JPH0367988A - Heat-shielding device - Google Patents

Heat-shielding device

Info

Publication number
JPH0367988A
JPH0367988A JP1202497A JP20249789A JPH0367988A JP H0367988 A JPH0367988 A JP H0367988A JP 1202497 A JP1202497 A JP 1202497A JP 20249789 A JP20249789 A JP 20249789A JP H0367988 A JPH0367988 A JP H0367988A
Authority
JP
Japan
Prior art keywords
heat
heat shielding
shielding device
heater
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1202497A
Other languages
Japanese (ja)
Other versions
JP2777413B2 (en
Inventor
Hitoshi Hanawa
塙 仁志
Takashi Misawa
三沢 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANAWA NETSUDEN KINZOKU KK
Original Assignee
HANAWA NETSUDEN KINZOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANAWA NETSUDEN KINZOKU KK filed Critical HANAWA NETSUDEN KINZOKU KK
Priority to JP1202497A priority Critical patent/JP2777413B2/en
Publication of JPH0367988A publication Critical patent/JPH0367988A/en
Application granted granted Critical
Publication of JP2777413B2 publication Critical patent/JP2777413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the reflecting capability of heat wave at high temperature from being lowered amnd miniaturize and make light in weight the title device by forming a heat-shielding surface of the title device by a carboneous material containing carbon fibers. CONSTITUTION:A cylindrical heater 1 is disposed in a vacuum furnace 9, and a heat shielding device 3 covering the hater 1 therewith is mounted on the outside of the heater 1. The heater 1 and the heat shielding device 3 are formed with carvboneous material containing carbon fibers, e.g., carbon fiber/carbon composite material (c/c). The heater 1 is formed into substantially a rectangular shape with a slit formed in the cylindrical surface thereof, to the end of which an electrode 2 is connected, to which a heating current is supplied from the outside of the vacuum furnace 9. The heat shielding device 3 is of a triple tea pot structure formed with the c/c, each surface of the tea pot forming a radiation surface. The internal surface of the innermost layer cylindrical structure of the tea pot reflects heat wave radiated outwardly by the heater 1 and returns it to the heater 1. Heat rays not reflected are absorbed by the cylindrical structure 31 and hence shielded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は遮熱装置に関し、特に、熱線を反射して遮熱
効果を高める改良に係るものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a heat shielding device, and particularly relates to an improvement that improves the heat shielding effect by reflecting heat rays.

〈従来の技術〉 抵抗加熱装置、赤外線加熱装置、あるいは、誘導加熱装
置等の各種の加熱装置(以下、加熱装置〉では、各種の
遮熱装置が使用されている。
<Prior Art> Various heat shielding devices are used in various heating devices (hereinafter referred to as heating devices) such as resistance heating devices, infrared heating devices, or induction heating devices.

発熱エネルギーを加熱装置の内部に閉じ込め、外部への
漏出を防止し、熱効率を高めるためである。特に、数百
℃乃至数千℃の高温加熱装置では、熱線を遮熱する遮熱
装置が不可欠とされている。
This is to confine the heat generated energy inside the heating device, prevent it from leaking to the outside, and increase thermal efficiency. Particularly, in high-temperature heating devices ranging from several hundred degrees Celsius to several thousand degrees Celsius, a heat shielding device that shields heat rays is essential.

一般に、遮熱装置は、第1に、熱線な反射して加熱装置
の内部に戻す反射機能と、第2に、熱線を遮断して外部
に漏らさない熱線遮断機能と、第3に、輻射装置が加熱
した場合にも熱線を加熱装置の内部に向けて輻射する輻
射機能を備えることが望まれている。
In general, a heat shield device has the following functions: 1) a reflection function that reflects heat rays back into the heating device; 2) a heat ray blocking function that blocks heat rays and prevents them from leaking to the outside; and 3) a radiation device. It is desired to have a radiation function that radiates heat rays toward the inside of the heating device even when the heating device is heated.

このため、従来、遮熱装置は、反射機能に富んだモリブ
デンやタンタル等の高融点金属材料を用い、これらの金
属の薄板やメツシュを多重に重ねて構成されていた。
For this reason, conventional heat shielding devices have been constructed by using high-melting point metal materials such as molybdenum and tantalum, which have a rich reflective function, and by stacking thin plates or meshes of these metals in multiple layers.

以下、第5図を参照して従来の典型的な遮熱装置の構造
を説明する。第5図は、内熱型真空炉の構成を示す一部
切り欠いた斜視図である。
Hereinafter, the structure of a typical conventional heat shielding device will be explained with reference to FIG. FIG. 5 is a partially cutaway perspective view showing the configuration of the internal heating type vacuum furnace.

真空炉9の内部には、円筒状の発熱体91が設けられ、
その外側には、遮熱装置93が配置されている。遮熱装
置93は、板厚が0.2mm程度のモリブデン円筒を多
重に重ねた同心筒状体である。なお、被加熱試料92は
、発熱体91の中央に収容されている。
A cylindrical heating element 91 is provided inside the vacuum furnace 9,
A heat shielding device 93 is arranged on the outside thereof. The heat shielding device 93 is a concentric cylindrical body made of multiple stacked molybdenum cylinders each having a plate thickness of about 0.2 mm. Note that the sample to be heated 92 is housed in the center of the heating element 91 .

発熱体91から外側に輻射された熱線は、遮熱装置93
によって反射され、発熱体91に戻される。その結果、
発熱体91は、幅側損失が減るので少ない電力で高温に
加熱する。
The heat rays radiated outward from the heating element 91 are transferred to the heat shielding device 93.
is reflected and returned to the heating element 91. the result,
The heating element 91 can be heated to a high temperature with less electric power because the loss on the width side is reduced.

そして、遮熱装置の性能の善し悪しが、加熱装置の性能
、特に、加熱温度や熱効率、温度分布に直接的に影響を
与える。
The performance of the heat shield device directly affects the performance of the heating device, particularly the heating temperature, thermal efficiency, and temperature distribution.

〈発明が解決しようとする問題点〉 ところが、上記の従来技術によれば、熱膨張や収縮によ
り遮熱装置が変形し、遮熱機能が劣化する。また、一般
に、 1000℃以上の高温では高融点金属が変態し、
結晶化し、遮熱装置の反射機能が低下する。しかも、高
融点金属が高温で脆弱化し、遮熱装置が容易に破損する
<Problems to be Solved by the Invention> However, according to the above-mentioned conventional technology, the heat shielding device is deformed due to thermal expansion and contraction, and the heat shielding function is deteriorated. Additionally, in general, high melting point metals undergo transformation at high temperatures of 1000°C or higher.
It crystallizes and reduces the reflective function of the heat shield. Moreover, the high melting point metal becomes brittle at high temperatures, and the heat shield device is easily damaged.

これに刻して、遮熱装置をグラファイト、あるいは、カ
ーボンで製作することも可能だが、これらの炭素材料は
脆いので薄板化できない。
In addition to this, it is also possible to make the heat shielding device from graphite or carbon, but these carbon materials are brittle and cannot be made into thin sheets.

このため、遮熱装置が大型化し、重くなり、支持構造経
由ての伝熱損失が大きくなるという欠点があった。
For this reason, the heat shielding device becomes large and heavy, and the heat transfer loss through the support structure increases.

また、金属や炭素0PIに代えて、フェルト状の炭素繊
維や綿状のセラミック等の各種の断熱材(マット)を用
いることもできるが、熱線の反射機能が低く、遮熱装置
の性能が悪くなる。
Also, instead of metal or carbon 0PI, various heat insulating materials (mats) such as felt-like carbon fiber or cotton-like ceramic can be used, but they have poor heat ray reflection function and the performance of the heat shield device is poor. Become.

この発明は、上記従来技術が有していた未解決の課題を
解決し、高温に酬えて熱線を反射する小型軽量な遮熱装
置を提供することを目的としている。
The present invention aims to solve the unresolved problems of the above-mentioned prior art and to provide a small and lightweight heat shielding device that reflects heat rays in addition to high temperatures.

く課題を解決するための手段〉 上記目的を達成するために、この発明は、遮熱装置の遮
熱面を炭素繊維を含む炭素質材料によって形成するもの
である。なお、この遮熱装置は、炭素繊維を含む炭素質
材料からなる炭素質の遮熱面己こ、金属材料や無機材料
からなる表面層を備えるようにすることもてきる。
Means for Solving the Problems> In order to achieve the above object, the present invention forms a heat shielding surface of a heat shielding device from a carbonaceous material containing carbon fibers. Note that this heat shielding device may include a carbonaceous heat shielding surface made of a carbonaceous material containing carbon fibers, and a surface layer made of a metal material or an inorganic material.

〈作用〉 この発明の構成によれば、炭素繊維を含む炭素質材料は
、炭素繊維が遮熱面を機械的に補強し、熱変形せずに炭
素繊維、および/または、炭素質が形成する遮熱面の形
状を高温下でも所定に維持して熱線を安定に反射する作
用をする。
<Function> According to the structure of the present invention, the carbon fibers mechanically reinforce the heat shielding surface, and the carbon fibers and/or carbonaceous materials are formed without thermal deformation. It maintains the shape of the heat shield surface in a predetermined shape even at high temperatures, and has the effect of stably reflecting heat rays.

また、炭素繊維を含む炭素質材料は、炭素繊維の配向方
向により熱伝導の異方性をもち、炭素繊維軸方向に比べ
て、繊維軸に直交する方向には、熱伝導を少なくする作
用をなす。
In addition, carbonaceous materials containing carbon fibers have anisotropy in heat conduction depending on the orientation direction of the carbon fibers, and have the effect of reducing heat conduction in the direction perpendicular to the fiber axis compared to the direction of the carbon fiber axis. Eggplant.

しかも、炭素繊維を含む炭素質材料はアンカー効果によ
り、表面層を形成し易くする。
Moreover, the anchor effect of carbonaceous materials containing carbon fibers makes it easier to form a surface layer.

〈実施例〉 以下、この発明のいくつかの実施例について、第1図乃
至第4図を参照して説明する。
<Embodiments> Several embodiments of the present invention will be described below with reference to FIGS. 1 to 4.

第1図は、真空炉9を側面からみた断面図であり、この
発明の第1の実施例の遮熱装置の構成を示している。真
空炉9の内部には、直径が約50mm、高さが約100
mmの円筒状の発熱体1が設けられ、発熱体1の外側に
は、発熱体1を覆う遮熱装置3が取り付けられている。
FIG. 1 is a sectional view of the vacuum furnace 9 viewed from the side, showing the structure of a heat shielding device according to a first embodiment of the present invention. Inside the vacuum furnace 9, there is a chamber with a diameter of about 50 mm and a height of about 100 mm.
A cylindrical heating element 1 having a diameter of 1 mm is provided, and a heat shielding device 3 that covers the heating element 1 is attached to the outside of the heating element 1.

なお、この実施例では、発熱体1と遮熱装置3は、炭素
繊維を含む炭素質材料の一例である炭素繊維/炭素複合
材料(以下、C/C)によって形成され、C/Cの炭素
繊維軸は、各面に平行に配向され、面内方向の熱膨張を
抑えるようにし、かつ、遮熱面に垂直な方向の熱伝導を
少なくしている。
In this embodiment, the heating element 1 and the heat shielding device 3 are made of carbon fiber/carbon composite material (hereinafter referred to as C/C), which is an example of a carbonaceous material containing carbon fiber, and the carbon of C/C is The fiber axes are oriented parallel to each surface to suppress thermal expansion in the in-plane direction and to reduce heat conduction in the direction perpendicular to the heat shielding surface.

発熱体1は、板厚約1mmの円筒面にスリットが切り込
まれて実質的に矩型波状に形成されており、その端部に
は電極2が接続されて真空炉9の外部から加熱電流が供
給される。
The heating element 1 is formed into a substantially rectangular wave shape by cutting slits into a cylindrical surface with a plate thickness of about 1 mm, and an electrode 2 is connected to the end of the heating element 1 to receive a heating current from outside the vacuum furnace 9. is supplied.

遮熱装置3は、板厚が約0.3mmのC/Cによって形
成された3重の茶筒形状であり、茶筒の各面は輻射面を
形成している。遮熱装置3の底面の2箇所には、発熱体
1を電極2に接続するための孔21が開設されている。
The heat shielding device 3 has a triple tea caddy shape formed of C/C with a plate thickness of about 0.3 mm, and each surface of the tea caddy forms a radiating surface. Holes 21 for connecting the heating element 1 to the electrode 2 are provided at two locations on the bottom surface of the heat shielding device 3 .

そして、最内層の円筒31aは、その外径より若干大き
な直径を有する底板31b上に載せられ、円筒31aの
上には、底板31bと同径の天板31Cが載せられてい
る。こうして構成された遮熱装置3の最内層の外側は、
最内層より若干大きめな、最内層と同様な構成の第2F
’(32a、32 b、  32 c )で覆われ、同
様にして第2JR+は、第3JR’(33a、33 b
、  33 C)で覆われている。そして、これらの各
円筒(31a。
The innermost cylinder 31a is placed on a bottom plate 31b having a diameter slightly larger than its outer diameter, and a top plate 31C having the same diameter as the bottom plate 31b is placed on top of the cylinder 31a. The outside of the innermost layer of the heat shielding device 3 configured in this way is
The second floor is slightly larger than the innermost layer and has the same structure as the innermost layer.
' (32a, 32 b, 32 c), and similarly, the 2nd JR+ is covered with the 3rd JR' (33a, 33 b
, 33 C). And each of these cylinders (31a.

32a、33a)の間隔、各底板(31b、32b、3
3b)の間隔、各天板(31c、32C133c)の間
隔は、何れも1mmの空隙を有し、しかも、各円筒(3
1a、32a、33a)の稜は、各底板(31b、32
b、33b)と各天板(31c、32c、33c)によ
って蓋されており、熱線が遮熱装置3から外部に洩れな
い構造になっている。
32a, 33a), each bottom plate (31b, 32b, 3
3b) and the intervals between each top plate (31c, 32C133c), each has a gap of 1 mm, and each cylinder (3
1a, 32a, 33a) are connected to each bottom plate (31b, 32
b, 33b) and each top plate (31c, 32c, 33c), and has a structure that prevents heat rays from leaking from the heat shielding device 3 to the outside.

この実施例の構成によれば、真空炉9の内部が真空に排
気され、発熱体1には、加熱電力が注入される。遮熱装
置3の遮熱面、特に最内層の円筒31aの内面は、発熱
体1が外側に輻射する熱線を反射し、発熱体1に戻す。
According to the configuration of this embodiment, the inside of the vacuum furnace 9 is evacuated, and heating power is injected into the heating element 1. The heat shielding surface of the heat shielding device 3, particularly the inner surface of the innermost cylinder 31a, reflects the heat rays radiated outward from the heat generating element 1 and returns them to the heat generating element 1.

反射されない熱線は円筒31aによって吸収され、遮断
される。円筒31aは熱線を吸収して加熱し、円筒31
aは、その温度に応じた熱線を円筒3】aの内側に戻す
。なお、遮熱装置3の各遮熱面は、最内層の円筒3]a
と同様に熱線を反射して熱線の外部への洩れを遮断する
The heat rays that are not reflected are absorbed and blocked by the cylinder 31a. The cylinder 31a absorbs heat rays and heats the cylinder 31a.
A returns a hot ray according to its temperature to the inside of the cylinder 3]a. Note that each heat shielding surface of the heat shielding device 3 has an innermost cylinder 3]a
Similarly, it reflects the heat rays and blocks the leakage of the heat rays to the outside.

この実施例の構成によれば、発熱体や遮熱装置に使用す
るC70は、軽量かつ比熱が小ざいので、加熱装置の急
速な昇温や冷却が可能になるという効果がある。また、
発熱体1と遮熱装置3が、何れも炭素質で形成されてい
るので、加熱装置は2000℃以上の高温にも加熱でき
る。そして、 1.5KWの電力を発熱体1に注入する
ことで、発熱体1は1800℃に昇温した。この時、遮
熱装置3の最内層の円筒31aは約1000℃であり、
最外層の円筒33aは500 ’Cであった。
According to the configuration of this embodiment, the C70 used for the heating element and the heat shielding device is lightweight and has a small specific heat, so it has the effect of making it possible to rapidly raise and cool the temperature of the heating device. Also,
Since the heating element 1 and the heat shielding device 3 are both made of carbonaceous material, the heating device can heat the heating device to a high temperature of 2000° C. or more. Then, by injecting 1.5 KW of power into the heating element 1, the temperature of the heating element 1 was raised to 1800°C. At this time, the temperature of the innermost cylinder 31a of the heat shielding device 3 is about 1000°C,
The temperature of the outermost cylinder 33a was 500'C.

次に、第2図を参照して、この発明の第2の実施例につ
いて説明する。第2図は、真空炉9を側面から見た断面
図である。この第2の実施例の構成が第1の実施例の構
成と異なる点は、C70からなる遮熱装置3が、第2の
遮熱装置4によって覆われており、この第2の遮熱装置
4は、板厚約0.2mmのステンレス薄板によって3重
の円筒状に形成されている点である。なお、第2の遮熱
装置4の上(天)面と下(底)面は、何れも3重の天板
4cと底板4bによって覆われている。そして、底板4
bには、発熱体Jを電極2に接続するための孔22が開
設されている。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a sectional view of the vacuum furnace 9 viewed from the side. The configuration of this second embodiment differs from the configuration of the first embodiment in that the heat shield device 3 made of C70 is covered by a second heat shield device 4, and this second heat shield device 4 is that it is formed into a triple cylindrical shape using thin stainless steel plates with a thickness of approximately 0.2 mm. Note that the upper (top) and lower (bottom) surfaces of the second heat shielding device 4 are both covered by a triple top plate 4c and a bottom plate 4b. And the bottom plate 4
A hole 22 for connecting the heating element J to the electrode 2 is provided in b.

この第2の実施例の構成によれば、第2の遮熱装置4は
、最内層の温度が300℃程度であり、ステンレスが熱
変形したり劣化することが無い。また、発熱体1は遮熱
装置3と第2の遮熱装置4によって覆われているので、
発熱体1を1800℃に加熱したときも、第2の遮熱装
置4の外側の温度が70℃程度、真空炉9の側壁の温度
が50℃程度であり、作業者が火傷することが無い。さ
らに、発熱体1と遮熱装置3は、炭素質の固有な還元作
用により、ステンレスの表面を還元し、金属固有の光沢
を維持させる効果がある。
According to the configuration of this second embodiment, the temperature of the innermost layer of the second heat shielding device 4 is about 300° C., and the stainless steel does not undergo thermal deformation or deterioration. Furthermore, since the heating element 1 is covered by the heat shielding device 3 and the second heat shielding device 4,
Even when the heating element 1 is heated to 1800°C, the temperature outside the second heat shielding device 4 is about 70°C and the temperature of the side wall of the vacuum furnace 9 is about 50°C, so the worker will not get burned. . Further, the heating element 1 and the heat shielding device 3 have the effect of reducing the surface of the stainless steel due to the inherent reducing action of carbonaceous material and maintaining the luster inherent to the metal.

次に、第3図を参照して、この発明の第3の実施例につ
いて説明する。第3図は、平板状のC/C薄板を組合せ
て遮熱装置を構成する構造の一部を省略図示した説明図
である。C/ CN板35は、上下の両端部に爪状の突
出部35aを有している。そして、これらの突出部35
aは、第2の遮熱装置4を形成するステンレス製の最内
層円筒41に形成されたスリツ)41sに差し込まれ、
結果として、複数のC/C薄板35が第2の遮熱装置4
の内面に沿って係止され、円周状の遮熱装置3を形成し
ている。
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 3 is an explanatory diagram in which a part of the structure of the heat shielding device is constructed by combining flat C/C thin plates. The C/CN plate 35 has claw-like protrusions 35a at both upper and lower ends. And these protrusions 35
a is inserted into a slit 41s formed in the innermost cylinder 41 made of stainless steel forming the second heat shielding device 4,
As a result, the plurality of C/C thin plates 35 are connected to the second heat shield device 4.
is locked along the inner surface of the heat shielding device 3 to form a circumferential heat shielding device 3.

この第3の実施例の構成によれば、単純形状のC/C薄
板35の組合せによって所望の形状寸法の遮熱装置3を
形成てき、しかも、C/C薄板35と第2の遮熱装置4
は点(線)接触するので、熱伝導による熱損失を低減で
きる効果がある。また、第2の遮熱装置4が熱変形する
場合にも、スリットに差し込まれたC/C薄板35は柔
軟に幻応できるので破損しない。しかも、遮熱装置3の
C/C薄板35を容易に交換できる。
According to the configuration of the third embodiment, the heat shielding device 3 having a desired shape and size can be formed by combining the simple-shaped C/C thin plates 35, and the C/C thin plates 35 and the second heat shielding device 4
Since they are in point (line) contact, they have the effect of reducing heat loss due to heat conduction. Further, even if the second heat shielding device 4 is thermally deformed, the C/C thin plate 35 inserted into the slit can be flexibly deformed, so that it will not be damaged. Furthermore, the C/C thin plate 35 of the heat shield device 3 can be easily replaced.

次に、第4図を参照してこの発明の第4の実施例の構成
について説明する。第4図(A)および(B)は、この
発明に使用する炭素繊維を含む炭素質材料の他の構成を
示した断面図である。
Next, the configuration of a fourth embodiment of the present invention will be described with reference to FIG. FIGS. 4(A) and 4(B) are cross-sectional views showing other configurations of the carbonaceous material containing carbon fibers used in the present invention.

同図(A)は、炭素質の粘結剤51に炭素繊維5を埋め
込み、熱処理して形成した遮熱装置を示している。粘結
剤51としては、フルフリルアルコールとカーボン粉末
のペースト状混合体を用いた。炭素繊維5は、繊維径が
約7ミクロンのPAN系のものを使用した。なお、熱処
理は、150℃で16時間硬化させに後、真空中で50
0℃迄加熱した。また、硬化した材料の表面は、磨いて
遮熱面52とした。
FIG. 5A shows a heat shielding device formed by embedding carbon fibers 5 in a carbonaceous binder 51 and heat-treating them. As the binder 51, a paste-like mixture of furfuryl alcohol and carbon powder was used. The carbon fiber 5 used was a PAN type carbon fiber having a fiber diameter of about 7 microns. The heat treatment was performed at 150°C for 16 hours and then in a vacuum for 50°C.
It was heated to 0°C. Further, the surface of the hardened material was polished to form a heat shielding surface 52.

この実施例の構成によれば、複雑な曲面を有する遮熱装
置の遮熱面52を簡便に形成でき、しかも、縁端から延
びた炭素i&維5を介して、遮熱装置を図示されぬ支持
部材等に固定できる。
According to the configuration of this embodiment, the heat shielding surface 52 of the heat shielding device having a complicated curved surface can be easily formed, and the heat shielding device can be easily formed through the carbon fibers 5 extending from the edges. It can be fixed to a support member, etc.

同図(B)は、C/C平板60片面に金属層61を形成
した遮熱装置を示している。金属としては、ステンレス
(SUS316)を用い/こ。
FIG. 2B shows a heat shielding device in which a metal layer 61 is formed on one side of a C/C flat plate 60. As the metal, stainless steel (SUS316) is used.

先ず、C/C平板6上に板厚0.3mmのステンレス板
を載せ、真空中で1200℃に昇温した後、冷却した。
First, a stainless steel plate with a thickness of 0.3 mm was placed on the C/C flat plate 6, heated to 1200° C. in vacuum, and then cooled.

その結果、C/C板6の片面に密着したステンレスF’
61を形成でき、ステンレス層61の表面を研磨して光
沢ある遮熱面62を得た。
As a result, the stainless steel F' that is in close contact with one side of the C/C plate 6
61 was formed, and the surface of the stainless steel layer 61 was polished to obtain a glossy heat shielding surface 62.

この実施例の構成によれば、C/C板6の表面は、ミク
ロな凹凸の、いわゆるアンカー効果も生じ、ステンレス
板61と溶着し、強固な遮熱面62を形成する。その結
果、熱線を効率よく反射する遮熱装置を提供できる。
According to the configuration of this embodiment, the surface of the C/C plate 6 also has a so-called anchor effect of micro-irregularities, and is welded to the stainless steel plate 61 to form a strong heat shielding surface 62. As a result, it is possible to provide a heat shielding device that efficiently reflects heat rays.

以上、この発明のいくつかの実施例について説明したが
、この発明はこれに限られない。例えば、遮熱装置の形
状を多面体形状にすることや、C/C板上に形成する金
属層を酸化物層や−1+− 窒化物層、あるいは、パイロリティックグラファイト層
やアモルファスカーボン層、ダイヤモンド層等にするこ
ともでき、あるいは、これらを多層に積層することもで
きる。
Although several embodiments of the present invention have been described above, the present invention is not limited thereto. For example, the shape of the heat shield device may be polyhedral, or the metal layer formed on the C/C plate may be an oxide layer, a -1+- nitride layer, a pyrolytic graphite layer, an amorphous carbon layer, or a diamond layer. etc., or these can be laminated in multiple layers.

〈発明の効果〉 この発明によれば、炭素繊維を含む炭素質材料によって
遮熱装置の遮熱面が形成されるので、高温でも熱線の反
射機能が低下せず、機械的にも安定で、しかも、小型軽
量な遮熱装置を提供できる。
<Effects of the Invention> According to the present invention, the heat shielding surface of the heat shielding device is formed of a carbonaceous material containing carbon fibers, so the heat ray reflection function does not deteriorate even at high temperatures, and it is mechanically stable. Moreover, a small and lightweight heat shielding device can be provided.

2− 1・・・発熱体、3.4・・・遮熱装置、52.62・
・・遮熱面
2-1... Heating element, 3.4... Heat shielding device, 52.62.
・・Heat shielding surface

Claims (1)

【特許請求の範囲】[Claims] (1)炭素繊維を含む炭素質材料によつて遮熱面が形成
されていることを特徴とする遮熱装置。
(1) A heat shielding device characterized in that a heat shielding surface is formed of a carbonaceous material containing carbon fibers.
JP1202497A 1989-08-04 1989-08-04 Heat shield Expired - Fee Related JP2777413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1202497A JP2777413B2 (en) 1989-08-04 1989-08-04 Heat shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1202497A JP2777413B2 (en) 1989-08-04 1989-08-04 Heat shield

Publications (2)

Publication Number Publication Date
JPH0367988A true JPH0367988A (en) 1991-03-22
JP2777413B2 JP2777413B2 (en) 1998-07-16

Family

ID=16458469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1202497A Expired - Fee Related JP2777413B2 (en) 1989-08-04 1989-08-04 Heat shield

Country Status (1)

Country Link
JP (1) JP2777413B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035930B1 (en) * 1974-12-27 1975-11-20
JPS6458987A (en) * 1987-08-31 1989-03-06 Sumitomo Electric Industries Heat-insulating method of high temperature furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035930B1 (en) * 1974-12-27 1975-11-20
JPS6458987A (en) * 1987-08-31 1989-03-06 Sumitomo Electric Industries Heat-insulating method of high temperature furnace

Also Published As

Publication number Publication date
JP2777413B2 (en) 1998-07-16

Similar Documents

Publication Publication Date Title
US5017209A (en) High temperature furnace with thermal insulation
US4645911A (en) Heating device for radiation heating units heated by electric energy
US20100025394A1 (en) Apparatus for heating moldings, in particular dental ceramic molding
US9228782B2 (en) Microwave oven
US20130213955A1 (en) Apparatus For Heating Moldings
JPH0490499A (en) Heat accumulation device
WO2002049395A2 (en) Rapid thermal processing lamp and method for manufacturing the same
JPH0367988A (en) Heat-shielding device
JP2546414B2 (en) Vapor phase growth equipment
KR20110118537A (en) Thermal radiation heating type linear effusion cell
JP2620270B2 (en) Heating equipment
US4398474A (en) Insulating structure for high temperature devices
KR930004357Y1 (en) Insulation panel of furnace wall
Flik et al. Intrinsic thermal stability for scanning electron microscopy of thin‐film superconductors
GB2454475A (en) A Heat Shield for an MRI scanner
JP3418862B2 (en) Radiation shield plate
JP2722197B2 (en) Fusion reactor walls and fusion reactors
JP2929844B2 (en) Electric heater
US11828498B2 (en) Multi mode heat transfer systems
CN209854237U (en) Novel point type evaporation source
JP2803413B2 (en) Electric heater and method of manufacturing the same
RU2089789C1 (en) Boiling plate
JPS6038534A (en) Reflector for stove
JPS63189718A (en) Heater
JPS5926233Y2 (en) Heat retention structure around the outer periphery of the furnace body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees