JPH0369189B2 - - Google Patents

Info

Publication number
JPH0369189B2
JPH0369189B2 JP59156801A JP15680184A JPH0369189B2 JP H0369189 B2 JPH0369189 B2 JP H0369189B2 JP 59156801 A JP59156801 A JP 59156801A JP 15680184 A JP15680184 A JP 15680184A JP H0369189 B2 JPH0369189 B2 JP H0369189B2
Authority
JP
Japan
Prior art keywords
integrated circuit
hybrid integrated
thick film
circuit device
film hybrid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59156801A
Other languages
Japanese (ja)
Other versions
JPS6135555A (en
Inventor
Tooru Kamata
Shozo Noguchi
Yasuhiro Kurokawa
Kazuaki Uchiumi
Hideo Takamizawa
Keiichi Yotsuyanagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP15680184A priority Critical patent/JPS6135555A/en
Publication of JPS6135555A publication Critical patent/JPS6135555A/en
Publication of JPH0369189B2 publication Critical patent/JPH0369189B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/01Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate comprising only passive thin-film or thick-film elements formed on a common insulating substrate
    • H01L27/013Thick-film circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は厚膜混成集積回路装置に関し、特に熱
放散特性に優れているので、集積回路装置の小形
化および高密度化に適するものである。 (従来の技術) 半導体装置の熱放散特性の良否は装置自身の大
きさおよび集積度に重大な影響を与える。特にパ
ワー・モジユール等を搭載する厚膜混成集積回路
装置では熱放散性が装置自身の小形化および高集
積度化に著しい限界を与える。 従来、混成集積回路を構成する各回路素子はア
ルミナ基板上に固着されその熱伝導により熱放散
が行なわれて来た。アルミナ基板は電気的絶縁性
に優れ、機械的強度が大きく、更に熱膨張係数が
シリコンに近いなどの諸条件をある程度満たす良
好な材料ではあるが、熱伝導率が比較的良くない
のが欠点である。例えば、現在の半導体装置全般
に広く使用されている92%アルミナの熱伝導率k
は約17(w/mk)であり、99%アルミナでも高々
25(w/mk)程度にすぎないものである。 (発明が解決しようとする問題点) しかしながら、半導体技術分野の一般的な流れ
は小形化および高集積化を明らかに指向してお
り、厚膜混成集積回路装置もその例外ではない。
この厚膜混成集積回路装置の場合では、その小形
化・高集積化の問題は終始基板による熱伝導放散
特性の良否に深くかかわるので、比較的熱伝導率
の低いアルミナ基板を用いる限りこの技術要請に
対応することは難しい。従つて、アルミナを超え
る基板放熱特性を備えた厚膜混成集積回路装置の
出現が強く望まれている。 本発明の目的は、上記の情況に鑑み、優れた熱
放散特性を備えた厚膜混成集積回路装置を提供す
ることである。 (問題点を解決するための手段) 本発明の厚膜混成集積回路装置は、窒化アルミ
ニウムを主成分とし、炭化カルシウム,炭化スト
ロンチウム及び炭化バリウムのアセチドリ化合物
の少なくとも1種以上を添加剤として非酸化性雰
囲気内で焼成されて形成される電気絶縁性基板
と、この電気絶縁性基板に載置される回路素子と
を含んで構成される。 (作用) すなわち、本発明の厚膜混成集積回路装置では
従来のアルミナに代えて窒化アルミニウムを主成
分とする電気絶縁性基板が使用される。特に炭化
カルシウム(CaC2),炭化ストロンチウム
(SrC2),炭化バリウム(BaC2)のアセチリド化
合物の少なくとも1種以上を、その含有量の合計
が0.02〜10重量%となるよう添加し焼結したもの
が実用性に富む。 第1表は、平均粒経が2μmの窒化アルミニウム
粉末に種々のアセチリド化合物を合計で2重量%
添加して混合し、室温で2000Kg/cm2の圧力を加え
て成形したうえ、1800℃の窒素雰囲気で2
(Industrial Field of Application) The present invention relates to a thick film hybrid integrated circuit device, and has particularly excellent heat dissipation characteristics, and is therefore suitable for downsizing and increasing the density of integrated circuit devices. (Prior Art) The quality of the heat dissipation characteristics of a semiconductor device has a significant influence on the size and degree of integration of the device itself. In particular, in thick-film hybrid integrated circuit devices equipped with power modules and the like, heat dissipation performance puts a significant limit on miniaturization and high integration of the device itself. Conventionally, each circuit element constituting a hybrid integrated circuit has been fixed on an alumina substrate, and heat has been dissipated by heat conduction. Although alumina substrates are good materials that meet various conditions to some extent, such as excellent electrical insulation, high mechanical strength, and a coefficient of thermal expansion close to that of silicon, their drawback is that their thermal conductivity is relatively poor. be. For example, the thermal conductivity of 92% alumina, which is widely used in current semiconductor devices, is
is approximately 17 (w/mk), and even 99% alumina is at most
It is only about 25 (w/mk). (Problems to be Solved by the Invention) However, the general trend in the semiconductor technology field is clearly toward miniaturization and higher integration, and thick film hybrid integrated circuit devices are no exception.
In the case of this thick film hybrid integrated circuit device, the issue of miniaturization and high integration is deeply related to the quality of heat conduction and dissipation characteristics of the substrate, so as long as an alumina substrate with relatively low thermal conductivity is used, this technology is required. It is difficult to respond to Therefore, there is a strong desire for a thick film hybrid integrated circuit device with substrate heat dissipation characteristics superior to that of alumina. SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a thick film hybrid integrated circuit device with excellent heat dissipation characteristics. (Means for Solving the Problems) The thick film hybrid integrated circuit device of the present invention contains aluminum nitride as a main component, and contains at least one acetide compound of calcium carbide, strontium carbide, and barium carbide as an additive in a non-oxidized form. The device includes an electrically insulating substrate formed by firing in a neutral atmosphere, and a circuit element placed on the electrically insulating substrate. (Function) That is, in the thick film hybrid integrated circuit device of the present invention, an electrically insulating substrate whose main component is aluminum nitride is used instead of the conventional alumina. In particular, at least one acetylide compound of calcium carbide (CaC 2 ), strontium carbide (SrC 2 ), and barium carbide (BaC 2 ) is added and sintered so that the total content is 0.02 to 10% by weight. Things are highly practical. Table 1 shows a total of 2% by weight of various acetylide compounds in aluminum nitride powder with an average particle size of 2μm.
The mixture was molded at room temperature under a pressure of 2000 kg/ cm2 , and then molded at 1800°C in a nitrogen atmosphere.

【表】【table】

【表】 時間焼結した場合の実験値であるが、この窒化ア
ルミニウム焼結体は室温における熱伝導率kが
80w/mk以上あることを示している。 また、第2表は、同じく平均粒径が2μmの窒化
アルミニウム粉末にアセチリド化合物の添加量を
変えて混合成形し、窒素雰囲気内で焼結した場合
の実験値である。この窒化アルミニウム焼結体は
少なくとも60w/mk以上の高熱導性を示す。 すなわち、このようにして作られた窒化アルミ
ニウム焼結体は、熱伝導率60〜160w/mk,比抵
抗1013Ωcm以上、機械的曲げ強度50Kg/mm2、熱膨
張率4.3×10-6/℃の特性を平均的に持ち、これ
をアルミナと比較すると、熱伝導率kで4〜8
倍、機械的強度で約1.5倍、熱膨張率で約3/4
となる。 従つて、この窒化アルミニウムを主成分とする
焼結体を絶縁基板として回路素子を載置した場合
には、その優れた熱伝導率kにより回路素子から
の発生熱量をアルミナの4〜8倍に達する効率で
吸収し放熱する。また銀ペーストなどの導電材料
[Table] Experimental values obtained when sintered for hours, the thermal conductivity k of this aluminum nitride sintered body at room temperature is
This indicates that the power is 80w/mk or more. Furthermore, Table 2 shows experimental values obtained when aluminum nitride powder having an average particle size of 2 μm was mixed and molded with varying amounts of acetylide compound added, and sintered in a nitrogen atmosphere. This aluminum nitride sintered body exhibits high thermal conductivity of at least 60 w/mk or more. That is, the aluminum nitride sintered body made in this way has a thermal conductivity of 60 to 160 w/mk, a specific resistance of 10 13 Ωcm or more, a mechanical bending strength of 50 Kg/mm 2 , and a coefficient of thermal expansion of 4.3×10 -6 / ℃, and when compared with alumina, the thermal conductivity k is 4 to 8.
Approximately 1.5 times the mechanical strength, approximately 3/4 the thermal expansion coefficient
becomes. Therefore, when a circuit element is mounted on a sintered body whose main component is aluminum nitride as an insulating substrate, the amount of heat generated from the circuit element is 4 to 8 times that of alumina due to its excellent thermal conductivity. Absorbs and dissipates heat with maximum efficiency. Also conductive materials such as silver paste

【表】【table】

【表】 とのなじみも良好で、半導体素子,サーメツトか
らなる抵抗体およびコンデンサ・チツプなどの回
路素子を通常の技術で載置せしめ厚膜混成集積回
路を容易に構成せしめる。 以下図面を参照して本発明を詳細に説明する。 (実施例) 第1図は本発明厚膜混成集積回路装置の一実施
例を示す断面図である。本実施例では窒化アルミ
ニウム絶縁性基板1と、この主面に形成された銀
ペーストなどからなる導電配線2と、これら導電
配線2上にそれぞれ固着された半導体素子3,サ
ーメツト抵抗体4およびコンデンサ・チツプ5と
を含む。ここで6は金属接続体、7はガラス系ペ
ーストからなる抵抗体4の保護膜、8は放熱金属
板をそれぞれ示すものである。 窒化アルミニウムの熱膨張係数は4.3×10-6
℃でアルミナよりも小さく、また金属との漏れそ
の他の諸条件は良く似ているので、これら回路素
子の載置作業はアルミナに準じて同一扱い得る。
従つて本実施例では窒化アルミニウム基板1は熱
伝導率kが最高となるようにアセチリド化合物の
添加量が選ばれている。 第2図は添加剤の添加量(重量%)と熱伝導率
k(w/mk)との関係を表わす曲線図で、第1表
および第2表を整理しグラフ化したものである。 これから明らかなように、炭化カルシウム
(CaC2)を添加した場合が最も高い熱伝導率を示
し、その他の場合もほぼこれと類似し2〜3%の
添加量のところにピークのあることが理解され
る。この図では個々の添加剤の効果をそれぞれ表
わすように作成されているが、それぞれの効果曲
線が類似していることからこれら3つを混合し添
加した場合でも、その合計添加量が加重平均値の
2〜3%のところに同じようなピーク点を持つ。
従つて窒化アルミニウム基板1は上記3つの添加
剤を混合し、総添加量を2〜3重量%としたもの
である。この場合の熱吸収効率はアルミナ基板の
約8倍である。 (発明の効果〕 本発明によれば、アルミナの約4〜8倍に達す
る熱吸収効率を持つ窒化アルミニウム基板を使用
しているので、バイポーラ半導体素子,ガリウム
砒素(CaAs)素子等の電力消費量の大きい回路
素子を載置した厚膜混成集積回路装置を実用に供
し得るように構成できることは、勿論、回路装置
の小形化および高集積化に顕著な効果を奏する。
It is also compatible with [Table] and allows thick film hybrid integrated circuits to be easily constructed by mounting circuit elements such as semiconductor elements, cermet resistors, and capacitor chips using conventional techniques. The present invention will be described in detail below with reference to the drawings. (Embodiment) FIG. 1 is a sectional view showing an embodiment of the thick film hybrid integrated circuit device of the present invention. In this embodiment, an aluminum nitride insulating substrate 1, conductive wiring 2 made of silver paste or the like formed on the main surface thereof, a semiconductor element 3, a cermet resistor 4, and a capacitor fixed on the conductive wiring 2, respectively. Chip 5 is included. Here, 6 is a metal connection body, 7 is a protective film of the resistor 4 made of glass paste, and 8 is a heat dissipating metal plate. The thermal expansion coefficient of aluminum nitride is 4.3×10 -6 /
Celsius and is smaller than alumina, and leakage and other conditions are very similar to metals, so the mounting work for these circuit elements can be handled in the same manner as alumina.
Therefore, in this embodiment, the amount of the acetylide compound added to the aluminum nitride substrate 1 is selected so that the thermal conductivity k is the highest. FIG. 2 is a curve diagram showing the relationship between the additive amount (wt%) and thermal conductivity k (w/mk), and is a graph of Tables 1 and 2. As is clear from this, the case where calcium carbide (CaC 2 ) is added shows the highest thermal conductivity, and the other cases are almost similar, with a peak at the addition amount of 2 to 3%. be done. This diagram has been created to show the effects of each individual additive, but since the effect curves of each additive are similar, even if a mixture of these three is added, the total amount added will be the weighted average value. There is a similar peak point at 2 to 3% of the range.
Therefore, the aluminum nitride substrate 1 is a mixture of the above three additives, and the total amount added is 2 to 3% by weight. The heat absorption efficiency in this case is about 8 times that of the alumina substrate. (Effects of the Invention) According to the present invention, since an aluminum nitride substrate is used which has a heat absorption efficiency approximately 4 to 8 times that of alumina, the power consumption of bipolar semiconductor devices, gallium arsenide (CaAs) devices, etc. Of course, being able to configure a thick film hybrid integrated circuit device on which large circuit elements are placed for practical use has a remarkable effect on downsizing and increasing the degree of integration of the circuit device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明厚膜混成集積回路装置の一実施
例を示す断面図、2図は添加剤の添加量(重量
%)と熱伝導率k(w/mk)との関係を表わす曲
線図である。 1……窒化アルミニウム基板、2……導電配線
(銀ペースト)、3……半導体素子、4……サーメ
ツト抵抗体、5……コンデンサ・チツプ、6……
金属接続導体、7……保護膜、8……放熱金属
板。
Fig. 1 is a cross-sectional view showing one embodiment of the thick film hybrid integrated circuit device of the present invention, and Fig. 2 is a curve diagram showing the relationship between the amount of additive (wt%) and thermal conductivity k (w/mk). It is. DESCRIPTION OF SYMBOLS 1... Aluminum nitride substrate, 2... Conductive wiring (silver paste), 3... Semiconductor element, 4... Cermet resistor, 5... Capacitor chip, 6...
Metal connection conductor, 7... protective film, 8... heat dissipation metal plate.

Claims (1)

【特許請求の範囲】 1 窒化アルミニウムを主成分とし、炭化カルシ
ウム,炭化ストロンチウム及び炭化バリウムのア
セチドリ化合物の少なくとも1種以上を添加剤と
して非酸化性雰囲気内で焼成されて形成される電
気絶縁性基板と、この電気絶縁性基板に載置され
る回路素子とを有することを特徴とする厚膜混成
集積回路装置。 2 前記アセチドリ化合物の総添加量が0.02〜10
重量%に規定されていることを特徴とする特許請
求の範囲1項記載の厚膜混成集積回路装置。 3 前記回路素子が能動素子および抵抗体を含む
受動素子の少なくとも1つであることを特徴とす
る特許請求の範囲1ないし2項のいずれかに記載
の厚膜混成集積回路装置。 4 前記回路素子が金属層を介し電気絶縁性基板
に固着されていることを特徴とする特許請求の範
囲1ないし3項のいずれかに記載の厚膜混成集積
回路装置。
[Scope of Claims] 1. An electrically insulating substrate formed by firing in a non-oxidizing atmosphere with aluminum nitride as the main component and at least one acetide compound of calcium carbide, strontium carbide, and barium carbide as an additive. and a circuit element mounted on the electrically insulating substrate. 2 The total amount of the acetide compound added is 0.02 to 10
2. The thick film hybrid integrated circuit device according to claim 1, wherein the thick film hybrid integrated circuit device is defined in weight %. 3. The thick film hybrid integrated circuit device according to claim 1, wherein the circuit element is at least one of an active element and a passive element including a resistor. 4. The thick film hybrid integrated circuit device according to claim 1, wherein the circuit element is fixed to an electrically insulating substrate via a metal layer.
JP15680184A 1984-07-27 1984-07-27 Thick film hybrid integrated circuit device Granted JPS6135555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15680184A JPS6135555A (en) 1984-07-27 1984-07-27 Thick film hybrid integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15680184A JPS6135555A (en) 1984-07-27 1984-07-27 Thick film hybrid integrated circuit device

Publications (2)

Publication Number Publication Date
JPS6135555A JPS6135555A (en) 1986-02-20
JPH0369189B2 true JPH0369189B2 (en) 1991-10-31

Family

ID=15635615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15680184A Granted JPS6135555A (en) 1984-07-27 1984-07-27 Thick film hybrid integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6135555A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2787953B2 (en) * 1989-08-03 1998-08-20 イビデン株式会社 Electronic circuit board
JPH0379504U (en) * 1989-12-07 1991-08-14
JP2004303466A (en) 2003-03-28 2004-10-28 Canon Inc Heater drive circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178688A (en) * 1984-02-27 1985-09-12 株式会社東芝 High thermal conductivity circuit board
JPS60178687A (en) * 1984-02-27 1985-09-12 株式会社東芝 High thermal conductivity circuit board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178688A (en) * 1984-02-27 1985-09-12 株式会社東芝 High thermal conductivity circuit board
JPS60178687A (en) * 1984-02-27 1985-09-12 株式会社東芝 High thermal conductivity circuit board

Also Published As

Publication number Publication date
JPS6135555A (en) 1986-02-20

Similar Documents

Publication Publication Date Title
US5395679A (en) Ultra-thick thick films for thermal management and current carrying capabilities in hybrid circuits
US4810563A (en) Thermally conductive, electrically insulative laminate
JP3127754B2 (en) Semiconductor device
JP2883787B2 (en) Substrate for power semiconductor device
JPH06296084A (en) Thermal conductor of high conductivity, wiring board provided therewith and manufacture thereof
JP3176815B2 (en) Substrate for semiconductor device
US20230075200A1 (en) Power module and method for manufacturing same
JPH0369189B2 (en)
JPS5831755B2 (en) Base for electrical insulation
JPS617647A (en) Circuit substrate
JPH10270613A (en) Semiconductor circuit board using gradient functional material
JPH0570954B2 (en)
JPH0568877B2 (en)
JPS62272501A (en) Low capacity power resistance element using heatsink layer of beryllia dielectric and manufacture of the same with low toxicity
JPH0414504B2 (en)
KR100216731B1 (en) A power device modules using a petyllia dbc substrate
JP2506270B2 (en) High thermal conductivity circuit board and high thermal conductivity envelope
JPH0997988A (en) Thermally conductive compound
JP2967065B2 (en) Semiconductor module
JP3036236B2 (en) Circuit board
JPS60241239A (en) Semiconductor device
JPH0337310B2 (en)
JP2904621B2 (en) Metal base circuit board
JP2830212B2 (en) Hybrid integrated circuit
JPS59229843A (en) Semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term