JPH0368494A - Treatment of waste water containing dimethyl disulfide - Google Patents

Treatment of waste water containing dimethyl disulfide

Info

Publication number
JPH0368494A
JPH0368494A JP20488489A JP20488489A JPH0368494A JP H0368494 A JPH0368494 A JP H0368494A JP 20488489 A JP20488489 A JP 20488489A JP 20488489 A JP20488489 A JP 20488489A JP H0368494 A JPH0368494 A JP H0368494A
Authority
JP
Japan
Prior art keywords
dimethyl disulfide
hydrogen
reduced iron
contact
dmds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20488489A
Other languages
Japanese (ja)
Inventor
Yuichi Tanimoto
祐一 谷本
Seiji Minami
南 清司
Kazuo Okamura
和夫 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP20488489A priority Critical patent/JPH0368494A/en
Publication of JPH0368494A publication Critical patent/JPH0368494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To reduce, decompose, vaporize and remove dimethyl disulfide (DMDS) in waste water by bringing the waste water into contact with hydrogen alone or in the presence of catalyst or reduced metal. CONSTITUTION:The powder of reduced iron is packed in a catalytic reduction tower 1 to form an expanded bed. Meanwhile, gaseous hydrogen is supplied and circulated be improve the contact efficiency between the DMDS contained in raw water and reduced iron, and the ratio of the volume of the reduced iron powder to that of the waste water is increased. The treated water and reduced iron are sent to a gas-solid-liq. separator 2, and the water is separated as treated water. In this case, only hydrogen can be used for the treatment without using a packing material. Since the chemical structure of DMDS is not so stable, the DMDS is easily decomposed by contact with hydrogen.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、廃水の処理法に関し、特にクラフトパルプW
J造工場、魚腸骨、厘尿下水処FJ場から排出される廃
水等、二硫化ジメチル含有廃水を処理する方法に間する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for treating wastewater, and in particular to a method for treating wastewater using kraft pulp W.
We will develop a method for treating wastewater containing dimethyl disulfide, such as wastewater discharged from the FJ plant, fish iliac plant, and sewage treatment plant.

(従来の技術及び発明が解決しようとする課題〉従来、
二硫化ジメチル(Dimethyl Disulfid
e;DMDS)が多量に含まれている廃水を処理する場
合は、一般にガスストリッピング法などによって分離さ
れていた。
(Problems to be solved by conventional techniques and inventions) Conventionally,
Dimethyl Disulfide
When treating wastewater that contains a large amount of DMDS, it is generally separated by a gas stripping method or the like.

しかし、ガスストリッピングによる分離方法では非常に
大きな動力を必要とすること、また、分離されたものは
通常、ひどい悪臭を伴うので、後処理が非常に困難であ
る問題があった。
However, the separation method by gas stripping requires a very large amount of power, and the separated product usually has a strong odor, making post-treatment very difficult.

なお、ガスストリッピング処理をしない廃液では、活性
汚泥等の生物処理を行うにしても負荷の増大を招き、経
済的な問題があった。
In addition, waste liquid that is not subjected to gas stripping treatment causes an increase in load even if biological treatment such as activated sludge is performed, which poses an economic problem.

(課題を解決するための手段) 本発明者らは上記課題に鑑み、廃水中の二硫化ジメチル
の除去について鋭意研究した結果、二硫化ジメチルは化
学構造がそれほど安定ではないので、水素との接触面を
与えさえすれば容易に分解するであろうと推測し、実験
を重ねて、本発明をなすに至った。
(Means for Solving the Problems) In view of the above problems, the present inventors have conducted extensive research on the removal of dimethyl disulfide from wastewater, and have found that dimethyl disulfide has a not very stable chemical structure, so it cannot be removed by contact with hydrogen. We surmised that it would be easily decomposed as long as we gave it a surface, and after repeated experiments we came up with the present invention.

本発明はすなわち、二硫化ジメチル含有廃水を、水素ガ
ス単独に接触させるか、あるいは触媒又は還元金属と共
に、水素ガスに接触させることにより、二硫化ジメチル
を還元分解して気化除去することを特徴とする二硫化ジ
メチル含有廃水の処理法である。
That is, the present invention is characterized in that dimethyl disulfide is reductively decomposed and vaporized and removed by bringing dimethyl disulfide-containing wastewater into contact with hydrogen gas alone or with hydrogen gas together with a catalyst or reducing metal. This is a method for treating wastewater containing dimethyl disulfide.

上記本発明方法によれば、廃水から二硫化ジメチルを容
易に除去することができる。
According to the method of the present invention described above, dimethyl disulfide can be easily removed from wastewater.

本発明において、廃液と水素との接触方法は、廃水中に
水素気泡を直接導入して気液接触させてもよいが、還元
鉄、還元銅等の還元金属触媒と共に水素を接触させるこ
とが好ましい。
In the present invention, the method of contacting the waste liquid with hydrogen may be to directly introduce hydrogen bubbles into the waste water to cause gas-liquid contact, but it is preferable to contact the hydrogen with a reducing metal catalyst such as reduced iron or reduced copper. .

触媒としては、特に安価で水素貯蔵性に優れる還元鉄が
好ましいが、このほかに、例えば還元銅、ラネーNi、
白金、パラジウムなどの接触水素化触媒等が挙げられる
As a catalyst, reduced iron is particularly preferable because it is inexpensive and has excellent hydrogen storage properties, but in addition, reduced copper, Raney Ni,
Examples include catalytic hydrogenation catalysts such as platinum and palladium.

これらは、二硫化ジメチルに水素を付加して還元させる
効果をもつ触媒である。
These are catalysts that have the effect of adding hydrogen to dimethyl disulfide and reducing it.

ところで、二硫化ジメチルやメチルメルカプタンは含硫
黄有機化合物であって、触媒毒となる場合がある。これ
を回避するため、これら触媒毒に対して対抗性の強い触
媒として、パラジウムブラック等を用いることができる
が、これらはコストが非常に高いものとなる。
By the way, dimethyl disulfide and methyl mercaptan are sulfur-containing organic compounds and may act as catalyst poisons. In order to avoid this, palladium black or the like can be used as a catalyst that is highly resistant to these catalyst poisons, but these are extremely expensive.

しかし、触媒毒となる場合であっても、充分に再生処理
を行うことによって、それを連続使用して経済性を高め
るようにしてもよい。
However, even if it becomes a catalyst poison, it may be used continuously to improve economic efficiency by performing sufficient regeneration treatment.

(作用) 二硫化ジメチル(C2HI S2)は、沸点が110℃
、比重約1.06であるため、水中に存在しやすい。
(Function) Dimethyl disulfide (C2HI S2) has a boiling point of 110°C
, has a specific gravity of about 1.06, so it easily exists in water.

しかし、還元されると次式(1)により、CHs −S
 −S −CHs + Ht  →2CH,SH(1)
に示すとおり、メチルメルカプタン(CH(S )に還
元、分解される。
However, when reduced, CHs -S
-S -CHs + Ht →2CH, SH (1)
As shown, it is reduced and decomposed to methyl mercaptan (CH(S)).

すると、メチルメルカプタンの沸点は5.95℃で低く
いものであるため、容易に空気中に移行することとなり
、その分離、除去が達成される。
Then, since methyl mercaptan has a low boiling point of 5.95°C, it easily migrates into the air, and its separation and removal can be achieved.

〈実施例) 次に、本発明の実施例を図面に基づいて、説明する。<Example) Next, embodiments of the present invention will be described based on the drawings.

実施例1: 第112Iは本発明実施例方法のフローシートであり、
処理される廃水〈原料水〉は、まずポンプPで接触還元
塔1に送給される。
Example 1: No. 112I is a flow sheet of the method of the present invention,
Wastewater to be treated (raw water) is first fed to the catalytic reduction tower 1 by a pump P.

接触還元塔1は、たて型の塔状体であり、内部には還元
鉄の粉末が充填され、m張体を形成している。
The catalytic reduction tower 1 is a vertical tower-like body, and the inside thereof is filled with reduced iron powder to form an m-tensioned body.

該接触還元塔1には原料水中に含有されるDMDS(二
硫化ジメチル)と還元鉄の接触効率を上げるため、水素
ガスの供給、循環が行われ、接触廃水中における還元鉄
粉末の占める体積割合を増加させるようにしている。
In order to increase the contact efficiency between DMDS (dimethyl disulfide) and reduced iron contained in the raw water, hydrogen gas is supplied and circulated to the catalytic reduction tower 1, and the volume ratio of reduced iron powder in the contact wastewater is reduced. We are trying to increase this.

循環水素ガスの量は、還元鉄がかなりの体積の貯蔵水素
を含んでいることから、少量でよく、せいぜい細かな還
元鉄の粉末が槽内に広がるのに必要な量でよい、処理の
終わった水は還元鉄とともに気固液分離器2に送られる
Since reduced iron contains a considerable volume of stored hydrogen, the amount of circulating hydrogen gas may be small, at most the amount necessary to spread fine reduced iron powder in the tank. The water is sent to the gas-solid-liquid separator 2 together with reduced iron.

還元鉄は沈降性がよいので、その分離器2は小さいもの
で済み、それから分離された水は処理水となる。なお、
分離された還元鉄(Solid Fe)は再活性化させ
て、接触塔1へ供給することが望ましい。
Since reduced iron has good sedimentation properties, the separator 2 can be small, and the water separated therefrom becomes treated water. In addition,
It is desirable that the separated reduced iron (Solid Fe) be reactivated and supplied to the contact column 1.

上記実施例においては、接触還元塔における充填剤とし
て還元鉄粉末を使用したが、必要に応じその他の還元金
属粉末を使用してもよい。
In the above embodiments, reduced iron powder was used as the filler in the catalytic reduction tower, but other reduced metal powders may be used as necessary.

さらに、充填剤を使用することなく、水素のみを使用し
て実施してもよい。
Furthermore, it may be carried out using only hydrogen without using a filler.

実施例2: 第2図は他の実施例方法のフローシートであり。Example 2: FIG. 2 is a flow sheet of another example method.

まず、処理される廃水(原水)が接触還元塔1に送給さ
れる。
First, wastewater (raw water) to be treated is sent to the catalytic reduction tower 1.

接触還元塔1の内部には還元鉄の粉末が流動状態で充填
されている。
The inside of the catalytic reduction tower 1 is filled with reduced iron powder in a fluidized state.

第1実施例の場合と同様に、該接触還元塔には原水中に
含有されるDMDS(二硫化ジメチル)と還元鉄の接触
効率を上げるため、水素ガスの供給、循環が行われ、接
触廃水中における還元鉄粉末の占める体積割合を増加さ
せるようにしている。
As in the case of the first embodiment, hydrogen gas is supplied and circulated to the catalytic reduction tower in order to increase the contact efficiency between DMDS (dimethyl disulfide) contained in the raw water and reduced iron, and the catalytic reduction tower The volume ratio occupied by the reduced iron powder inside is increased.

処理の終わった水は還元鉄とともに気固液分離器2に送
られる。
The treated water is sent to the gas-solid-liquid separator 2 together with reduced iron.

気固液分離器2からは、液体としての処理水と、気体と
しての水素とメチルメルカプタンのガスと、固体として
の還元鉄(Fe)が導出される。
From the gas-solid-liquid separator 2, treated water as a liquid, hydrogen and methyl mercaptan gas as gases, and reduced iron (Fe) as a solid are led out.

排出された還元鉄は、脱水された後、還元鉄再生装置3
に導入され、再活性化される。
The discharged reduced iron is dehydrated and then sent to the reduced iron regeneration device 3.
introduced and reactivated.

還元鉄再生装置3は、その一端から水素が導入され、他
端から再生された還元鉄と水素の混合体が導出される。
Hydrogen is introduced into the reduced iron regeneration device 3 from one end thereof, and a mixture of regenerated reduced iron and hydrogen is led out from the other end.

導出された還元鉄と水素の混合体は、再び接触還元塔1
へ導入される。
The derived mixture of reduced iron and hydrogen is sent to the catalytic reduction tower 1 again.
will be introduced to

ところで、使用済還元鉄を再活性化するためには若干の
熱量を必要とするが、本実施例方法においては、気固液
分離器2から排出された二硫化ジメチルの分解生成物で
ある水素とメチルメルカプタンとのガス混合体を還元鉄
再生装置3の加熱用燃料として利用する。
By the way, a certain amount of heat is required to reactivate spent reduced iron, but in the method of this embodiment, hydrogen, which is a decomposition product of dimethyl disulfide discharged from the gas-solid-liquid separator 2, is A gas mixture of methyl mercaptan and methyl mercaptan is used as a heating fuel for the reduced iron regeneration device 3.

さらに、該装置3においては再活性化に水素ガスが用い
られ、排出される余剰水素は再活性化された還元鉄とと
もに接触還元塔1に送られる。
Further, in the device 3, hydrogen gas is used for reactivation, and the excess hydrogen discharged is sent to the catalytic reduction tower 1 together with the reactivated reduced iron.

本実施例方法によれば、エネルギーコストが低減され、
クローズドシステム化もできるため、非常に有利である
According to the method of this embodiment, energy costs are reduced;
It is very advantageous because it can be made into a closed system.

実施例3: 次に、本発明方法の効果をビーカースケールで試験した
結果を説明する。
Example 3: Next, the results of testing the effectiveness of the method of the present invention on a beaker scale will be explained.

容量150m1のねじロビン(ゴム栓1寸き)に二硫「
ヒソメチル2000pp を入れ,このビンのヘッドスペースガス(上部ガス)を
水素ガスで置換した後、びん口にゴム栓をして密封した
Disulfurized into a screw robin (1 inch rubber stopper) with a capacity of 150 m1
After adding 2000 pp of hisomethyl and replacing the head space gas (upper gas) of this bottle with hydrogen gas, the bottle mouth was sealed with a rubber stopper.

該密封ねじロビンを振どう後、5分間放置して水素と含
有二硫化ジメチルを反応させた後、液中の二硫化ジメチ
ル濃度をガスクロマトグラフィで測定した。
After shaking the sealed screw robin, it was left to stand for 5 minutes to allow hydrogen to react with the dimethyl disulfide contained therein, and then the concentration of dimethyl disulfide in the liquid was measured by gas chromatography.

その結果,液中濃度は1,500ppmであって、二硫
化ジメチルの除去率は25%であった。
As a result, the concentration in the liquid was 1,500 ppm, and the removal rate of dimethyl disulfide was 25%.

実施例4: 実施例3は水素ガス単独で接触除去した例であるが、本
例では還元金属粉と併用して接触せしめた. 使用還元
金属粉の種類とその成端は第1表に示すとおりであった
Example 4: Example 3 was an example in which hydrogen gas was used alone for contact removal, but in this example, it was used in combination with reduced metal powder. The type of reduced metal powder used and its termination are as shown in Table 1.

なお、ねじロビン、二硫化ジメチル含有水の濃度及び使
用量は、実施例3と同じであり、各還元金属粉は0.1
gづつ使用した。
The concentration and amount of water containing Nejirobin and dimethyl disulfide are the same as in Example 3, and each reduced metal powder has a concentration of 0.1
g each was used.

素ガスを単独であるいは還元金属と共に接触させて還元
するだけで、容易に二硫化ジメチルを分解除去すること
ができる.したがって、従来法のような大規模装置を必
要としない。
Dimethyl disulfide can be easily decomposed and removed simply by reducing it by bringing it into contact with an elementary gas alone or together with a reducing metal. Therefore, large-scale equipment unlike the conventional method is not required.

また、分解生成物ガスを本発明方法の還元金属再生装置
に使用すれば、エネルギーコストが低減され、クローズ
ドシステム化もできる。
Moreover, if the decomposition product gas is used in the reduced metal regeneration apparatus of the method of the present invention, energy costs can be reduced and a closed system can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例のフローシート図、第2図は他の
実施例のフローシート図である。
FIG. 1 is a flow sheet diagram of an embodiment of the present invention, and FIG. 2 is a flow sheet diagram of another embodiment.

Claims (3)

【特許請求の範囲】[Claims] (1)二硫化ジメチル含有廃水を、水素ガスに接触させ
ることにより、二硫化ジメチルを還元分解して気化除去
することを特徴とする二硫化ジメチル含有廃水の処理法
(1) A method for treating wastewater containing dimethyl disulfide, which comprises bringing the wastewater containing dimethyl disulfide into contact with hydrogen gas to reductively decompose and vaporize and remove dimethyl disulfide.
(2)二硫化ジメチル含有廃水を、触媒又は還元金属に
接触させ、かつ同時に水素ガスに接触させることにより
、二硫化ジメチルを還元分解して気化除去することを特
徴とする二硫化ジメチル含有廃水の処理法。
(2) A wastewater containing dimethyl disulfide characterized by bringing the wastewater containing dimethyl disulfide into contact with a catalyst or a reducing metal and at the same time contacting with hydrogen gas to reductively decompose and vaporize and remove dimethyl disulfide. Processing method.
(3)二硫化ジメチルを分解して生成したメチルメルカ
プタンを触媒又は還元金属の再生用燃料に使用すること
を特徴とする請求項2記載の二硫化ジメチル含有廃水の
処理法。
(3) The method for treating dimethyl disulfide-containing wastewater according to claim 2, characterized in that methyl mercaptan produced by decomposing dimethyl disulfide is used as a catalyst or a fuel for regenerating reduced metals.
JP20488489A 1989-08-09 1989-08-09 Treatment of waste water containing dimethyl disulfide Pending JPH0368494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20488489A JPH0368494A (en) 1989-08-09 1989-08-09 Treatment of waste water containing dimethyl disulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20488489A JPH0368494A (en) 1989-08-09 1989-08-09 Treatment of waste water containing dimethyl disulfide

Publications (1)

Publication Number Publication Date
JPH0368494A true JPH0368494A (en) 1991-03-25

Family

ID=16497993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20488489A Pending JPH0368494A (en) 1989-08-09 1989-08-09 Treatment of waste water containing dimethyl disulfide

Country Status (1)

Country Link
JP (1) JPH0368494A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104591368A (en) * 2015-01-26 2015-05-06 大连理工大学 Iron-coal ash-kaolin filler and method for reductively converting nitro-aromatic waste water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104591368A (en) * 2015-01-26 2015-05-06 大连理工大学 Iron-coal ash-kaolin filler and method for reductively converting nitro-aromatic waste water

Similar Documents

Publication Publication Date Title
Frare et al. Hydrogen sulfide removal from biogas using Fe/EDTA solution: gas/liquid contacting and sulfur formation
CN101791519B (en) Treatment of H-containing materials by active carbocoal process2Application process of S acid gas
CN1027042C (en) Method for removing acid gases from gas mixtures containing acid gases
JP3293181B2 (en) Gas phase decomposition treatment method for volatile organic halogen compound-containing gas
JPH0368494A (en) Treatment of waste water containing dimethyl disulfide
CN103230737A (en) Device and process for performing purification treatment on stinky tail gas in waste water of gas production
CA1104795A (en) Odorous gas purification
JPH10118440A (en) Treatment of gas containing methanol
JPH05269476A (en) Treatment of water containing volatile organohalogen compound
JPH0824570A (en) Desulfurizing device for anaerobic biological reaction gas
JPH06134315A (en) Catalyst for reduction treatment of volatile organic halogen compound
CN101773782A (en) ACF/O3 co-oxidation processing method for waste gas comprising C2H6S
CN109092025A (en) A kind of technique of organic waste-gas purification processing
JPH06106172A (en) Treatment of volatile organohalogen compound
JPH07118668A (en) Method for removing sulfur compound in sulfur-containing gas
JPS6164314A (en) Apparatus for treating exhaust gas
JPS58124524A (en) Removal of malodorous component
JP4152296B2 (en) Method and apparatus for recovering odor components from organic waste water or sludge and method and apparatus for generating hydrogen
JP3568298B2 (en) Method for treating power plant wastewater containing amine compounds
JPH0458402B2 (en)
JPH10305286A (en) Treatment of water containing imidazolidinone base compound
JPS59162946A (en) Regeneration of activated carbon having hydrazine adsorbed therein
JPH06226046A (en) Treatment of volatile organic halogen compound
CN113262757A (en) Method for preparing furfural while regenerating waste activated carbon
JP3239502B2 (en) Method for treating water containing volatile organic halogen compounds