JPH0368895A - Fuel cladding tube for nuclear reactor - Google Patents

Fuel cladding tube for nuclear reactor

Info

Publication number
JPH0368895A
JPH0368895A JP1203812A JP20381289A JPH0368895A JP H0368895 A JPH0368895 A JP H0368895A JP 1203812 A JP1203812 A JP 1203812A JP 20381289 A JP20381289 A JP 20381289A JP H0368895 A JPH0368895 A JP H0368895A
Authority
JP
Japan
Prior art keywords
cladding tube
stress
fuel cladding
fuel
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1203812A
Other languages
Japanese (ja)
Inventor
Norikatsu Yokota
横田 憲克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP1203812A priority Critical patent/JPH0368895A/en
Publication of JPH0368895A publication Critical patent/JPH0368895A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PURPOSE:To enable a stress release by a deformation of a grooved part which is formed in a surface, and to prevent a breaking-down even if a tensile stress works on a fuel cladding tube by providing grooves which are parallel to an axial direction, in the inner surface of the fuel cladding tube. CONSTITUTION:A fuel cladding tube is made of a zirconium alloy 1, a ductile material 2 is lined on its inner surface and grooves 3 are formed in its surface. When a stress is generated on a fuel cladding tube due to a change of the reactor output, a circumferential tensile stress higher than that in the circumference works on the inner surface. In this situation, as the grooves are separated each other, the grooves themselves can be easily deformed and thereby the stress can be easily mitigated as well. Also, the grooved parts 3 can be easily and plastically deformed only at their surfaces and therefore the stress can be absorbed and propagation of cracks into an inner part of the cladding tube can be prevented. Consequently, a possibility of a ductile breaking-down is rather small even if an excess stress is generated by a PCI.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、原子炉で用いられる燃料被覆管に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to fuel cladding tubes used in nuclear reactors.

[従来の技術] 現行の軽水炉で使用されている核燃料要素の縦断面図を
第5図に示す。この図に示されるように核燃料要素は、
円柱状の核燃料ペレット12をジルコニウム基合金製の
被覆管11内に装填し、被覆管11を上部端栓13およ
び下部端栓14で密封して構成されている。第5図中の
15はプレナム部、1Gは核燃料ペレット12を押える
スプリング、17はペレットと被覆管とのギャップであ
る。
[Prior Art] FIG. 5 shows a longitudinal cross-sectional view of a nuclear fuel element used in current light water reactors. As shown in this figure, the nuclear fuel elements are
A cylindrical nuclear fuel pellet 12 is loaded into a zirconium-based alloy cladding tube 11, and the cladding tube 11 is sealed with an upper end plug 13 and a lower end plug 14. In FIG. 5, 15 is a plenum part, 1G is a spring that presses down the nuclear fuel pellet 12, and 17 is a gap between the pellet and the cladding tube.

この燃料要素を原子炉内にて燃焼させると、個々の核燃
料ペレットは半径方向に大きな温度勾配が生じるため上
下端が外側に張りだし、全体的に砂時計のように反り返
った形に変形する。また燃料要素は核燃料ペレットを積
み重ねて充填しているので、個々のペレットがもつ上面
、下面の平行度のずれが集積され、あるペレット群単位
で軸方向に傾斜する。特に変形量や平行度のずれの大き
いペレット端面部が被覆管に接触する(PCI。
When these fuel elements are burned in a nuclear reactor, a large temperature gradient occurs in the individual nuclear fuel pellets in the radial direction, causing the upper and lower ends to bulge outward, causing the pellets to deform into an hourglass-like shape. In addition, since the fuel element is filled with nuclear fuel pellets stacked, the deviations in parallelism between the upper and lower surfaces of individual pellets are accumulated, and each pellet group is tilted in the axial direction. In particular, the end face of the pellet, which has a large amount of deformation and deviation in parallelism, comes into contact with the cladding tube (PCI).

ペレット−被覆管相互作用)と、被覆管に高い応力、ひ
ずみを与えることになる。そしてペレットの端部に対応
した被覆管の応力、ひずみの集中箇所にペレットまたは
ペレットから放出された核分裂生成物(FPガス)が作
用し、応力腐食割れを起こす可能性が増加する。
(pellet-cladding interaction), resulting in high stress and strain on the cladding. Then, the pellet or the fission products (FP gas) released from the pellet act on the stress and strain concentrated location of the cladding tube corresponding to the end of the pellet, increasing the possibility of stress corrosion cracking.

このような問題に対拠して、被覆管の内側にジルコニウ
ムのライナ層を内張して、燃料ペレットとの相互作用を
吸収し、ジルコニウム合金の破損を防止する提案がなさ
れた(特開昭63−61989号公報)。
To address these problems, a proposal was made to line the inside of the cladding with a zirconium liner layer to absorb interaction with fuel pellets and prevent damage to the zirconium alloy (Japanese Patent Application Laid-Open No. 63-61989).

[発明が解決しようとする課題] このライナ層を設けた燃料被覆管は、ライナ層がジルコ
ニウム合金に比べ軟らかいため、ジルコニウム合金のみ
から構成された燃料被覆管に比して耐PCI性が向上し
た。
[Problems to be Solved by the Invention] The fuel cladding provided with this liner layer has improved PCI resistance compared to the fuel cladding made only of zirconium alloy because the liner layer is softer than the zirconium alloy. .

しかしながら、現在原子炉の高燃焼度化が検討されてお
り、それに伴ってより一層の燃料被覆管の信頼性が要求
されている。すなわち高燃焼度化が進むにつれて、軸方
向もよび円周方向の伸びが増加する可能性があり、その
ため、被覆管内表面に引張り応力が加わってもライナ層
の表面に亀裂など欠陥が生じないことが必要である。
However, higher burnup of nuclear reactors is currently being considered, and as a result, even higher reliability of fuel cladding is required. In other words, as burn-up increases, the elongation in both the axial and circumferential directions may increase, so even if tensile stress is applied to the inner surface of the cladding, defects such as cracks will not occur on the surface of the liner layer. is necessary.

本発明はかかる情況に鑑みてなされたもので、高燃焼度
化に対拠してさらに耐PCI性を向上させ、より信頼性
の高い燃料被覆管を提供することを目的とするものであ
る。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a fuel cladding tube with higher reliability by further improving PCI resistance in response to higher burnup.

[問題点を解決するための手段] 上記目的は、燃料被覆管の内表面に軸方向に平行な凹凸
の起伏をもたせることにより達成される。
[Means for Solving the Problems] The above object is achieved by providing the inner surface of the fuel cladding tube with unevenness parallel to the axial direction.

[作 用] 本発明において燃料被覆管の内表面に設けられた凹凸は
、円周方向の応力に対して容易に変形することができ、
しかもPCIによる応力集中を凸部が塑性変形すること
により吸収するので耐PCI性が著しく向上する。した
がって本発明の燃料被覆管は、通常の応力の範囲では延
性割れなどの破壊が生じることがない。
[Function] In the present invention, the unevenness provided on the inner surface of the fuel cladding tube can be easily deformed in response to stress in the circumferential direction,
Moreover, since the stress concentration caused by PCI is absorbed by the plastic deformation of the convex portion, the PCI resistance is significantly improved. Therefore, in the fuel cladding tube of the present invention, failure such as ductile cracking does not occur in the normal stress range.

[実施例コ 以下、本発明の実施例を第1図〜第4図を用いて説明す
る。
[Embodiment] Hereinafter, an embodiment of the present invention will be explained using FIGS. 1 to 4.

第1図は本発明の一実施例である燃料被覆管の横断面を
示したものである。この燃料被覆管はジルコニウム合金
1で作られており、その内側に延性材料2が内張され、
その表面には凹凸3が形成されている。
FIG. 1 shows a cross section of a fuel cladding tube according to an embodiment of the present invention. This fuel cladding tube is made of zirconium alloy 1 and is lined with a ductile material 2.
Irregularities 3 are formed on its surface.

第2図は第1図の燃料被覆管の製作工程を示したもので
ある。工程の順序は、丸印の番号で示しである。工程■
から■は、繰返し行うことにより従来のジルコニウム合
金1管などを製作することができ、工程■から■におい
てほぼ完成された燃料被覆管となる。さらに、工程■か
ら[相]の工程によって燃料被覆管の内表面に凹凸を設
ける。工程■ではマンドレルの断面形状を第1図と対を
なす逆形状としておく。工程[相]によって、内表面の
凹凸を形成するときの歪を真空焼きなましにより解放し
、燃料被覆管を完成させる。
FIG. 2 shows the manufacturing process of the fuel cladding shown in FIG. 1. The order of the steps is indicated by the numbers in circles. Process ■
By repeating steps (1) to (2), a conventional zirconium alloy tube can be manufactured, and a fuel cladding tube is almost completed in steps (1) to (2). Furthermore, irregularities are provided on the inner surface of the fuel cladding tube by the steps from step (1) to [phase]. In step (2), the cross-sectional shape of the mandrel is set to be the opposite shape to that shown in FIG. In the process [phase], the strain caused when forming the unevenness on the inner surface is released by vacuum annealing, and the fuel cladding tube is completed.

炉の出力変動に伴い燃料被覆管に応力が発生すると、そ
の内表面において外周よりも高い円周方向の引張応力が
働く。このとき、内表面の凹凸はお互いに切り離されて
いるため、容易に伸縮が可能で応力を緩和することがで
きる。
When stress occurs in the fuel cladding due to fluctuations in the furnace output, a higher tensile stress in the circumferential direction acts on the inner surface than on the outer circumference. At this time, since the unevenness on the inner surface is separated from each other, it can be easily expanded and contracted, and stress can be alleviated.

また、凸部3は表面のみが塑性変形しやすいため、応力
を吸収して被覆管内部への亀裂の進展を防ぐことができ
、PCIによって過大な応力が発生しても延性破壊を起
こす可能性が小さい。
In addition, since only the surface of the convex portion 3 is susceptible to plastic deformation, it can absorb stress and prevent cracks from propagating inside the cladding tube, and even if excessive stress is generated due to PCI, there is a possibility of ductile fracture. is small.

凹凸部の断面構造の一例を第3図および第4図に示す。An example of the cross-sectional structure of the uneven portion is shown in FIGS. 3 and 4.

第3図は表面端部が面取りされており、凹部底部は滑ら
かな球面状となっているものである。この場合、引張り
応力が働いても応力を一様に分布させることができ、応
力集中による割れの発生を防止することができる。また
、第4図は凹部底部の形状をティアドロプの形状にした
ものである。底部の形状を凹部開口幅よりも大きく膨ら
みをもたせた形状としたので、四部底部の断面積が第3
図のものよりも大きくなり、円周方向に働く引張り応力
を均一に分布させることができるので亀裂などが発生し
にくくなる。なお、凹部の深さは数10μm1溝の数は
できるだけ多数設けたほうが好ましい。延性材料2とし
ては、従来から用いられているジルコニウムでモ良い。
In FIG. 3, the surface edge is chamfered and the bottom of the recess has a smooth spherical shape. In this case, even if tensile stress is applied, the stress can be distributed uniformly, and cracking due to stress concentration can be prevented. Further, in FIG. 4, the bottom of the recess has a teardrop shape. Since the shape of the bottom is larger than the opening width of the recess, the cross-sectional area of the bottom of the fourth part is 3.
It is larger than the one shown in the figure, and the tensile stress acting in the circumferential direction can be uniformly distributed, making it difficult for cracks to occur. Note that it is preferable that the depth of the recess is several tens of μm and that the number of grooves is as large as possible. The ductile material 2 may be zirconium, which has been used conventionally.

本実施例によれば、燃料被覆管に円周方向の引張り応力
が働いても、内面に形成された凸部が塑性変形し応力を
吸収するため、内表面からの亀裂などの欠陥が生じるこ
とがなく、燃料被覆管の健全性を保つことができる。
According to this example, even if tensile stress is applied to the fuel cladding tube in the circumferential direction, the convex portion formed on the inner surface will plastically deform and absorb the stress, so defects such as cracks from the inner surface will not occur. Therefore, the integrity of the fuel cladding can be maintained.

[発明の効果] 本発明によれば、燃料被覆管の内面に凹凸を設けること
により、被覆管に引張り応力が働いても、表面に形成さ
れた凹凸部が容易に変形して応力を解放することができ
る。このため、内表面が延性破壊を生じることな(変形
可能となり、被覆管に微小亀裂などの欠陥が発生するこ
とがないので、燃料被覆管の健全性をより一層向上させ
る効果がある。また、PCIにより局所的に内表面に過
大な応力が発生しても、凸部が塑性変形して応力を吸収
するので被覆管の破損を防止でき、原子炉の安全性を保
つことが出来る。
[Effects of the Invention] According to the present invention, by providing unevenness on the inner surface of the fuel cladding tube, even if tensile stress is applied to the cladding tube, the unevenness formed on the surface easily deforms and releases the stress. be able to. Therefore, the inner surface does not undergo ductile fracture (it becomes deformable, and defects such as microcracks do not occur in the cladding tube, which has the effect of further improving the integrity of the fuel cladding tube. Even if excessive stress is locally generated on the inner surface due to PCI, the convex portion plastically deforms and absorbs the stress, thereby preventing damage to the cladding tube and maintaining the safety of the reactor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の燃料被覆管の横断面図、第
2図は第1図の燃料被覆管の製作工程を示す図、第3図
および第4図はそれぞれ第1図の燃料被覆管の内表面凹
凸部の断面形状を示した図、第5図は従来の燃料被覆管
の縦断面図である。 1・・・ジルコニウム合金 2・・・延性材料 3・・・表面凹凸 (8733)代理人 弁理士 猪 股 祥 晃(ほか 
1名) 茅 2 茅 5 欄
FIG. 1 is a cross-sectional view of a fuel cladding tube according to an embodiment of the present invention, FIG. 2 is a diagram showing the manufacturing process of the fuel cladding tube of FIG. 1, and FIGS. FIG. 5 is a longitudinal sectional view of a conventional fuel cladding tube, which shows the cross-sectional shape of the uneven inner surface of the fuel cladding tube. 1...Zirconium alloy 2...Ductile material 3...Surface unevenness (8733) Agent: Patent attorney Yoshiaki Inomata (and others)
1 person) Kaya 2 Kaya 5 column

Claims (4)

【特許請求の範囲】[Claims] (1)内表面に被覆管の軸方向に平行な凹凸状の溝が形
成されていることを特徴とする原子炉用燃料被覆管。
(1) A fuel cladding tube for a nuclear reactor, characterized in that an uneven groove parallel to the axial direction of the cladding tube is formed on the inner surface.
(2)凹凸状の溝の凹部底部の断面構造が一定の曲率を
もつ形状である請求項1記載の原子炉用燃料被覆管。
(2) The fuel cladding tube for a nuclear reactor according to claim 1, wherein the cross-sectional structure of the bottom of the concave portion of the uneven groove has a constant curvature.
(3)凹凸状の溝の凹部底部の断面構造がティアドロプ
の形状である請求項1記載の原子炉用燃料被覆管。
(3) The fuel cladding tube for a nuclear reactor according to claim 1, wherein the cross-sectional structure of the bottom of the concave portion of the uneven groove is in the shape of a teardrop.
(4)凹凸状の溝が燃料被覆管の内表面に設けられた延
性材料からなるライナ層に形成されている請求項1記載
の原子炉用燃料被覆管。
(4) The fuel cladding tube for a nuclear reactor according to claim 1, wherein the uneven grooves are formed in a liner layer made of a ductile material provided on the inner surface of the fuel cladding tube.
JP1203812A 1989-08-08 1989-08-08 Fuel cladding tube for nuclear reactor Pending JPH0368895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1203812A JPH0368895A (en) 1989-08-08 1989-08-08 Fuel cladding tube for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1203812A JPH0368895A (en) 1989-08-08 1989-08-08 Fuel cladding tube for nuclear reactor

Publications (1)

Publication Number Publication Date
JPH0368895A true JPH0368895A (en) 1991-03-25

Family

ID=16480136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1203812A Pending JPH0368895A (en) 1989-08-08 1989-08-08 Fuel cladding tube for nuclear reactor

Country Status (1)

Country Link
JP (1) JPH0368895A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011157782A1 (en) 2010-06-16 2011-12-22 Commissariat à l'énergie atomique et aux énergies alternatives Solid interface joint with open porosity, for nuclear control rod
WO2011157780A1 (en) 2010-06-16 2011-12-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Solid interface joint with open porosity, for nuclear fuel rod

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011157782A1 (en) 2010-06-16 2011-12-22 Commissariat à l'énergie atomique et aux énergies alternatives Solid interface joint with open porosity, for nuclear control rod
WO2011157780A1 (en) 2010-06-16 2011-12-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Solid interface joint with open porosity, for nuclear fuel rod
JP2013533966A (en) * 2010-06-16 2013-08-29 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Solid interface joint with apertures for nuclear fuel rods
US9620251B2 (en) 2010-06-16 2017-04-11 Commissariat A L'energie Atomique Et Aux Energies Alternatives Solid interface joint with open pores for nuclear control rod

Similar Documents

Publication Publication Date Title
US8811566B2 (en) Guide thimble plug for nuclear fuel assembly
US4004972A (en) Nuclear fuel element
JPS637353B2 (en)
US3129140A (en) Fuel elements for nuclear reactors
US4710343A (en) Nuclear breeder reactor fuel element with silicon carbide getter
US4654193A (en) Fuel assembly for fast reactors
JP6666072B2 (en) Fuel rods and fuel assemblies
US3215607A (en) Multi-region neutronic fuel element
JPH0368895A (en) Fuel cladding tube for nuclear reactor
TWI755780B (en) ELONGATE SiC FUEL ELEMENTS
EP4141889A1 (en) Fuel rod of a water-cooled water-moderated nuclear reactor
JPS63133088A (en) Core aggregate for nuclear reactor
US3989590A (en) Pressurized fuel elements for nuclear reactors
RU2532261C1 (en) Apparatus for spacing fuel elements
US4146431A (en) Nuclear fuel cladding system
US3697373A (en) Nuclear fuel element
JPH0815469A (en) Nuclear fuel cladding tube
JPS581758B2 (en) core support plate
JPH0631769B2 (en) Control rod assembly
JPS6023759Y2 (en) nuclear fuel rod
JPS6367591A (en) Fuel aggregate for fast breeder reactor
JPH01113699A (en) Assembling of nuclear fuel assembly
JPS58165085A (en) Nuclear fuel element
JPS58147675A (en) Nuclear fuel element
JPH02293693A (en) Nuclear fuel element