JPH0369077B2 - - Google Patents

Info

Publication number
JPH0369077B2
JPH0369077B2 JP59104659A JP10465984A JPH0369077B2 JP H0369077 B2 JPH0369077 B2 JP H0369077B2 JP 59104659 A JP59104659 A JP 59104659A JP 10465984 A JP10465984 A JP 10465984A JP H0369077 B2 JPH0369077 B2 JP H0369077B2
Authority
JP
Japan
Prior art keywords
ground surface
changes
twice
gamma rays
slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59104659A
Other languages
Japanese (ja)
Other versions
JPS60249080A (en
Inventor
Harumi Araki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aero Asahi Corp
Original Assignee
Aero Asahi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aero Asahi Corp filed Critical Aero Asahi Corp
Priority to JP59104659A priority Critical patent/JPS60249080A/en
Publication of JPS60249080A publication Critical patent/JPS60249080A/en
Publication of JPH0369077B2 publication Critical patent/JPH0369077B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、断層・亀裂・温水脈等の探査に有用
な地質の探査方法及び探査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a geological exploration method and exploration device useful for exploring faults, cracks, warm water veins, etc.

[従来の技術] この種地質探査としては、一般に放射能探査、
弾性波探査、電気探査等の手法が知られている。
しかし、これらの手法による場合は特殊な技術や
熟練を必要とするだけでなく、探査データの収集
手段自体にも問題があつて末だ実用上充分な手法
は確立されていない。すなわち、データの収集手
段としては歩行探査が理想的であるが、非能率的
であることは否めず自から地形による行動上の限
界もある。車輌探査の場合は、歩行による場合に
比し能率的ではあるが、地形がほぼ平坦な場合に
限られ、大きな起伏や障害物のある地形には不向
きである。またヘリコプター等の飛行体による場
合は、歩行探査や車輌探査による場合のようなデ
ータ収集上の物理的制約は解消され、その高能率
性と相俟つて極めて好ましい手段と言えるが、対
地距離が大きくなることは否めず、そのため測定
データの正確性を欠き所期の目的が達成され難
い。このような見地から飛行体を利用した探査手
法が種々検討されているが、末だ実用的な技術体
系は確立されていない。
[Prior art] This type of geological exploration generally includes radioactivity exploration,
Methods such as elastic wave exploration and electrical exploration are known.
However, these methods not only require special techniques and skill, but also have problems with the exploration data collection means themselves, and no method that is sufficient for practical use has yet been established. In other words, while walking exploration is an ideal means of collecting data, it is undeniably inefficient and has its own operational limitations due to terrain. Although vehicle exploration is more efficient than walking, it is limited to situations where the terrain is approximately flat, and is unsuitable for terrain with large undulations or obstacles. In addition, when using a flying vehicle such as a helicopter, the physical constraints on data collection that are imposed by walking exploration or vehicle exploration are eliminated, and combined with its high efficiency, it can be said to be an extremely preferable method, but the distance from the ground is large. This is undeniable, and as a result, the measurement data lacks accuracy, making it difficult to achieve the intended purpose. From this perspective, various exploration methods using flying vehicles have been studied, but no practical technology system has yet been established.

[発明が解決しようとする課題] 本発明は空中測定による実用的な地質探査手法
に係るもので、飛行体、特にヘリコプターを利用
し、ガンマ線量、地表面高度及び地表面温度を測
定し、これらの測定デーの解析に基づき、断層・
亀裂・温水脈の存在する可能性のある場所を自動
的に見地できる探査方法及び装置を提供する。
[Problems to be Solved by the Invention] The present invention relates to a practical geological exploration method using aerial measurements, which uses an aircraft, especially a helicopter, to measure gamma rays, ground surface altitude, and ground surface temperature. Based on the analysis of the measurement data of
To provide an exploration method and device that can automatically locate locations where cracks and warm water veins may exist.

[課題を解決するための手段] 本発明者は日本各地の既知の断層・亀裂・温水
脈の上空での各核種のエネルギー領域のガンマ
線、飛行高度、対地高度、地表面温度、対地速度
及び飛行時間等の測定の結果、飛行高度から対地
高度を差引いた地表面高度の時間差高を対地速度
と飛行時間との積で除して求めた地形傾斜
(tanθ)の変化率、及び地表面温度の時間差値を
対地速度と飛行時間との積で除した温度変化率を
使用して、断層・亀裂の外観上からの可能な場所
及び表流水・伏流水の有無の可能性を知ることの
できることを見出した。即ち、断層や亀裂は、地
形傾斜の変化率の大きな所で存在する可能性が高
く、また、表流水・伏流水の存在する所では、地
表面温度が周囲に比べ数度異なる。本発明は、こ
の地形データから抽出された、可能性としての断
層・亀裂の存在が内部的な要因からも支持される
ものであるか否かを判定する手段たりうるもので
あり、具体的には、ガンマ線のラドン娘元素とカ
リウムとのカウント数比 214Bi/ 40Kで比較して
断層付近ではこの比が通常2倍以上になつている
こと、表流水・伏流水の存在により地表面温度が
周辺より数度以上変化すること、地熱地帯ではト
ロン娘元素とラドン娘元素のカウント数比
208Tl/ 214Biが低下し、通常地帯の80%以下にな
つていること、という基準に基づき判断する。
[Means for Solving the Problems] The present inventor has determined the gamma rays of the energy range of each nuclide, flight altitude, ground altitude, ground surface temperature, ground speed, and flight As a result of the measurement of time, etc., the rate of change of the terrain slope (tanθ), which is calculated by dividing the time difference height of the ground surface altitude obtained by subtracting the ground altitude from the flight altitude by the product of ground speed and flight time, and the ground surface temperature. By using the rate of temperature change obtained by dividing the time difference value by the product of ground speed and flight time, it is possible to know the possible locations of faults and cracks based on their appearance, and the possibility of the presence or absence of surface water and underground water. I found it. In other words, faults and cracks are likely to exist in places where the rate of change in topographical slope is large, and in places where surface water or underground water exists, the ground surface temperature differs by several degrees compared to the surrounding area. The present invention can be a means for determining whether the existence of possible faults/cracks extracted from this topographical data is also supported by internal factors, and specifically Compared to the count ratio of the radon daughter element of gamma rays and potassium, which is 214 Bi/ 40 K, this ratio is usually more than double near faults, and the presence of surface water and underground water causes the ground surface temperature to increase. changes by more than a few degrees from the surrounding area, and in geothermal areas, the count ratio of thoron daughter elements and radon daughter elements
Judgment is based on the criteria that 208 Tl/ 214 Bi has decreased to 80% or less of the normal zone.

岩石中にある放射性元素のラウン 208U、トリ
ウム 232Th、カリウム 40Kは、放射線を放出し
て安定元素への壊変していく途中で、ラウンから
ラドン 2 2 2Rn、トリウムからトロン 220Tnとい
つたガス状元素を経るが、この時期に地温が高い
ほどラドンガス及びトロンガスの圧力は高まり、
亀裂に沿つてガスの移動が生じる。ところが、ラ
ドンの半減期は、3.825日であるのに対しトロン
の半減期は54.5秒であり、相互に大きな差がある
ので、移動により元素間の比率が変わる。従つ
て、地中に亀裂があれば、放射性元素の分離が進
行し、 40K系列のガンマ線量に対する 238U系列
のガンマ線比及び 232Th系列のガンマ線比が相
対的に増加し、また地熱の高い地区ほど 232Th
系列のガンマ線量の 238U系列のガンマ線量に対
する比率が相対的に低くなる。断層や亀裂等は一
般に地形傾斜変換線、谷底部及び稜線部で地表に
露出するが、これらの地域において、 40K系
列/ 238U系列のガンマ線量比及び 40K系列/
232Th系列のガンマ線量比が相対的に低くなつて
いるときには断層・亀裂・地下水脈の存在を予測
させ、 238U系列/ 232Th系列のガンマ線量比が
相対的に高くなつているときには地熱の高温部の
存在を予想させ、 40K系列/ 238U系列のガンマ
線量比が相対的に低く且つ 238U系列/ 232Th系
列のガンマ線量比が相対的に高いときは、温泉脈
の存在を予想させる。本発明は、こうしたエネル
ギー帯の異なるガンマ線の線量比が相対的に異常
な変化を示す地形傾斜変換線、谷底部又は稜線部
から断層・亀裂・温水脈を探し出すことを特徴と
する。
The radioactive elements Raun -208 U, Thorium - 232 Th , and Potassium - 40 K found in rocks emit radiation and decay into stable elements. During this period, the higher the ground temperature, the higher the pressure of radon gas and thoron gas.
Gas migration occurs along the crack. However, the half-life of radon is 3.825 days, while the half-life of thoron is 54.5 seconds, so there is a large difference between them, so the ratio between the elements changes due to movement. Therefore, if there are cracks in the ground, the separation of radioactive elements progresses, and the ratio of 238 U series gamma rays and 232 Th series gamma rays to the 40 K series gamma ray dose increases relatively. District 232 Th
The ratio of the gamma ray dose of the series to the gamma ray dose of the 238 U series becomes relatively low. Faults, cracks, etc. are generally exposed on the ground at topographic slope transformation lines, valley bottoms, and ridgelines, but in these areas, the gamma dose ratio of the 40 K series/ 238 U series and the 40 K series/238 U series
When the gamma dose ratio of the 232 Th series is relatively low, the presence of faults, cracks, and underground water veins is predicted, and when the gamma dose ratio of the 238 U series/ 232 Th series is relatively high, it is predicted that geothermal If the gamma dose ratio of the 40 K series/ 238 U series is relatively low and the gamma dose ratio of the 238 U series/ 232 Th series is relatively high, the existence of hot spring veins can be predicted. let The present invention is characterized by searching for faults, cracks, and warm water veins from topographic gradient conversion lines, valley bottoms, or ridgelines where the dose ratio of gamma rays in different energy bands shows a relatively abnormal change.

[実施例の説明] 第1図は、本発明を実施するためにヘリコプタ
に積載する装置の概略ブロツク図を示す。10
は、環境ガンマ線用のシンチレータ及び波高分析
器からなる検出器であり、12は、 40K系列ガ
ンマ線用の検出器、14は 238U系列用ガンマ線
の検出器、16は 232Th系列用ガンマ線の検出
器である。各検出器10乃至16の出力はそれぞ
れ、対数化回路18乃至24によつて対数化され
る。対数化回路20の出力と対数化回路22の出
力は、減算回路26で減算される。減算回路26
の出力は、 40K系列のガンマ線量と 238U系列の
ガンマ線量の比を示す。同様に、減算回路28
は、対数化回路20の出力と対数化回路24の出
力との差を計算し、減算回路30は、対数化回路
22の出力と対数化回路24の出力の差を計算す
る。その他に、電波高度計32、気圧高度計3
4、速度計36及び放射温度計38を積載する。
これらからのデータは、前述の地形傾斜の変化率
及び温度変化率は計算するために利用される。環
境ガンマ線用の検出器10は、対象物及びバツク
グラウンドの影響を監視するために用いる。
DESCRIPTION OF THE EMBODIMENTS FIG. 1 shows a schematic block diagram of equipment installed on a helicopter for carrying out the invention. 10
is a detector consisting of a scintillator and a pulse height analyzer for environmental gamma rays, 12 is a detector for 40 K series gamma rays, 14 is a detector for 238 U series gamma rays, and 16 is a detector for 232 Th series gamma rays. It is a vessel. The output of each detector 10-16 is logarithmized by a logarithmization circuit 18-24, respectively. The output of the logarithmization circuit 20 and the output of the logarithmization circuit 22 are subtracted by a subtraction circuit 26. Subtraction circuit 26
The output shows the ratio of the gamma dose of the 40 K series to the gamma dose of the 238 U series. Similarly, the subtraction circuit 28
calculates the difference between the output of the logarithmization circuit 20 and the output of the logarithmization circuit 24, and the subtraction circuit 30 calculates the difference between the output of the logarithmization circuit 22 and the output of the logarithmization circuit 24. In addition, 32 radio altimeters, 3 barometric altimeters
4. Load the speedometer 36 and radiation thermometer 38.
Data from these are utilized to calculate the rate of change of terrain slope and rate of temperature change described above. Detector 10 for environmental gamma rays is used to monitor object and background effects.

対数化回路18の出力、減算回路26,28,
30の出力及び装置32,34,36,38の出
力は、演算回路40に供給される。演算回路40
は、前述の各判断要素について対応条件を満たす
か否かを演算し、必要なときに出力を出して、警
報部材42を作動させる。警報部材42は、光又
は音により計測者に例えば温泉脈の発見を知らせ
る。また、これら装置18,26乃至38の出力
は、地上での精密な解析のために、データ・レコ
ーダ44に記録しておく。
Output of logarithmization circuit 18, subtraction circuits 26, 28,
30 and the outputs of devices 32, 34, 36, 38 are supplied to an arithmetic circuit 40. Arithmetic circuit 40
calculates whether or not the corresponding conditions are satisfied for each of the above-mentioned judgment factors, outputs an output when necessary, and activates the alarm member 42. The alarm member 42 notifies the measurer of the discovery of a hot spring vein, for example, by means of light or sound. Further, the outputs of these devices 18, 26 to 38 are recorded in a data recorder 44 for precise analysis on the ground.

該当地域を後に確認し易くするために、このガ
ンマ線計測と同期して、ガンマ線探査地域の可視
光映像及び熱赤外線映像をビデオ・テープ・レコ
ーダに同期記録しておくのが好ましい。
In order to easily confirm the relevant area later, it is preferable to record visible light images and thermal infrared images of the gamma ray exploration area on a video tape recorder in synchronization with this gamma ray measurement.

第1図には図示しなかつたが、この解析装置に
は、各ガンマ線検出器10〜16及び演算回路4
0等を同期して動作させ、また、データのサンプ
リング時間乃び周期を決定するクロツク回路が設
けられている。
Although not shown in FIG. 1, this analysis device includes each gamma ray detector 10 to 16 and an arithmetic circuit 4.
A clock circuit is provided which operates the 0, etc. in synchronization and also determines the data sampling time or period.

第2図は、温泉脈についての計測データをグラ
フ化したものである。横軸は飛行時間又は飛行距
離を示す。グラフの上部は、飛行高度H、対地高
度△h及び地表面高度H−△hを通常の縦軸目盛
で示し、下部は、環境ガンマ線(ch1)、40K系列
ガンマ線(ch2)、 238U系列ガンマ線(ch3)及
232Th系列ガンマ線(ch4)を縦軸対数目盛で
示す。上向きの矢印で示した部分は、谷の部分で
あり、且つ 238U系列と 232Th系列のガンマ線量
比が著しく大きくなつていることから、温泉脈の
存在を示唆している。
Figure 2 is a graph of measurement data regarding hot spring veins. The horizontal axis indicates flight time or flight distance. The upper part of the graph shows flight altitude H, ground altitude △h, and ground surface altitude H-△h on the normal vertical axis scale, and the lower part shows environmental gamma rays (ch1), 40K series gamma rays (ch2), and 238 U series gamma rays. (ch3) and 232 Th series gamma rays (ch4) are shown on the vertical axis logarithmic scale. The area indicated by the upward arrow is a valley, and the gamma ray dose ratio of 238 U series and 232 Th series is significantly large, suggesting the existence of hot spring veins.

演算回路40としては、具体的には、小型で安
価なパーソナルコンピユータを用いることがで
き、従つて、各装置からのデータの各サンプリン
グ値最大値、最小値及び平均値等を適宜記録させ
るようにプログラム・ソフトウエアを組むこと
で、容易に、各エネルギー帯のガンマ線量の変化
を発見することができる。即ち、この実施例の演
算回路40は、地形傾斜(tanθ)が2倍を越えて
変化し、ラドン娘元素とカリウムのカウント数比
214Bi/ 40Kが2倍以上に変化するとき、断層・
亀裂の存在する可能性が高いことを指示する。地
形傾斜が2倍以上となり、傾斜の正負が変わり、
ラドン娘元素とカリウムのカウント数比 214Bi/
40Kが2倍以上変化し、さらに地表面温度が数
℃以上変化する場合には、トロン娘元素とラドン
娘元素のカウント数比 208Tl/ 214Biが減少する
とき、温泉脈の存在する可能性が高いことを指示
し、反対に 208Tl/ 214Biが増加するとき地下水
脈の存在する可能性が高いことを指示する。これ
らの顕著な状況では、演算回路40は、警報部材
42にアラーム信号を出力する。XYプロツタや
CRTを用いる場合には、所定のアラーム信号を
プロツタ紙上又はCRT上に出力する。
Specifically, a small and inexpensive personal computer can be used as the arithmetic circuit 40. Therefore, the maximum value, minimum value, average value, etc. of each sampling value of data from each device can be recorded as appropriate. By incorporating programming and software, it is possible to easily discover changes in gamma ray doses in each energy band. That is, the arithmetic circuit 40 of this embodiment is capable of controlling the count ratio of radon daughter elements and potassium when the topographic slope (tanθ) changes by more than twice.
When 214 Bi/ 40 K changes more than twice, the fault
Indicates that there is a high possibility that a crack exists. The slope of the terrain has more than doubled, and the sign of the slope has changed,
Radon daughter element and potassium count ratio 214 Bi/
40 K changes by more than twice and the ground surface temperature changes by several degrees Celsius or more, when the count ratio of thoron daughter elements and radon daughter elements 208 Tl/ 214 Bi decreases, it is possible that hot spring veins exist. On the other hand, when 208 Tl/ 214 Bi increases, it indicates that there is a high possibility that a groundwater vein exists. In these significant situations, the arithmetic circuit 40 outputs an alarm signal to the alarm member 42. XY Pro Tsutaya
When using a CRT, a predetermined alarm signal is output on plotter paper or on the CRT.

データ収集に際しては、通常1秒毎に飛行高
度、対地高度、及び対地速度がデータレコーダに
入力されているので、飛行距離と地表面高度との
関係がわかり、結果として地形断面がデータレコ
ーダに入力されることとなる。と同時に放射温度
計38により地表面温度もデータレコーダに入力
されているので、土地利用の変化に対応して地表
面温度が変化する様子も把握できる。地表面で水
分の多い場所や表流水・伏流水のある谷底部で
は、周辺とは数度程度なる温度(冬では高く、夏
では低くなる)となるので、このデータを地形断
面のデータと連動させれば、地下水・温泉水の函
養源となる水の存在を、飛行速度が毎時90Kmの場
合約25mの間隔で探知しうることになる。
When collecting data, the flight altitude, ground altitude, and ground speed are usually input into the data recorder every second, so the relationship between the flight distance and the ground surface altitude can be determined, and as a result, the terrain cross section is input into the data recorder. It will be done. At the same time, since the ground surface temperature is also input to the data recorder by the radiation thermometer 38, it is possible to grasp how the ground surface temperature changes in response to changes in land use. In places with a lot of moisture on the ground, and in valley bottoms with surface water and underground water, the temperature is several degrees different from the surrounding area (higher in winter and lower in summer), so this data is linked with topographic cross-section data. If the aircraft flies at a speed of 90km/h, it will be able to detect the presence of water that serves as a reservoir for groundwater and hot spring water at intervals of approximately 25m.

また本発明では、各核種に対応させた空中ガン
マ線のカウント数を通常5秒間計測しており、毎
時90Kmで飛行するとき地表面を125mの間隔でそ
の間の空中ガンマ線を測定していることになり、
通常は飛行高度を対地高度100mにとつているの
で、地上の直径500mの範囲から放出される放射
線の90%を計測している。
In addition, in the present invention, the number of counts of airborne gamma rays corresponding to each nuclide is normally measured for 5 seconds, which means that when flying at 90 km per hour, airborne gamma rays are measured at intervals of 125 m on the ground surface. ,
The aircraft normally flies at an altitude of 100m above the ground, so it measures 90% of the radiation emitted from a 500m diameter area above the ground.

なお、本探査装置ではデータ収集時間を0.5秒
にまで短縮でき、5秒間の累積和を0.5秒間にと
ることによつて地上解像度を毎時90Kmで飛行する
場合に12.5mまで上げることができる。
In addition, this exploration device can shorten the data collection time to 0.5 seconds, and by taking the cumulative sum of 5 seconds to 0.5 seconds, the ground resolution can be increased to 12.5 meters when flying at 90 km/hour.

本発明により断層・亀裂・温水脈を面的に自動
解析するには、データ・レコーダ44に記録した
地形情報、地表面温度情報及びガンマ線情報を地
上で演算処理して、プロツタ又はCRT上に断
層・亀裂・温水脈の存在する可能性の高い位置を
二次元的に表示させればよい。このプログラム
は、探査位置データをも処理することを除いて、
基本的には演算回路40の動作プログラムと同じ
である。
In order to automatically analyze faults, cracks, and warm water veins in a planar manner according to the present invention, the topographical information, ground surface temperature information, and gamma ray information recorded in the data recorder 44 are processed on the ground, and the faults are displayed on a plotter or CRT.・It is sufficient to display two-dimensionally the locations where cracks and warm water veins are likely to exist. This program except that it also processes probe position data.
It is basically the same as the operation program of the arithmetic circuit 40.

[発明の効果] 本発明によれば、空中ガンマ線と各種の飛行情
報を演算処理することにより、断層・亀裂・温水
脈の存在の可能性の高い位置を即時に、又はプロ
ツタ又はCRTを使つて二次元的に発見すること
ができ、しかもその判断のために何ら等特殊の知
識・熟練は必要とされない。
[Effects of the Invention] According to the present invention, by processing airborne gamma rays and various types of flight information, it is possible to immediately locate locations where faults, cracks, and warm water veins are likely to exist, or by using a plotter or CRT. It can be discovered two-dimensionally, and no special knowledge or skill is required to make that determination.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を実施するための装置の概略
ブロツク図であり、第2図は、測定データの一例
を示すグラフである。 10,12,14,16…ガンマ線検出器、1
8,20,22,24…対数化回路、26,2
8,30…減算回路、32…電波高度計、34…
気圧高度計、36…速度計、38…放射温度計、
40…演算回路、42…警報部材、44…デー
タ・レコーダ。
FIG. 1 is a schematic block diagram of an apparatus for implementing the present invention, and FIG. 2 is a graph showing an example of measurement data. 10, 12, 14, 16... Gamma ray detector, 1
8, 20, 22, 24...logarithmization circuit, 26, 2
8, 30... Subtraction circuit, 32... Radio altimeter, 34...
Barometric altimeter, 36... speedometer, 38... radiation thermometer,
40...Arithmetic circuit, 42...Alarm member, 44...Data recorder.

Claims (1)

【特許請求の範囲】 1 飛行体に積載したガンマ線検知部材により、
探査対象地からエネルギー帯の異なる複数のガン
マ線量を測定すると共に、 地表面高度及び地表面温度を測定し、 地表面高度から求められる地形傾斜の変化率、
地表面温度の変化率及び、上記測定ガンマ線のエ
ネルギー帯毎の線量比の変化率から、地質を探査
する ことを特徴とするガンマ線の空中測定による地質
探査法。 2 上記ガンマ線が、少なくとも 40K系列ガン
マ線、 238U系ガンマ線及び 232Th系列ガンマ線
を含むことを特徴とする特許請求の範囲第1項に
記載の方法。 3 地形傾斜の変化率が、飛行高度から対地高度
を差引いた地表面高度の時間差高を対地速度と飛
行時間との積で除した値であることを特徴とする
特許請求の範囲第1項に記載の方法。 4 地表面温度の変化率が、地表面温度の時間差
値を対地速度と飛行時間との積で除した値である
ことを特徴とする特許請求の範囲第1項に記載の
方法。 5 地形傾斜が2倍を越えて変化し、ラドン娘元
素とカリウムのカウント数比 214Bi/ 40Kが2倍
以上変わるとき、断層・亀裂の存在を指示し、 地形傾斜が2倍以上変化し、傾斜の正負が変化
し、ラドン娘元素とカリウムのカウント数比
214Bi/ 40Kが2倍以上変化し、地表面温度が数
℃以上変化し、トロン娘元素とラドン娘元素のカ
ウント数比 208Tl/ 214Biが減少するとき、温泉
脈の存在を指示し、 地形傾斜が2倍以上変化し、傾斜の正負が変化
し、ラドン娘元素とカリウムのカウント数比
214Bi/ 40Kが2倍以上変化し、地表面温度が数
℃以上変化し、トロン娘元素とラドン娘元素のカ
ウント数比 208Tl/ 214Biが増加するとき、地下
水脈の存在を示す ことを特徴とする特許請求の範囲第2項に記載の
方法。 6 飛行体と、 当該飛行体に積載され、検知エネルギー帯の異
なる少なくとも3個のガンマ線検出器と、 当該飛行体に積載され、測定地域の地表面高度
を測定する部材と、 当該飛行体に積載され、測定地域の地表面温度
を測定する部材と、 当該ガンマ線検出器の各出力の間の比を示す信
号を得る比計算部材と、 当該比計算部材の出力、地表面高度データ及び
地表面温度データに基づき、これらが所定の変化
を示すときに所定の警報信号を発生する演算回路
と、 当該演算回路の出力に応答して、所定の警報を
発生する警報部材 とからなることを特徴とするガンマ線の空中測定
による地質探査装置。 7 上記ガンマ線が、少なくとも、 40K系列ガ
ンマ線、 238U系列ガンマ線及び 232Th系列ガン
マ線を含むことを特徴とする特許請求の範囲第6
項に記載の装置。 8 前記演算回路は、 地形傾斜が2倍を越えて変化し、ラドン娘元素
とカリウムのカウント数比 214Bi/ 40Kが2倍以
上変わるとき、断層・亀裂の存在を指示し、 地形傾斜が2倍以上変化し、傾斜の正負が変化
し、ラドン娘元素とカリウムのカウント数比
214Bi/ 40Kが2倍以上変化し、地表面温度が数
℃以上変化し、トロン娘元素とラドン娘元素のカ
ウント数比 208Tl/ 214Biが減少するとき、温泉
脈の存在を指示し、 地形傾斜が2倍以上変化し、傾斜の正負が変化
し、ラドン娘元素とカリウムのカウント数比
214Bi/ 40Kが2倍以上変化し、地表面温度が数
℃以上変化し、トロン娘元素とラドン娘元素のカ
ウント数比 208Tl/ 214Biが増加するとき、地下
水脈の存在を示す ことを特徴とする特許請求の範囲第7項に記載の
装置。 9 前記地表面高度測定部材が、飛行高度及び対
地高度の測定値から地表面高度を得ることを特徴
とする特許請求の範囲第6項乃至第8項のいずれ
か1項に記載の装置。
[Claims] 1. A gamma ray detection member loaded on a flying object,
In addition to measuring multiple gamma ray doses in different energy bands from the exploration target area, we also measure the ground surface altitude and ground surface temperature, and calculate the rate of change in topographical slope determined from the ground surface altitude.
A geological exploration method by aerial measurement of gamma rays, characterized in that the geology is explored from the rate of change in ground surface temperature and the rate of change in the dose ratio for each energy band of the measured gamma rays. 2. The method according to claim 1, wherein the gamma rays include at least 40 K series gamma rays, 238 U series gamma rays, and 232 Th series gamma rays. 3. Claim 1, characterized in that the rate of change in terrain slope is a value obtained by dividing the time difference height of the ground surface altitude obtained by subtracting the ground altitude from the flight altitude by the product of ground speed and flight time. Method described. 4. The method according to claim 1, wherein the rate of change of the ground surface temperature is a value obtained by dividing the time difference value of the ground surface temperature by the product of ground speed and flight time. 5. When the topographic slope changes by more than twice and the count ratio of radon daughter element and potassium 214 Bi / 40 K changes by more than twice, it indicates the existence of a fault/fissure, and the topographic slope changes by more than twice. , the sign of the slope changes, and the count ratio of radon daughter element and potassium
When 214 Bi/ 40 K changes by more than twice, the ground surface temperature changes by several degrees Celsius or more, and the count ratio of thoron daughter elements and radon daughter elements 208 Tl/ 214 Bi decreases, this indicates the existence of hot spring veins. , the topographical slope changed by more than twice, the sign of the slope changed, and the count ratio of radon daughter elements and potassium changed.
When 214 Bi/ 40 K changes by more than double, the ground surface temperature changes by several degrees Celsius or more, and the count ratio of thoron daughter elements and radon daughter elements 208 Tl/ 214 Bi increases, it indicates the presence of underground water veins. A method according to claim 2, characterized in that: 6 A flying vehicle; at least three gamma ray detectors with different detection energy bands loaded on the flying vehicle; a component loaded on the flying vehicle to measure the ground surface altitude of the measurement area; a member that measures the ground surface temperature in the measurement area, a ratio calculation member that obtains a signal indicating the ratio between each output of the gamma ray detector, and the output of the ratio calculation member, the ground surface altitude data, and the ground surface temperature. It is characterized by comprising an arithmetic circuit that generates a predetermined alarm signal when these indicate a predetermined change based on data, and an alarm member that generates a predetermined alarm in response to the output of the arithmetic circuit. A geological exploration device that uses gamma ray aerial measurements. 7. Claim 6, wherein the gamma rays include at least 40 K series gamma rays, 238 U series gamma rays, and 232 Th series gamma rays.
The equipment described in section. 8. When the topographical slope changes by more than twice and the count ratio of radon daughter elements and potassium changes by more than twice, the arithmetic circuit indicates the existence of a fault/ fissure , and the topographical slope changes by more than twice. It changes more than twice, the sign of the slope changes, and the count ratio of radon daughter element and potassium changes.
When 214 Bi/ 40 K changes by more than twice, the ground surface temperature changes by several degrees Celsius or more, and the count ratio of thoron daughter elements and radon daughter elements 208 Tl/ 214 Bi decreases, this indicates the existence of hot spring veins. , the topographical slope changed by more than twice, the sign of the slope changed, and the count ratio of radon daughter elements and potassium changed.
When 214 Bi/ 40 K changes by more than twice, the ground surface temperature changes by several degrees Celsius or more, and the count ratio of thoron daughter elements and radon daughter elements 208 Tl/ 214 Bi increases, it indicates the presence of underground water veins. 8. A device according to claim 7, characterized in that: 9. The device according to any one of claims 6 to 8, wherein the ground surface height measuring member obtains the ground surface height from measured values of flight altitude and ground altitude.
JP59104659A 1984-05-25 1984-05-25 Method and device for geological analysis by aerial measurement of gamma rays Granted JPS60249080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59104659A JPS60249080A (en) 1984-05-25 1984-05-25 Method and device for geological analysis by aerial measurement of gamma rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59104659A JPS60249080A (en) 1984-05-25 1984-05-25 Method and device for geological analysis by aerial measurement of gamma rays

Publications (2)

Publication Number Publication Date
JPS60249080A JPS60249080A (en) 1985-12-09
JPH0369077B2 true JPH0369077B2 (en) 1991-10-30

Family

ID=14386588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59104659A Granted JPS60249080A (en) 1984-05-25 1984-05-25 Method and device for geological analysis by aerial measurement of gamma rays

Country Status (1)

Country Link
JP (1) JPS60249080A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152392A (en) * 1987-12-09 1989-06-14 Asahi Koyo Kk Ground estimation method and its device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122881A (en) * 1974-08-14 1976-02-23 Tanabe Seiyaku Co Hatsukoho nyoru dd araninno seiho
JPS5225361A (en) * 1975-08-20 1977-02-25 Nishishiba Denki Kk Apparatus for controlling lifting up electromagnet
JPS58169080A (en) * 1982-03-31 1983-10-05 Nogyo Doboku Shikenjo Detection of crack position in bed of ground surface

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122881A (en) * 1974-08-14 1976-02-23 Tanabe Seiyaku Co Hatsukoho nyoru dd araninno seiho
JPS5225361A (en) * 1975-08-20 1977-02-25 Nishishiba Denki Kk Apparatus for controlling lifting up electromagnet
JPS58169080A (en) * 1982-03-31 1983-10-05 Nogyo Doboku Shikenjo Detection of crack position in bed of ground surface

Also Published As

Publication number Publication date
JPS60249080A (en) 1985-12-09

Similar Documents

Publication Publication Date Title
JPH0369077B2 (en)
Davis et al. Instrumentation in aircraft for radiation measurements
EP0534025B1 (en) Method and use of apparatus for prediction of volcanic eruptions and earthquakes
JPH0378950B2 (en)
Davis Extended-and Point-source Radiometric Program
Schwarz et al. Design, calibration, and application of an airborne gamma spectrometer system in Switzerland
Colton A series of low-altitude aerial radiological surveys of selected regions within areas 3, 5, 8, 9, 11, 18, and 25 at the Nevada Test Site
Foote Improvement in airborne gamma radiation data analysis for anomalous radiation by removal of environmental and pedologic radiation changes
Seo et al. Real-time portable muography with Hankuk Atmospheric-muon Wide Landscaping: HAWL
JP2718081B2 (en) How to detect inland oil fields
Wasiolek An Aerial Radiological Survey of the United States Department of Energy Rocky Flats Plant and Surrounding Area
Stampolidis et al. Helicopter-borne magnetic and radiometric geophysical survey in the Kviteseid-Notodden-Ulefoss area, Telemark County
Burson Research progress in airborne surveys of terrestrial gamma radiation
Stampolidis et al. Helicopter-borne magnetic and radiometric geophysical survey at Gratangen and Sørreisa, Troms county
Deal et al. ENVIRONMENTAL RADIATION SURVEYS AND SNOW MASS PREDICTIONS FROM AIRCRAFT. Technical Report No. L-1034.
Stobie NUCLEAR ENGINEERING COMPANY (NECO) FACILITY
Bluitt Aerial radiological survey of the area surrounding the UNC Recovery Systems Facility, Wood River Junction, Rhode Island
Ofstad Helicopter-borne magnetic and radiometric geophysical survey in Øvre Dividalen area, Målselv municipality, Troms
Berry An aerial radiological survey of Pocatello and Soda Springs, Idaho and surrounding area, June--July 1986
Stuart et al. Airborne system for mapping and tracking extended gamma ray sources
Sanderson et al. An aerial gamma ray survey of the surrounding area of Sizewell Nuclear Power Station
Ofstad et al. Helicopter-borne magnetic and radiometric geophysical survey in the Altevann area, Bardu and Målselv Municipalities, Troms
Feimster et al. Soil moisture survey experiment at Phoenix, Arizona
Singman An aerial radiological survey of the project Rio Blanco and surrounding area
Ofstad Helicopter-borne magnetic and radiometric geophysical survey in Kinsarvik area, Ullensvang municipality, Hordaland

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees