JPH0369562A - Production of silicon carbide ceramics - Google Patents

Production of silicon carbide ceramics

Info

Publication number
JPH0369562A
JPH0369562A JP1202527A JP20252789A JPH0369562A JP H0369562 A JPH0369562 A JP H0369562A JP 1202527 A JP1202527 A JP 1202527A JP 20252789 A JP20252789 A JP 20252789A JP H0369562 A JPH0369562 A JP H0369562A
Authority
JP
Japan
Prior art keywords
silicon carbide
carbide ceramics
compd
silicon
polymer compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1202527A
Other languages
Japanese (ja)
Other versions
JP2931824B2 (en
Inventor
Kazuaki Furukawa
一暁 古川
Masaya Fujino
藤野 正家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1202527A priority Critical patent/JP2931824B2/en
Publication of JPH0369562A publication Critical patent/JPH0369562A/en
Application granted granted Critical
Publication of JP2931824B2 publication Critical patent/JP2931824B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • C04B35/62863Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/12Doped silica-based glasses containing boron or halide containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/21Doped silica-based glasses containing non-metals other than boron or halide containing molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/23Doped silica-based glasses containing non-metals other than boron or halide containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • C03C2203/54Heat-treatment in a dopant containing atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain silicon carbide ceramics excellent in heat resistant stability with good dimensional stability by demineralizing and condensing trichlorosilane derivatives by alkali metal and molding the produced high molecular compd. into a required shape and calcining the molded form. CONSTITUTION:A compd. (e.g. isobutyl trichlorosilane, hexyl trichlorosilane) shown in a formula RSiCl3 (R is saturated or unsaturated hydrocarbon) is prepared as a raw material. Then this compd. is demineralized and condensed by alkali metal (e.g. metallic natrium) to produce a high molecular compd. Then this high molecular compd. is molded into a required shape and the molded form is calcined in the air or nitrogen at normal pressure or reduced pressure to obtain silicon carbide ceramics having an arbitrary shape. Thereby decreasing of weight and shrinkage at the time for calcination can be inhibited. The obtained ceramics is preferably utilized for manufacture of high-temp. heat resistant material and heat resistant fiber, etc.

Description

【発明の詳細な説明】 (発明の産業上利用分野) 本発明は、シリコンカーバイドセラミックスの製造方法
、さらに詳細には軽量かつ任意形状に焼成可能な、耐熱
材料の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field of the Invention) The present invention relates to a method for manufacturing silicon carbide ceramics, and more particularly to a method for manufacturing a heat-resistant material that is lightweight and can be fired into any shape.

〈従来の技術および問題点) シリコンカーバイドセラミクスは軽量な高温耐熱性材料
として注目され、耐熱性繊維や宇宙材料への応用が考え
られている。
<Prior Art and Problems> Silicon carbide ceramics are attracting attention as lightweight, high-temperature, heat-resistant materials, and are being considered for application to heat-resistant fibers and space materials.

シリコンカーバイドセラミクスのこれまでの一般的製造
方法は、珪石と炭素材料とを電気抵抗炉によって焼く方
法であり、この方法によりインゴット状のシリコンカー
バイドセラミクスが得られる。
The conventional method for producing silicon carbide ceramics is to bake silica stone and carbon material in an electric resistance furnace, and by this method, silicon carbide ceramics in the form of an ingot can be obtained.

しかしながら、この方法では、繊維状のものを得ること
は困難であるなど、容易に任意の形状に成形加工するの
が困難であった。
However, with this method, it is difficult to obtain a fibrous material, and it is difficult to easily mold it into an arbitrary shape.

このような欠点を補うため、成形加工性に優れた高分子
化合物を原料として用いる方法が考案されている(S、
ヤジマ(S、Yaj ima)他、ケミストリーレター
(Chem、Lett、)、第931頁、(1975)
)。この方法は、可融性もしくは有機溶剤に対する可溶
性を持つ高分子化合物を、任意の形状に成形加工した後
、高温で焼成してシリコンカーバイトセラミクスを得る
方法で、繊維状などのこれまで作成困難であった形状の
ものが容易に得られるという特徴を持つ。原料に用いる
高分子化合物は、主鎖か珪素と炭素から成るポリカルボ
シランであって、主鎖が珪素のみで構成され側鎖か全て
メチル基で構成される高分子化合物であるところのパー
メチルポリシラン、もしくは置換基が全てメチル基で構
成される珪素六員環化合物を、400−450℃で熱分
解することによって得られる。得られたポリカルボシラ
ンを融解もしくは有機溶剤に溶解し、任意形状に成形加
工した後、一部を酸素で架橋して不溶化し、窒素中13
00′C程度の高温で焼成するとシリコンカーバイドセ
ラミクスが得られる。
In order to compensate for these drawbacks, methods have been devised that use polymeric compounds with excellent moldability as raw materials (S,
Yajima S. et al., Chemistry Letters, p. 931, (1975)
). This method involves molding a polymeric compound that is fusible or soluble in organic solvents into an arbitrary shape and then firing it at high temperatures to obtain silicon carbide ceramics, which have been difficult to create in the past, such as in the form of fibers. It has the characteristic that it can easily be obtained in the shape of . The polymer compound used as a raw material is a polycarbosilane whose main chain is composed of silicon and carbon, and permethyl, which is a polymer compound whose main chain is composed only of silicon and whose side chains are composed entirely of methyl groups. It is obtained by thermally decomposing polysilane or a silicon six-membered ring compound in which all substituents are methyl groups at 400-450°C. The obtained polycarbosilane is melted or dissolved in an organic solvent, molded into an arbitrary shape, and then partially crosslinked with oxygen to make it insolubilized, and then heated in nitrogen for 13 min.
Silicon carbide ceramics can be obtained by firing at a high temperature of about 00'C.

この方法は、焼成に伴う重量減少が20%程度と小さい
ことを特徴とし、得られたシリコンカーバイドセラミク
スの耐熱性は1200℃程度であるが、■ジメチルジク
ロロシラン(Me2SjC12)からの、パーメチルポ
リシランもしくは上記珪素六員環化合物の合成、■ポリ
カルボシランへの転化、■焼成、の3工程を経なければ
ならず製造工程が複雑である。
This method is characterized by a small weight loss of about 20% due to firing, and the heat resistance of the obtained silicon carbide ceramics is about 1200°C. Alternatively, the manufacturing process is complicated, as it requires three steps: synthesis of the six-membered silicon ring compound, (1) conversion to polycarbosilane, and (2) calcination.

この製造工程を簡略化するため、最近、パーメチルポリ
シランに代わる、可融、可溶性の珪素高分子化合物を用
いる方法が開発された(R,ウェスト(R,West)
他、セラミック、プリテン(Ceram、Bul 1.
)、第899頁、(1983年〉)。
In order to simplify this manufacturing process, a method has recently been developed that uses a meltable, soluble silicon polymer compound instead of permethylpolysilane (R, West).
Others, Ceram, Bul 1.
), p. 899, (1983).

この新しい製造方法は、■RIR2SiC]2(R1、
R2はとちらも炭化水素基を示す)からの珪素高分子化
合物の合成、■焼成、の2工程からなり、工程数が少な
いという特徴を有する。しかし、光による架橋処理が必
要なこと、焼成時の重量減少が70%程度と大きいこと
か欠点である。
This new manufacturing method is: ■RIR2SiC]2(R1,
It consists of two steps: synthesis of a silicon polymer compound from R2 (both R2 represents a hydrocarbon group), and (2) calcination, and is characterized by a small number of steps. However, the drawbacks are that crosslinking treatment with light is required and the weight loss during firing is as large as about 70%.

焼成時の大きな重量減少は、1,4−ジクロロデカメチ
ルシクロヘキサシランを原料として合成された珪素高分
子化合物を用いることによって、40%程度まで改善可
能であるが(K、クマール(K、Kumar)他、ジャ
ーナル オブ ポリマー サイエンス パートCポリマ
ー レター(J、Polym、Sci、PartC:P
olym、Lett、)、第26巻、第25頁、(19
88))、この珪素高分子化合物の製造には3工程を必
要とするため、RIR2SiCI 2を原料に用いる上
記方法に比べて著しく複雑であり、原料物質に対する珪
素高分子化合物の収率も18%以下と低いため実用的で
なかった。
The large weight loss during firing can be improved to about 40% by using a silicon polymer compound synthesized from 1,4-dichlorodecamethylcyclohexasilane (Kumar, K. ) and others, Journal of Polymer Science Part C Polymer Letters (J, Polym, Sci, Part C: P
olym, Lett,), Volume 26, Page 25, (19
88)) Since the production of this silicon polymer compound requires three steps, it is significantly more complicated than the above method using RIR2SiCI 2 as a raw material, and the yield of the silicon polymer compound based on the raw material is only 18%. It was impractical as it was too low.

本発明は上記の問題点に鑑みなされたものであり、珪素
高分子化合物を中間体として用いる工程数の少ないシリ
コンカーバイドセラミクスの製造方法において、従来7
0%程度と大きかった焼成時の重量減少を少なくすると
ともに、耐熱性に優れたシリコンカーバイドセラミクス
を提供する。
The present invention has been made in view of the above-mentioned problems, and is a method for producing silicon carbide ceramics using a silicon polymer compound as an intermediate with a small number of steps.
To provide silicon carbide ceramics which has excellent heat resistance while reducing the weight loss during firing which was as large as about 0%.

(問題点を解決するための手段) 上記問題点を解決するため、本発明によるシリコンカー
バイトセラミックスの製造方法は、下記(a)式て表さ
れる化合物を原料として用い、これをアルカリ金属によ
り脱塩縮合して製造した高分子化合物を、空気中もしく
は窒素中で、常圧下あるいは常圧以下の減圧下で焼成し
て、任意形状のシリコンカーバイドセラミクスをことを
特徴としている。
(Means for Solving the Problems) In order to solve the above problems, the method for producing silicon carbide ceramics according to the present invention uses a compound represented by the following formula (a) as a raw material, which is then treated with an alkali metal. The method is characterized in that silicon carbide ceramics of any shape are produced by firing a polymer compound produced by desalination condensation in air or nitrogen under normal pressure or reduced pressure below normal pressure.

R31C13・ ・ ・ (a) R:飽和または不飽和炭化水素基。R31C13・・・(a) R: saturated or unsaturated hydrocarbon group.

本発明者は、工程数が少ない新しい製造方法の利点を生
かしつつ、焼成時の重量減少を低く抑えるために、上記
の1,4−ジクロロデカメチルシクロへキサシランを原
料として合成された珪素高分子化合物とRIR2S i
C12を原料として合成された珪素高分子化合物との分
子構造を比較した。
The present inventor has developed a silicon polymer synthesized using the above-mentioned 1,4-dichlorodecamethylcyclohexasilane as a raw material in order to take advantage of a new manufacturing method with fewer steps and to suppress weight loss during firing. Compounds and RIR2S i
The molecular structure was compared with that of a silicon polymer compound synthesized using C12 as a raw material.

そして、前者は構造の一部に後者にはない構造、すなわ
ち下記(b)に示すような1つのシリコン原子が他の3
つのシリコン原子と結合した構造を含むことに着目し、
このような分子構造が重量減少の改善に寄与していると
考えた。
The former has a part of the structure that does not exist in the latter, that is, one silicon atom has three other atoms, as shown in (b) below.
Focusing on the fact that it contains a structure bonded to two silicon atoms,
It was thought that such a molecular structure contributed to the improvement in weight loss.

R 81−3i−3i ・ ・ ・ ・ ・ (b) i そこで、出発原料として、−回の製造工程で(b)のs
造を実現し得ル、R31CI+(Rは飽和または不飽和
炭化水素基を示す)を用いることによってシリコンカー
バイドの製造を行なった。
R 81-3i-3i ・ ・ ・ ・ ・ (b) i Therefore, as a starting material, s of (b)
Silicon carbide was produced by using R31CI+ (R represents a saturated or unsaturated hydrocarbon group).

本発明では、焼成に用いる珪素高分子化合物の主鎖構造
をすべて上述の(b)の構造にするために、出発原料と
して一回の製造工程で(b)の構造が実現可能な下記の
式(a)を用いたところが、従来の技術と異なる。
In the present invention, in order to make all the main chain structures of the silicon polymer compound used for firing into the above-mentioned structure (b), we use the following formula as a starting material that can realize the structure (b) in one production process. This method differs from the conventional technology in that (a) is used.

RSiCl3・・・ (a) ただし、Rは飽和または不飽和の炭化水素基。RSiCl3... (a) However, R is a saturated or unsaturated hydrocarbon group.

本発明により、珪素高分子化合物を中間体として用いた
方法において従来問題であった7o%程度の大きな重量
減少を、酸素あるいは光による架橋処理なしで、20−
60%まで少なくすることに成功した。さらに本発明に
より得られるシリコンカーバイドセラミクスの耐熱性は
、ポリカルボシランを原料に用いる従来法によって製造
されたものが1200’C程度まで一酸化炭素の放出を
伴った分解か起こるのに対して、300’C高い、15
00℃まで安定であることが特徴である。
According to the present invention, a large weight loss of about 70%, which was a conventional problem in methods using silicon polymer compounds as intermediates, can be achieved without crosslinking treatment with oxygen or light.
We succeeded in reducing it to 60%. Furthermore, the heat resistance of the silicon carbide ceramics obtained by the present invention is such that, whereas those produced by the conventional method using polycarbosilane as a raw material decompose with the release of carbon monoxide up to about 1200'C. 300'C high, 15
It is characterized by being stable up to 00°C.

本発明をさらに詳しく説明すれば、まず、有機溶媒中に
おいて、R31C13を金属ナトリウムを用いて縮合重
合することにより、中間体である珪素高分子化合物を得
る。この時、クラウンエーテルを用いると反応が円滑に
進行する(藤野、特願昭6:3−307578号〉。あ
るいは、有機溶媒中において、R31C13を超音波照
射下、ナトリウム−カリウム合金を用いて縮合重合する
ことにより(p、ビアンコニ(P、Bianconi)
他、ジャーナル オブ アメリカン ケミカルソサエテ
ィ(J、Am、Chem、Soc、)、第110巻、第
2342頁、(1988))、同様の中間体であるとこ
ろの珪素高分子化合物を得る。
To explain the present invention in more detail, first, a silicon polymer compound as an intermediate is obtained by condensation polymerizing R31C13 using sodium metal in an organic solvent. At this time, the reaction proceeds smoothly when a crown ether is used (Fujino, Japanese Patent Application No. 6:3-307578).Alternatively, R31C13 is condensed using a sodium-potassium alloy under ultrasonic irradiation in an organic solvent. By polymerizing (p, Bianconi)
et al., Journal of the American Chemical Society (J, Am, Chem, Soc, Vol. 110, p. 2342, (1988))), a silicon polymer compound which is a similar intermediate is obtained.

上記式(a)において、Rは上述のように飽和または不
飽和の炭化水素基を示すが、前記炭化水素基の炭素数は
好ましくは、1〜っであるのがよい。炭素数が9を超え
ると重量減少が大きくなり過ぎる傾向かあるからである
。Rの具体例としては、メチル、エチル、プロピル、イ
ソプロピル、ブチル、イソブチル、ターシャリ−ブチル
、ペンチル、イソペンチル、ターシャリ−ペンチル、ネ
オペンチル、ヘキシル、シクロヘキシル、ヘプチル、オ
クチルなどの飽和炭化水素基、また、フェニル、オルト
トリル、メタトリル、パラトリル、ベンジル、β−フェ
ネチル、2−フェニルプロピルなどの不飽和炭化水素基
を挙げることができる。
In the above formula (a), R represents a saturated or unsaturated hydrocarbon group as described above, and the number of carbon atoms in the hydrocarbon group is preferably 1 to 1. This is because if the number of carbon atoms exceeds 9, the weight loss tends to be too large. Specific examples of R include saturated hydrocarbon groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, isopentyl, tert-pentyl, neopentyl, hexyl, cyclohexyl, heptyl, octyl, and phenyl. , orthotolyl, methatolyl, paratolyl, benzyl, β-phenethyl, 2-phenylpropyl and the like.

しかしながら、本発明においては、これらに限定される
ものではないのは明らかである。
However, it is clear that the present invention is not limited to these.

次に、これらの方法において得られた珪素高分子化合物
を、溶融もしくは窒素中で、常圧下、あるいは常圧以下
の減圧下において、焼成し、目的のシリコンカーバイド
セラミクスを得る。
Next, the silicon polymer compound obtained by these methods is fired in a melted state or in nitrogen under normal pressure or a reduced pressure below normal pressure to obtain the desired silicon carbide ceramics.

焼成の温度は、好ましくは1500℃以下、最も好まし
くは600〜工500°Cであるのかよい。
The firing temperature is preferably 1500°C or less, most preferably 600 to 500°C.

600°C未満であると、焼成時間が長くなり、方15
00°Cを超えると、焼成時間が短くなり過ぎて、制御
性が悪くなり、いずれも製造作業上効率を損なう恐れが
あるからである。
If the temperature is less than 600°C, the firing time will be longer and
If the temperature exceeds 00°C, the firing time becomes too short, resulting in poor controllability, which may impair the efficiency of manufacturing operations.

この時の重量減少は、20−60%程度で、焼成温度を
600’C,−1500°Cの範囲て変えてもほとんど
変化がない。
The weight reduction at this time is about 20-60%, and there is almost no change even if the firing temperature is changed from 600'C to -1500C.

上記焼成温度における保持時間は、好ましくは10〜9
0分である。10分未満であると、焼成温度が高くなり
過ぎ、一方90分を超えると焼成時間か長くなり過ぎ、
製造効率を損なう恐れを生じるからである。
The holding time at the above firing temperature is preferably 10 to 9
It is 0 minutes. If it is less than 10 minutes, the firing temperature will be too high, while if it exceeds 90 minutes, the firing time will be too long.
This is because there is a risk that manufacturing efficiency will be impaired.

本発明によるシリコンカーバイドセラミクスの詳細な製
造方法及び耐熱性の一例を、以下の実施例に示す。
A detailed manufacturing method and an example of heat resistance of silicon carbide ceramics according to the present invention are shown in the following examples.

(実施例1〉 トルエン200m1中に、12−クラウン−4((CH
2CH20)4)0.46g、金属ナトリウム2.2g
を加え、攪拌しながらリフラックス状態に置き、イソブ
チルトリクロロシラン(C4H9sic13)5.0g
をゆっくりと滴下する。滴下終了後、リフラックス状態
を維持しながら攪拌を30分間続け、その後反応溶液を
室温にまて冷却し、エタノール30ccを徐々に加えて
、反応末端及び未反応金属ナトリウムの処理を行なう。
(Example 1) In 200 ml of toluene, 12-crown-4 ((CH
2CH20) 4) 0.46g, metallic sodium 2.2g
Add 5.0 g of isobutyltrichlorosilane (C4H9sic13) and place in a reflux state while stirring.
Drip slowly. After completion of the dropwise addition, stirring was continued for 30 minutes while maintaining a reflux state, and then the reaction solution was cooled to room temperature, and 30 cc of ethanol was gradually added to treat the reaction end and unreacted metal sodium.

さらに反応溶液をエタノール600cc中にゆっくりと
注ぎ込み、生じた沈澱物を評取する。?戸取した沈澱物
を水で洗浄することによって、オレンジ色の珪素高分子
化合物が得られる。
Furthermore, the reaction solution was slowly poured into 600 cc of ethanol, and the resulting precipitate was measured. ? By washing the collected precipitate with water, an orange silicon polymer compound is obtained.

この珪素高分子化合物を乾燥し、トルエン−メタノール
系で再沈澱精製し、真空乾燥する。これを、酸素あるい
は光による架橋処理を行なわすに、空気中において、常
圧下、室温から1500℃まで毎分l0°Cの割合で昇
温し、10分間1500℃で保持して、シリコンカーバ
イドセラミクスを得る。この時の重量減少は41%であ
る。また、これを、窒素中において同条件て焼成した場
合の重量減少は52%てあり、空気中の場合に比べて大
きい。
This silicon polymer compound is dried, purified by reprecipitation in a toluene-methanol system, and vacuum-dried. To carry out crosslinking treatment with oxygen or light, the temperature is raised from room temperature to 1500°C at a rate of 10°C per minute in air under normal pressure, and held at 1500°C for 10 minutes to form silicon carbide ceramics. get. The weight reduction at this time was 41%. Furthermore, when this was fired under the same conditions in nitrogen, the weight reduction was 52%, which is greater than when fired in air.

(実施例2) ヘキシルトリクロロシラン(C6I−(13S iC1
3)11gをペンタン100m1中に加え、超音波照射
による攪拌を行ないながら、ナトリウム−カリウム合金
をゆっくりと滴下する。滴下終了後、反応溶液にテトラ
ヒドロフラン100m1を加え、さらに5分間、超音波
による攪拌を行なう。この後、反応溶液を室温まて冷却
し、反応溶液か中和するまでヘキシルマグネシウムブロ
マイドを加え、反応末端の処理を行なう。中和した反応
溶液を水に注ぎ込むと、黄色の沈澱が得られる。これを
枦取し、乾燥後、テトラヒドロフラン−メタノール系で
再沈澱精製し、真空乾燥して、珪素高分子化合物を得る
。この珪素高分子化合物を、実施例1と同じ方法で焼成
し、シリコンカーバイドセラミクスを得る。
(Example 2) Hexyltrichlorosilane (C6I-(13S iC1
3) Add 11 g to 100 ml of pentane, and slowly add the sodium-potassium alloy dropwise while stirring by ultrasonic irradiation. After completion of the dropwise addition, 100 ml of tetrahydrofuran was added to the reaction solution, followed by ultrasonic stirring for another 5 minutes. Thereafter, the reaction solution is cooled to room temperature, and hexylmagnesium bromide is added until the reaction solution is neutralized to treat the end of the reaction. When the neutralized reaction solution is poured into water, a yellow precipitate is obtained. This is collected, dried, purified by reprecipitation in a tetrahydrofuran-methanol system, and vacuum-dried to obtain a silicon polymer compound. This silicon polymer compound is fired in the same manner as in Example 1 to obtain silicon carbide ceramics.

(実施例3) 出発物質として、Rの異なるR31C13を用いて、実
施例1と同様の操作により、それぞれ対応するシリコン
カーバイドセラミクスを得る。中間体として合成した珪
素高分子化合物の収率、及び、それらを常圧下、空気中
において色々な温度で対応する時間だけ焼成したときの
それぞれの重量減少を第1表に示す。さらに、同珪素高
分子化合物を、窒素中で同条件で焼成した場合の重量減
少を第2表に示す。
(Example 3) Using R31C13 with different R values as starting materials, corresponding silicon carbide ceramics are obtained by the same operation as in Example 1. Table 1 shows the yield of the silicon polymer compounds synthesized as intermediates and the weight loss when they were calcined at various temperatures in air under normal pressure for corresponding times. Furthermore, Table 2 shows the weight loss when the same silicon polymer compound was fired under the same conditions in nitrogen.

第1表にRの異なるR31C13を出発物質として得ら
れた中間体の珪素高分子化合物の収率、及び、それらを
常圧下、空気中において、それぞれの温度で対応する時
間だけ焼成したときの重量減少を示す。第2表にRの異
なるR31C13を出発物質として得られた珪素高分子
化合物を常圧下、窒素中において、それぞれの温度で対
応する時間だけ焼成したときの重量減少を示す。
Table 1 shows the yields of intermediate silicon polymer compounds obtained using R31C13 with different R values as starting materials, and the weights when they are calcined at each temperature in air under normal pressure for the corresponding time. Shows a decrease. Table 2 shows the weight loss when silicon polymer compounds obtained using R31C13 with different R values as starting materials were calcined under normal pressure in nitrogen at respective temperatures for corresponding times.

傘: 各焼成での保持時間 第1表 第2表 1: 各焼成温度ての保持時間 (実施例4) 実施例1によって得られた、Rとしてイソブチル基を持
った珪素高分子化合物を、1O−2torr以下の減圧
下において、実施例1と同し温度、時間条件で焼成する
。この時の重量減少は54%である。
Umbrella: Holding time at each firing temperature Table 1 Table 2: Holding time at each firing temperature (Example 4) The silicon polymer compound having an isobutyl group as R obtained in Example 1 was Firing is performed under reduced pressure of -2 torr or less under the same temperature and time conditions as in Example 1. The weight reduction at this time was 54%.

以上の実施例がら、どの珪素高分子化合物も、焼成温度
か600’C−1500’Cの高温になると重量変化か
ほとんど見られなくなることがゎがる。
As can be seen from the above examples, when the firing temperature of any silicon polymer compound is increased to a high temperature of 600'C to 1500'C, the weight hardly changes.

これは、焼成しててきたシリコンカーバイドセラミクス
が、この温度範囲において熱的に安定であることを示し
ている。
This indicates that the fired silicon carbide ceramics are thermally stable in this temperature range.

(発明の効果〉 上述のように、本発明のシリコンカーバイドセラミクス
は、その中間体である珪素高分子化合物の焼成時に、重
量減少が20−60%と、従来法での70%に比べて少
ない。従って、中間体である珪素高分子化合物を成形加
工し、焼成して、シリコンカーバイドセラミクスを得る
にあたって、従来法に比べてその収縮率か少なく、寸法
安定性か改善される。
(Effects of the Invention) As mentioned above, the silicon carbide ceramics of the present invention has a weight loss of 20-60% during firing of the intermediate silicon polymer compound, which is less than 70% in the conventional method. Therefore, when the intermediate silicon polymer compound is molded and fired to obtain silicon carbide ceramics, the shrinkage rate is lower and the dimensional stability is improved compared to the conventional method.

また、重量減少が少ないことは、中間体の珪素高分子化
合物から得られるシリコンカーバイトセラミクスの収率
が高いことを意味するため、生産効率の向上か期待てき
る。
Furthermore, a small weight loss means that the yield of silicon carbide ceramics obtained from the intermediate silicon polymer compound is high, so it is expected that production efficiency will be improved.

さらに、本発明で得られたシリコンカーバイトセラミク
スは、従来ポリカルボシランを焼成して製造したものの
耐熱温度1200°Cを上回る、1500℃の耐熱温度
を持つ。従って、この範囲での耐熱材料として使用が可
能であるという利点がある。
Furthermore, the silicon carbide ceramics obtained by the present invention has a heat resistance temperature of 1500°C, which is higher than the heat resistance temperature of 1200°C of conventional products manufactured by firing polycarbosilane. Therefore, it has the advantage that it can be used as a heat-resistant material within this range.

Claims (1)

【特許請求の範囲】[Claims] (1) 下記(a)式で表される化合物を原料として用
い、これをアルカリ金属により脱塩縮合して製造した高
分子化合物を、空気中もしくは窒素中で、常圧下あるい
は常圧以下の減圧下で焼成して、任意形状のシリコンカ
ーバイドセラミクスを得ることを特徴とするシリコンカ
ーバイドセラミックスの製造方法。 RSiCl_3・・・(a) R:飽和または不飽和炭化水素基。
(1) Using the compound represented by the following formula (a) as a raw material, a polymer compound produced by desalting and condensation with an alkali metal is heated under normal pressure or reduced pressure below normal pressure in air or nitrogen. 1. A method for producing silicon carbide ceramics, characterized in that the silicon carbide ceramics are fired in an arbitrary shape. RSiCl_3...(a) R: saturated or unsaturated hydrocarbon group.
JP1202527A 1989-08-04 1989-08-04 Manufacturing method of silicon carbide ceramics Expired - Lifetime JP2931824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1202527A JP2931824B2 (en) 1989-08-04 1989-08-04 Manufacturing method of silicon carbide ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1202527A JP2931824B2 (en) 1989-08-04 1989-08-04 Manufacturing method of silicon carbide ceramics

Publications (2)

Publication Number Publication Date
JPH0369562A true JPH0369562A (en) 1991-03-25
JP2931824B2 JP2931824B2 (en) 1999-08-09

Family

ID=16458971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1202527A Expired - Lifetime JP2931824B2 (en) 1989-08-04 1989-08-04 Manufacturing method of silicon carbide ceramics

Country Status (1)

Country Link
JP (1) JP2931824B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656860B2 (en) 2000-03-28 2003-12-02 Nikon Corporation Synthetic silica glass member, photolithography apparatus and process for producing photolithography apparatus
WO2004078663A2 (en) 2003-03-06 2004-09-16 Heraeus Quarzglas Gmbh & Co. Kg Optical synthetic quartz glass and method for producing the same
JP2008025682A (en) * 2006-07-20 2008-02-07 Meiwa Kogyo Kk Metal tube and its joint connection method
JP2012207113A (en) * 2011-03-29 2012-10-25 Osaka Gas Co Ltd Polysilane for production of silicon carbide
KR101703720B1 (en) * 2016-07-06 2017-02-07 (주)에이치엔피테크 Separation Prevention for Insertion ring joint pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656860B2 (en) 2000-03-28 2003-12-02 Nikon Corporation Synthetic silica glass member, photolithography apparatus and process for producing photolithography apparatus
WO2004078663A2 (en) 2003-03-06 2004-09-16 Heraeus Quarzglas Gmbh & Co. Kg Optical synthetic quartz glass and method for producing the same
JP2008025682A (en) * 2006-07-20 2008-02-07 Meiwa Kogyo Kk Metal tube and its joint connection method
JP2012207113A (en) * 2011-03-29 2012-10-25 Osaka Gas Co Ltd Polysilane for production of silicon carbide
KR101703720B1 (en) * 2016-07-06 2017-02-07 (주)에이치엔피테크 Separation Prevention for Insertion ring joint pipe

Also Published As

Publication number Publication date
JP2931824B2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
US4260780A (en) Phenylmethylpolysilane polymers and process for their preparation
US4581468A (en) Boron nitride preceramic polymers
JP3483558B2 (en) Carborane- (siloxane or silane) -unsaturated polymer
JPS60226890A (en) Preseramic organosilazane polymer
JP3662589B2 (en) High temperature thermosetting resins and ceramics derived from linear carborane- (siloxane or silane) -acetylene copolymers
Corriu et al. One-step route to silicon carbide precursors by a tunable catalytic polycondensation
JPH0369562A (en) Production of silicon carbide ceramics
US5312649A (en) Diorganosilacetylene-alt-diorganosilvinylene polymers and a process densifying porous silicon-carbide bodies
US6187703B1 (en) High temperature ceramics derived from linear carborane-(siloxane or silane)-acetylene copolymers
Bucca et al. Thermally and oxidatively stable thermosets derived from preceramic monomers
CN112500574A (en) Ti-containing Si-C-N ceramic precursor and synthesis method and application thereof
JPH01153730A (en) Organic silazane polymer and production of ceramic using said polymer
US4965332A (en) Silyl- and disilanyl-1,3-butadiyne polymers from hexachloro-1,3-butadiene
JPH0681787B2 (en) Poly (silylene) vinylene from ethynyl hydridosilane
Packham et al. Polymers from aromatic nitriles and amines: Polybenzimidazoles and related polymers
JPH0532786A (en) Production of ceramics
JPH04227637A (en) Method for crosslinking of polymer consisting mainly of boron and nitrogen, particularly for manufacture of ceramic fiber
JPH0384035A (en) Organic metal ceramic precursor based on boron, nitrogen and silicon
JPS5850657B2 (en) Method for producing terminal hydroxyphenyl ladder polysiloxane
SU755809A1 (en) Nitrogen-containing polymers as glass plastic material binders and hteir preparing method
US5145813A (en) Process for manufacturing organic silazane polymers and ceramics therefrom
JPH01198624A (en) Aromatic ether ketone copolymer and production thereof
US5281672A (en) Method of lowering the reaction exotherm in thermally polymerized acetylene terminated resins
SU810733A1 (en) Polytitanoorganohydrosiloxanes as hardening agents for epoxy resins and their preparation method
SU697502A1 (en) Carded bis-(dicyanophenoxy)-arylenes as monomers for thermally stable and heat-resistant polyaryleneoxyde hexazocyclanes

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11