JPH0368056B2 - - Google Patents

Info

Publication number
JPH0368056B2
JPH0368056B2 JP62047687A JP4768787A JPH0368056B2 JP H0368056 B2 JPH0368056 B2 JP H0368056B2 JP 62047687 A JP62047687 A JP 62047687A JP 4768787 A JP4768787 A JP 4768787A JP H0368056 B2 JPH0368056 B2 JP H0368056B2
Authority
JP
Japan
Prior art keywords
polyimide
soluble
heat resistance
component
solubility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62047687A
Other languages
Japanese (ja)
Other versions
JPS6346225A (en
Inventor
Takeo Teramoto
Kazuaki Harada
Hiroharu Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Nippon Steel Corp
Original Assignee
Shin Etsu Chemical Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Nippon Steel Corp filed Critical Shin Etsu Chemical Co Ltd
Priority to US07/038,858 priority Critical patent/US4845185A/en
Priority to EP87105709A priority patent/EP0242815B1/en
Priority to DE3787990T priority patent/DE3787990T2/en
Publication of JPS6346225A publication Critical patent/JPS6346225A/en
Publication of JPH0368056B2 publication Critical patent/JPH0368056B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は高耐熱性かつ有機溶媒に可溶でフイル
ム成形可能な可溶性ポリイミドに関するものであ
る。 従来の技術 ポリイミド系重合体は、耐熱性、耐薬品性等に
非常に優れた性質を有していることは既に知られ
ており、特に高温で使用される電線被覆、フイル
ム、接着剤等の用途に有用である。 従来、ポリイミドを製造する方法としては、テ
トラカルボン酸成分とジアミン成分とからポリア
ミド酸を製造し、ポリアミド酸をもとに成形して
から、次いでそのポリアミド酸を種々の方法でイ
ミド化して製造する方法(ポリイミドの2段階製
造方法)が知られている。 しかしながら、前記の中間体となつているポリ
アミド酸は、すぐれた耐熱性を有する反面、保存
時の安定性が悪く、室温でも、粘度上昇をおこし
ゲル化するため、低温で保管する必要があつた。
さらに長期間放置すると一部が脱水閉環してポリ
イミドとなり、不溶化して白濁を生じるなどの欠
点を有している。 これらの欠点を是正したイミド重合体の製造
法、加工法としては、高分子量の溶剤可溶性のポ
リイミドを合成することにより、達成することが
可能である。 この可溶性ポリイミドに関しては、例えば特公
昭47−37706号公報、特開昭56−36520号公報に、
テトラカルボン酸成分またはジアミン成分に脂肪
族系化合物を用いる例が開示されている。しかし
ながら、この場合にはいずれもポリイミドとして
最も重要な特長である耐熱性が低下する。 また、特開昭50−113597号公報に記載されたポ
リイミドの場合には、耐熱性は高く維持できるも
のの、このポリイミドが溶解性を示す剤はm−ク
レゾール、キシレノールなどのフエノール系溶剤
のみである。このような溶剤では、ポリイミドを
高濃度に溶解することは難しく、機械的物性の優
れたポリイミドフイルムをつくることは困難であ
る。 発明が解決しようとする問題点 本発明の目的は、まず有機溶媒に可溶なポリイ
ミド、それもフエノール系溶剤に限定されない可
溶性を示し、さらに、耐熱性を高く維持したポリ
イミドを提供することにある。 問題点を解決するための手段 この発明は、ポリイミドを可溶化することを意
図したものである。しかしながら、可溶性と耐熱
性は相反する性格をもち、一般的には可溶性が増
加すれば耐熱性が低下する。そのため、本発明で
はガラス移転温度および分解温度を高く維持した
まま、可溶性とすることを研究し、以下のような
可溶性ポリイミドを開発した。 すなわち、本発明は実質的に式―(X−Y―)で示
され、式中Xは(A)および(B)を表わし、前記(A)およ
び(B)のモル比が1:99から70:30の範囲内にあ
り、Yは(C)によつて表わされる鎖員を有するポリ
イミドであつて、かつ該ポリイミド0.5gをo−
クロルフエノール100mlに溶解した溶液を30℃で
測定した値に基づく固有粘度(ηinh)が0.25dl/
g以上であることを特徴とする可溶性ポリイミド
である。 作 用 前記の可溶性ポリイミドを構成する構造Xは、
(A)成分と(B)成分からなつており、構造Yは(C)成分
である。これらの成分から合成されるポリマーの
構造としては、ポリマー―(A−C―)および―(B−
C―)が考えられるが、ポリマー―(A−C―)は耐熱
性は良好なものの溶剤に対する溶解性がない。ま
たポリマー―(B−C―(の場合は溶剤に可溶性はあ
るが、耐熱性が低下する。 そのため本発明では、前述の構造を有するポリ
イミドに限定したものであり、耐熱性と溶解性の
両方を兼ね備えたものとしては、(A)成分と(B)成分
とから構成されたポリイミドであり、前記の(A)と
(B)のモル比が1:99より70:30、好ましくは1:
99より60:40の範囲内にあるものがよい。 (A)成分としてはピロメリツト酸2無水物を、(B)
成分としてはベンゾフエノンテトラカルボン酸2
無水物を使用して得られる。(C)成分としては、
9、9−ビス(4−アミノフエニル)フルオレン
もしくはその芳香族環部分にアルキル基などの置
換基を導入した誘導体などを用いて得られる。 また、本発明のポリイミドは、o−クロルフエ
ノール100ml中に、0.5gのポリイミドを溶解し、
30℃において測定した固有粘度(ηinh)が0.25
dl/g以上、好ましくは0.30dl/g以上、さらに
好ましくは0.35dl/g以上である。 固有粘度が0.25dl/g未満では、重合度が低
く、成形性、加工性が低下する。すなわちフイル
ム等への成形も困難であるし、引張強度等の物性
も十分である。 本発明の可溶性ポリイミドは、溶剤に対する溶
解性としては、ジメチルアセトアミド、N−メチ
ルピロリドン、m−クレゾール、o−クロルフエ
ノール、塩化メチレン中の少なくとも一つの溶剤
に溶解することができる。さらにポリイミド中の
(A)成分と(B)成分の比で(B)成分の割合が増加するに
つれ溶解性も増加する。 この可溶性ポリイミドを製造するためには、た
とえばm−クレゾールまたはo−クロルフエノー
ル等を溶剤として用い、9、9−ビス(4−アミ
ノフエニル)フルオレン溶液にピロメリツト酸2
無水物とベンゾフエノンテトラカルボン酸2無水
物の混合物を固体のまま徐々に加え、その後例え
ば20〜50℃で2〜4時間、120〜180℃で1〜3時
間、180〜220℃で1〜3時間ほど加熱して得るこ
とができる。 この際に反の最終段階では生成する水は、共沸
などを利用して系外に出すことが必要である。 以上のような方法により、耐熱性が高く、可溶
性のあるポリイミドを得ることができる。 以下に本発明の実施例および比較例を示し、さ
らに詳しく説明する。 実施例 実施例 1 ピロメリツト酸2無水物0.65g、ベンゾフエノ
ンテトラカルボン酸2無水物0.95gすなわちA、
B成分のモル比で5:5とし、これらと9、9−
ビス(4−アミノフエニル)フルオレン2.09gを
m−クレゾール40ml中に懸濁させ、N2ガスを通
じながら、40℃で2時間撹拌後、均一溶液になつ
たのを確かめ150℃で2時間撹拌した。 さらに溶液を190℃に昇温し、反応装置に蒸留
装置を取りつけ、留出した液体分だけm−クレゾ
ールを反応系に加えつつ、2時間撹拌後室温にま
で冷却した。得られた溶液は均一であり、これを
ガラス板上に流延してフイルム化した。 フイルム状のポリイミドは、ガラス転移温度を
示さず、軟化温度は555℃で、耐熱性はすぐれた
ものであつた。このポリイミドは、ジメチルアセ
トアミド、N−メチルピロリドン、m−クレゾー
ル、塩化メチレンに各々溶解した。 また、固有粘度(ηinh)は、得られたポリイミ
ド0.5gをo−クロルフエノール100mlに溶解した
溶液を用い、30℃の恒温水槽中で測定した結果、
0.53dl/gであつた。得られたポリイミドの赤外
線吸収スペクトルでは、1720、1780cm-1にイミド
環による吸収が明確に示されていた。 実施例 2〜6 ピロメリツト酸2無水物(A)とベンゾフエノンテ
トラカルボン酸2無水物(B)の使用量を以下のよう
に変え、実施例1と同様にポリイミドの製造を行
なつた。尚実施例1の結果も含めて第1表に示し
た。分解開始温度は、熱天秤(TG)で測定して
重量減少が始まる温度である。 実施例3のポリイミドの引張強度は10.0Kgf/
mm2引張弾性率410Kgf/mm2、体積抵抗率2.6×1015
Ωcm、全光線透過量86.5%であつた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a soluble polyimide that has high heat resistance, is soluble in organic solvents, and can be formed into a film. Prior Art It is already known that polyimide polymers have excellent properties such as heat resistance and chemical resistance, and are particularly useful for wire coatings, films, adhesives, etc. used at high temperatures. Useful for applications. Conventionally, methods for producing polyimide include producing polyamic acid from a tetracarboxylic acid component and a diamine component, molding the polyamic acid, and then imidizing the polyamic acid using various methods. A method (two-step manufacturing method for polyimide) is known. However, although polyamic acid, which is the intermediate described above, has excellent heat resistance, it has poor stability during storage and needs to be stored at low temperatures because it increases viscosity and gels even at room temperature. .
Furthermore, if left for a long period of time, a portion of the polyimide undergoes dehydration and ring closure, resulting in insolubilization and cloudiness, which is a drawback. A method for producing and processing an imide polymer that corrects these drawbacks can be achieved by synthesizing a high molecular weight, solvent-soluble polyimide. Regarding this soluble polyimide, for example, Japanese Patent Publication No. 47-37706 and Japanese Patent Application Laid-open No. 56-36520,
Examples are disclosed in which an aliphatic compound is used as the tetracarboxylic acid component or the diamine component. However, in both cases, heat resistance, which is the most important feature of polyimide, decreases. In addition, in the case of the polyimide described in JP-A-50-113597, although high heat resistance can be maintained, the only agents in which this polyimide is soluble are phenolic solvents such as m-cresol and xylenol. . With such solvents, it is difficult to dissolve polyimide at a high concentration, and it is difficult to produce a polyimide film with excellent mechanical properties. Problems to be Solved by the Invention An object of the present invention is to first provide a polyimide that is soluble in organic solvents, including solubility not limited to phenolic solvents, and that maintains high heat resistance. . Means for Solving the Problems This invention is intended to solubilize polyimide. However, solubility and heat resistance have contradictory characteristics, and generally, as solubility increases, heat resistance decreases. Therefore, in the present invention, research has been conducted to make the polyimide soluble while maintaining a high glass transition temperature and decomposition temperature, and the following soluble polyimide has been developed. That is, the present invention is substantially represented by the formula -(X-Y-), where X represents (A) and (B), and the molar ratio of (A) and (B) is from 1:99 to 70:30, Y is a polyimide having a chain member represented by (C), and 0.5 g of the polyimide is o-
The intrinsic viscosity (ηinh) based on the value measured at 30℃ of a solution dissolved in 100ml of chlorphenol is 0.25dl/
It is a soluble polyimide characterized by having a molecular weight of at least 100 g. Effect Structure X constituting the above-mentioned soluble polyimide is
It consists of component (A) and component (B), and structure Y is component (C). The structures of polymers synthesized from these components include polymers -(A-C-) and -(B-
C-) is considered, but although polymer (A-C-) has good heat resistance, it has no solubility in solvents. In addition, in the case of polymer (B-C-), although it is soluble in a solvent, its heat resistance decreases. Therefore, in the present invention, it is limited to polyimide having the above-mentioned structure, and it has both heat resistance and solubility. A polyimide that is composed of components (A) and (B) is a polyimide that combines the above (A) and (B).
The molar ratio of (B) is from 1:99 to 70:30, preferably 1:
It is better to have a ratio of 60:40 to 99. (A) Component is pyromellitic acid dianhydride, (B)
Ingredients: benzophenonetetracarboxylic acid 2
Obtained using anhydride. As component (C),
It can be obtained using 9,9-bis(4-aminophenyl)fluorene or a derivative thereof in which a substituent such as an alkyl group is introduced into the aromatic ring portion thereof. In addition, the polyimide of the present invention can be prepared by dissolving 0.5 g of polyimide in 100 ml of o-chlorophenol.
Intrinsic viscosity (ηinh) measured at 30℃ is 0.25
dl/g or more, preferably 0.30 dl/g or more, more preferably 0.35 dl/g or more. If the intrinsic viscosity is less than 0.25 dl/g, the degree of polymerization will be low, resulting in poor moldability and processability. That is, it is difficult to form into a film or the like, and its physical properties such as tensile strength are sufficient. The soluble polyimide of the present invention can be dissolved in at least one of dimethylacetamide, N-methylpyrrolidone, m-cresol, o-chlorophenol, and methylene chloride. Furthermore, in polyimide
In the ratio of component (A) to component (B), as the proportion of component (B) increases, solubility also increases. In order to produce this soluble polyimide, for example, m-cresol or o-chlorophenol is used as a solvent, and pyromellitic acid 2 is added to a 9,9-bis(4-aminophenyl)fluorene solution.
A mixture of anhydride and benzophenonetetracarboxylic dianhydride is gradually added as a solid, and then for example at 20-50°C for 2-4 hours, at 120-180°C for 1-3 hours, and at 180-220°C for 1 hour. It can be obtained by heating for about 3 hours. At this time, the water produced in the final stage of reaction must be removed from the system using azeotropy or the like. By the method described above, a polyimide with high heat resistance and solubility can be obtained. Examples and comparative examples of the present invention will be shown below and explained in more detail. Examples Example 1 0.65 g of pyromellitic acid dianhydride, 0.95 g of benzophenonetetracarboxylic acid dianhydride, namely A,
The molar ratio of component B is 5:5, and these and 9,9-
2.09 g of bis(4-aminophenyl)fluorene was suspended in 40 ml of m-cresol, stirred at 40°C for 2 hours while passing N 2 gas, and after confirming that it had become a homogeneous solution, the mixture was stirred at 150°C for 2 hours. The solution was further heated to 190° C., a distillation device was attached to the reaction apparatus, and m-cresol was added to the reaction system in an amount equal to the amount of distilled liquid, while stirring for 2 hours and cooling to room temperature. The obtained solution was homogeneous and was cast onto a glass plate to form a film. The film-like polyimide did not exhibit a glass transition temperature, had a softening temperature of 555°C, and had excellent heat resistance. This polyimide was dissolved in dimethylacetamide, N-methylpyrrolidone, m-cresol, and methylene chloride, respectively. In addition, the intrinsic viscosity (ηinh) was measured using a solution of 0.5 g of the obtained polyimide dissolved in 100 ml of o-chlorophenol in a constant temperature water bath at 30°C.
It was 0.53 dl/g. The infrared absorption spectrum of the obtained polyimide clearly showed absorption by imide rings at 1720 and 1780 cm -1 . Examples 2 to 6 Polyimides were produced in the same manner as in Example 1, except that the amounts of pyromellitic dianhydride (A) and benzophenonetetracarboxylic dianhydride (B) were changed as follows. The results of Example 1 are also shown in Table 1. The decomposition onset temperature is the temperature at which weight loss begins as measured on a thermobalance (TG). The tensile strength of the polyimide of Example 3 is 10.0Kgf/
mm 2 tensile modulus 410Kgf/mm 2 , volume resistivity 2.6×10 15
Ωcm, total light transmission amount was 86.5%.

【表】 比較例 1、2 実施例1と同様の条件で、原料のA、B成分を
A成分だけとするピロメリツト酸2無水物1.30g
のみ(比較例1)、B成分だけとするベンゾフエ
ノンテトラカルボン酸2無水物1.93gのみ(比較
例2)として、各々合成を行なつた。 比較例1の生成物は有機溶媒に対する溶解性を
示さなかつた。又比較例2のベンゾフエノンテト
ラカルボン酸2無水物を用いた場合は、ジメチル
アセトアミド、塩化メチレン、N−メチルピロリ
ドン、m−クレゾールに溶解性を示し、固有粘度
(ηinh)0.41dl/g、ガラス転移温度360℃であつ
た。 比較例 3 従来の2段階法でベンゾフエノンテトラカルボ
ン酸型のポリイミドの合成を行なつた。 ジメチルアセトアミド40ml中に9,9−ビス
(4−アミノフエニル)フルオレン2.09gを溶解
した溶液に、ベンゾフエノンテトラカルボン酸2
無水物1.93gを徐々に加えた。その後室温で20時
間撹拌した後、得られたポリアミド酸をガラス板
上に流延し、焼成すなわち加熱して反応を促進す
る従来の方法によりポリイミド膜を作製した。 得られたポリイミドのガラス転移温度は340℃
であつた。 発明の効果 現在実用化されているところのポリイミドに
は、可溶性のものがほとんど存在しない。ポリイ
ミドは物性面で優れていながら使用範囲が限定さ
れているのは、溶解性のように加工面に関してか
なり不利な点をもつていることによると考えられ
る。 それ故これまではポリイミドの前駆体であるポ
リアミド酸が用いられ、焼成することによりポリ
イミドとしているが、本発明のポリイミドは従来
のポリイミドが有していたような溶剤に対する溶
解性を改良し、かつ耐熱性も良好であることから
電気、電子分解等に更に巾広く使用されるもので
ある。 さらに本発明のポリイミドは、既存のポリイミ
ドの問題点を克服した新規なものであり、耐熱塗
料、コーテイング、中空糸など各種用途に広く適
用される可能性があり、産業上有益なものであ
る。
[Table] Comparative Examples 1, 2 1.30 g of pyromellitic acid dianhydride using the same conditions as Example 1, with only the A component instead of the A and B components of the raw material.
(Comparative Example 1) and using only 1.93 g of benzophenonetetracarboxylic dianhydride as the B component (Comparative Example 2). The product of Comparative Example 1 showed no solubility in organic solvents. In addition, when benzophenonetetracarboxylic dianhydride of Comparative Example 2 was used, it showed solubility in dimethylacetamide, methylene chloride, N-methylpyrrolidone, and m-cresol, and had an intrinsic viscosity (ηinh) of 0.41 dl/g. The glass transition temperature was 360°C. Comparative Example 3 A benzophenonetetracarboxylic acid type polyimide was synthesized using a conventional two-step method. To a solution of 2.09 g of 9,9-bis(4-aminophenyl)fluorene dissolved in 40 ml of dimethylacetamide, benzophenonetetracarboxylic acid 2
1.93 g of anhydride was added slowly. Thereafter, after stirring at room temperature for 20 hours, the obtained polyamic acid was cast onto a glass plate and a polyimide film was produced by a conventional method of accelerating the reaction by firing, that is, heating. The glass transition temperature of the obtained polyimide is 340℃
It was hot. Effects of the Invention There are almost no soluble polyimides currently in practical use. Although polyimide has excellent physical properties, its range of use is limited, probably because it has considerable disadvantages in terms of processing, such as solubility. Therefore, polyamic acid, which is a precursor of polyimide, has been used so far and polyimide is produced by firing, but the polyimide of the present invention has improved solubility in solvents, which conventional polyimide had, and Since it has good heat resistance, it is widely used in electrical and electrolytic decomposition, etc. Furthermore, the polyimide of the present invention is a novel product that overcomes the problems of existing polyimides, and can be widely applied to various uses such as heat-resistant paints, coatings, and hollow fibers, and is industrially useful.

Claims (1)

【特許請求の範囲】 1 実質的に式―(X−Y―)で示され、式中Xは(A)
および(B)から成り、(A)と(B)のモル比が1:99より
70:30の範囲内にあり、Yは(C)によつて表わされ
る鎖員を有するポリイミドであつて、かつ該ポリ
イミド0.5gをo−クロルフエノール100mlに溶解
した溶液を30℃で測定した値に基づく固有粘度
(ηinh)が0.25dl/g以上であることを特徴とす
る可溶性ポリイミド。 2 構造式(A)と(B)のモル比が1:99より60:40の
範囲内にある特許請求の範囲第1項記載の可溶性
ポリイミド。 3 ジメチルアセトアミド、N−メチルピロリド
ン、m−クレゾール、o−クロルフエノール、及
び塩化メチレン中の1以上の溶剤に溶解する特許
請求の範囲第1項または第2項記載の可溶性ポリ
イミド。
[Claims] 1 Substantially represented by the formula -(X-Y-), where X is (A)
and (B), with a molar ratio of (A) and (B) of 1:99.
70:30, Y is a polyimide having a chain member represented by (C), and the value is measured at 30°C from a solution of 0.5 g of the polyimide dissolved in 100 ml of o-chlorophenol. A soluble polyimide having an intrinsic viscosity (ηinh) of 0.25 dl/g or more. 2. The soluble polyimide according to claim 1, wherein the molar ratio of structural formulas (A) and (B) is within the range of 1:99 to 60:40. 3. A soluble polyimide according to claim 1 or 2, which dissolves in one or more solvents among dimethylacetamide, N-methylpyrrolidone, m-cresol, o-chlorophenol, and methylene chloride.
JP62047687A 1986-04-22 1987-03-04 Soluble polyimide Granted JPS6346225A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US07/038,858 US4845185A (en) 1986-04-22 1987-04-15 Soluble copolyimide from 9,9-bis (4-amino phenyl) fluorene
EP87105709A EP0242815B1 (en) 1986-04-22 1987-04-16 Soluble polyimides
DE3787990T DE3787990T2 (en) 1986-04-22 1987-04-16 Soluble polyimides.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9135586 1986-04-22
JP61-91355 1986-04-22

Publications (2)

Publication Number Publication Date
JPS6346225A JPS6346225A (en) 1988-02-27
JPH0368056B2 true JPH0368056B2 (en) 1991-10-25

Family

ID=14024080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62047687A Granted JPS6346225A (en) 1986-04-22 1987-03-04 Soluble polyimide

Country Status (1)

Country Link
JP (1) JPS6346225A (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ACTA POLXMERICA=1984 *

Also Published As

Publication number Publication date
JPS6346225A (en) 1988-02-27

Similar Documents

Publication Publication Date Title
US6013760A (en) Soluble polyimide resin for liquid crystal alignment layer and process of preparation of the same
US4845185A (en) Soluble copolyimide from 9,9-bis (4-amino phenyl) fluorene
JPH10195194A (en) Stable polyimide precursor and its production
JP2698774B2 (en) Poly (imide-amic acid ester) and method for producing the same, and polyimide, polyimide film, polyimide fiber and method for producing the same using the same
US3705869A (en) Soluble polyimides
JP3012903B2 (en) New soluble polyimide resin
US6054554A (en) Soluble polyimide resin comprising polyalicyclic structure
US6046303A (en) Soluble polyimide resin having alkoxy substituents and the preparation method thereof
JP2888920B2 (en) Polyimides and copolyimides based on dioxydiphthalic anhydride
JPS614730A (en) Production of organic solvent-soluble polyimide compound
JPH03177428A (en) Solvent resisting polyimidesiloxane
KR100228030B1 (en) Stable polyimide precursor and its preparation method
JPH05230211A (en) Polyimide resin
JPS59199720A (en) Preparation of soluble polyimide compound
EP0418889B1 (en) Polyamic acid having three-dimensional network molecular structure, polyimide obtained therefrom and process for the preparation thereof
JPH0368056B2 (en)
JPS6128526A (en) Production of organic solvent-soluble polyimide compound
JP3386502B2 (en) Method for producing polyimide and polyimide film
JPH0562893B2 (en)
JP3487128B2 (en) Polyimide resin
KR960007341B1 (en) Process for preparing polyimide resin
JPS62292836A (en) Preparation of soluble polyimide
KR960015452B1 (en) Polyimide resin and method for manufacturing the same
KR970006895B1 (en) Polyimide resin and their method
JPH025773B2 (en)