-11-13 Psa Automobiles Sa ROTATING COUNTER-SHAPING PRESS AND PROCESS FOR MANUFACTURING SUCH A PRESS
WO2022064956A1 (en) * 2020-09-24 2022-03-31 Ntn株式会社 Fluid dynamic pressure bearing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2909311B1 (en) 2006-12-04 2011-04-22 Michelin Soc Tech PNEUMATIC FOR HEAVY VEHICLE.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125528U (en) * 1980-02-26 1981-09-24
JPS5837320A (en) * 1981-08-17 1983-03-04 ザ・デユリロン・カンパニ−・インコ−ポレ−テツド Manufacture of bearing or guide lined and strut guide lined
JPS6197621U (en) * 1984-12-04 1986-06-23

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125528U (en) * 1980-02-26 1981-09-24
JPS5837320A (en) * 1981-08-17 1983-03-04 ザ・デユリロン・カンパニ−・インコ−ポレ−テツド Manufacture of bearing or guide lined and strut guide lined
JPS6197621U (en) * 1984-12-04 1986-06-23

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007061955A (en) * 2005-08-31 2007-03-15 Mori Seiki Co Ltd Sliding member and machine tool equipped therewith
WO2012105280A1 (en) * 2011-01-31 2012-08-09 Ntn株式会社 Fluid dynamic pressure bearing device
JP2012159125A (en) * 2011-01-31 2012-08-23 Ntn Corp Fluid dynamic pressure bearing device
US8864381B2 (en) 2011-01-31 2014-10-21 Ntn Corporation Fluid dynamic bearing device
WO2014054544A1 (en) * 2012-10-01 2014-04-10 オイレス工業株式会社 Multilayer sliding member and method for manufacturing multilayer sliding members
JP2014070714A (en) * 2012-10-01 2014-04-21 Oiles Ind Co Ltd Double layer sliding member and method of manufacturing double layer sliding member
WO2020196599A1 (en) * 2019-03-26 2020-10-01 Ntn株式会社 Fluid dynamic bearing device
US11959513B2 (en) 2019-03-26 2024-04-16 Ntn Corporation Fluid dynamic bearing device
FR3095767A1 (en) * 2019-05-07 2020-11-13 Psa Automobiles Sa ROTATING COUNTER-SHAPING PRESS AND PROCESS FOR MANUFACTURING SUCH A PRESS
WO2022064956A1 (en) * 2020-09-24 2022-03-31 Ntn株式会社 Fluid dynamic pressure bearing device
JP2022053014A (en) * 2020-09-24 2022-04-05 Ntn株式会社 Fluid dynamic pressure bearing device

Also Published As

Publication number Publication date
JP2754769B2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
US5129739A (en) Bearing with dynamic pressure grooves and method for manufacturing the same
US5798155A (en) Bearing material and its manufacturing method
US3011219A (en) Method of forming a ball joint utilizing a fluorocarbon layer
US3582166A (en) Bearing having low-friction fibrous surface and method for making same
US3085312A (en) Method of making bearings
JP2853311B2 (en) Bearing with dynamic pressure groove and method of manufacturing the same
US3193910A (en) Method of making bearings
KR20050004843A (en) Method of producing bearing raceway member
US3266123A (en) Method of producing bearings
US3574658A (en) Dry-lubricated surface and method of producing such surfaces
JPH0369813A (en) Bearing with dynamic pressure slot and manufacturing method thereof
US3471207A (en) Bearing liner having etched particles embedded therein
WO2012116902A1 (en) Component, in particular for a rolling bearing or plain bearing
US3268983A (en) Method of making low friction spherical bearings
US3528714A (en) Bearing and method bearing construction
EP1411109B1 (en) Solid lubricant and method for covering a sliding member
DE2319623A1 (en) HYDRODYNAMIC SLIDING BEARING WITH A SPHERICAL SHAFT END RECEIVED BY A CALOTTE-SHAPED SUPPORTING MEMBER
DE10200811B4 (en) Process for the preparation of a rolling bearing ring, as well as subsequently manufactured rolling bearing ring
JP4913582B2 (en) Manufacturing method of sliding bearing structure
US3294568A (en) Process for the production of plain bearings
JPH11293304A (en) Double-layered sintered sliding member and its production
JPH1037963A (en) Cylindrical multilayer sliding member and manufacture thereof
JPH0219332B2 (en)
CN104791382A (en) Integrated metal-based macromolecular composite self-lubrication bearing and manufacturing method thereof
CA2090771C (en) Composite material and method for producing the same