JPH0367760B2 - - Google Patents

Info

Publication number
JPH0367760B2
JPH0367760B2 JP61258151A JP25815186A JPH0367760B2 JP H0367760 B2 JPH0367760 B2 JP H0367760B2 JP 61258151 A JP61258151 A JP 61258151A JP 25815186 A JP25815186 A JP 25815186A JP H0367760 B2 JPH0367760 B2 JP H0367760B2
Authority
JP
Japan
Prior art keywords
sludge
methane
digestion
acid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61258151A
Other languages
Japanese (ja)
Other versions
JPS63112000A (en
Inventor
Katsuyuki Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP61258151A priority Critical patent/JPS63112000A/en
Publication of JPS63112000A publication Critical patent/JPS63112000A/en
Publication of JPH0367760B2 publication Critical patent/JPH0367760B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、下水汚泥などの有機性汚泥を合理的
かつ高速に嫌気性消化し、かつ消化汚泥を極めて
省エネルギ的に乾燥することが可能な嫌気性消化
方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention makes it possible to anaerobically digest organic sludge such as sewage sludge in a rational and fast manner, and to dry the digested sludge in an extremely energy-saving manner. It concerns a method of anaerobic digestion.

〔従来の技術〕[Conventional technology]

嫌気性消化法は、下水汚泥容積の減少と汚泥の
安定化を目的として下水汚泥の処理に古くから採
用されてきた。
Anaerobic digestion has long been used to treat sewage sludge for the purpose of reducing sewage sludge volume and stabilizing sludge.

現在、我国の下水処理場で採用されている嫌気
消化方法は、建設省下水道施設基準に記載されて
いる中温2段消化法である。
The anaerobic digestion method currently used in Japan's sewage treatment plants is the mesophilic two-stage digestion method listed in the Ministry of Construction's standards for sewage facilities.

この中温消化法は多数の実績をもつておりそれ
なりに評価すべき技術であるが、次のような問題
点をかかえているのが現状である。
Although this mesophilic digestion method has many achievements and is a technology that should be evaluated in its own way, it currently faces the following problems.

反応速度が遅いため滞留日数が長い。 Due to the slow reaction rate, the residence time is long.

汚泥の脱水性がむしろ悪化する場合が多い。 In many cases, the dewaterability of the sludge actually worsens.

消化脱離液にSSと溶解性有機物、NH3−N、
PO4 3-が残留し、その濃度も高いため、水処理
施設、汚泥処理施設に悪影響を与える。
Digestion fluid contains SS, soluble organic matter, NH 3 −N,
Since PO 4 3- remains and its concentration is high, it has a negative impact on water treatment facilities and sludge treatment facilities.

消化汚泥が単に慣習的な方法で機械的に脱水
され、高水分の脱水ケーキが処分されている。
このため、処分すべき脱水ケーキが多量である
という最大の問題点が解決されていない。
The digested sludge is simply mechanically dewatered in a conventional manner and the high moisture dewatered cake is disposed of.
For this reason, the biggest problem, which is the large amount of dehydrated cake to be disposed of, remains unsolved.

即ち、従来の汚泥の嫌気性消化プロセスは、
消化汚泥の合理的処理がまつたく確立されてい
ない。
That is, the conventional sludge anaerobic digestion process is
Rational treatment of digested sludge has not yet been established.

消化槽表面積が大きいので放散熱量が多く、
寒冷期においては発生消化ガスだけでは、消化
槽加温熱量が不足し、補助的に重油などの燃料
を併用しなければならない。
Since the surface area of the digester is large, the amount of heat dissipated is large.
During the cold season, the amount of heat generated by the generated digestion gas alone is insufficient to heat the digester, and supplementary fuel such as heavy oil must be used in combination.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、このような従来法の問題点〜を
解決することを目的とする。
The present invention aims to solve these problems of the conventional method.

すなわち、1975年に米国のGoshが提案した二
相消化法(酸発酵とメタン発酵の二相に分離して
嫌気性消化する方法;J.W.P.C.F.Vol47、No.1、
1975)に新規な知見を導入することによつて極め
て高速に嫌気性消化すると共に、消化汚泥を低コ
ストで乾燥することが可能な新規なプロセスを確
立することを目的としている。
In other words, the two-phase digestion method proposed by Gosh of the United States in 1975 (method of separating into two phases of acid fermentation and methane fermentation and anaerobic digestion; JWPCF Vol. 47, No. 1,
The aim of this project is to establish a new process that enables extremely high-speed anaerobic digestion and low-cost drying of digested sludge by introducing new knowledge from 1975).

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、有機性汚泥を酸発酵させたのち固液
分離し、該分離液を固定化されたメタン生成菌に
よつてメタン発酵せしめ、該メタン発酵工程から
発生する消化ガスを燃料として、前記固液分離さ
れた酸発酵汚泥の脱水ケーキを乾燥処理するとと
もに、該乾燥排ガスを前記酸発酵工程からのスラ
リーと直接接触せしめる方法であつて、酸発酵工
程とメタン発酵とを明確に区分して嫌気性消化処
理する二相消化法(Two phase digestion)の
特性をたくにみに利用して消化汚泥の乾燥処理を
ほぼ無燃費で行うとともに、乾燥排ガスのエンタ
ルピーを合理的に回収することを可能にしたもの
である。
The present invention involves subjecting organic sludge to acid fermentation, followed by solid-liquid separation, methane fermentation of the separated liquid by immobilized methane-producing bacteria, and using the digestion gas generated from the methane fermentation process as fuel. A method of drying a dehydrated cake of acid fermentation sludge that has been separated into solid and liquid, and bringing the dried exhaust gas into direct contact with the slurry from the acid fermentation process, in which the acid fermentation process and the methane fermentation are clearly separated. By making full use of the characteristics of the two-phase digestion method that performs anaerobic digestion, it is possible to dry digested sludge with almost no fuel consumption, and to recover the enthalpy of dry exhaust gas in a rational manner. This is what I did.

以下第1図を参照しながら本発明の一実施例を
下水汚泥を例にとりあげて、詳しく説明する。
An embodiment of the present invention will be described in detail below with reference to FIG. 1, taking sewage sludge as an example.

下水汚泥1は必要に応じて濃縮されたのち、酸
発酵槽2に導入され、温度34〜37℃、PH5.0〜
5.8、滞留日数1〜3日の条件下に酸発酵菌
(acid forming bacteria)によつて汚泥中の有機
性SSの可溶化と酢酸、酪酸、プロピオン酸など
の有機酸の生成反応が行なわれる。
After the sewage sludge 1 is concentrated as necessary, it is introduced into the acid fermentation tank 2, where the temperature is 34-37℃ and the pH is 5.0-
5.8. Under conditions of residence time of 1 to 3 days, acid forming bacteria solubilize organic SS in sludge and produce organic acids such as acetic acid, butyric acid, and propionic acid.

酸発酵槽から流出する汚泥3はスクラバー18
を経由したあとカチオンポリマーなどの凝集剤1
4が添加されたのち、遠心脱水機、ベルトプレス
などの汚泥脱水機5に導かれ脱水ケーキ6と脱水
分離水7に分離される。
Sludge 3 flowing out from the acid fermenter is sent to a scrubber 18
After passing through the flocculant 1 such as cationic polymer
4 is added, the sludge is introduced into a sludge dehydrator 5 such as a centrifugal dehydrator or a belt press, and separated into a dehydrated cake 6 and dehydrated separated water 7.

脱水分離水7には酢酸などの有機酸が高濃度に
含まれており、SSがほとんど含まれないという
重要な特性を示す。
The dehydrated separated water 7 contains a high concentration of organic acids such as acetic acid, and exhibits an important property that it contains almost no SS.

この特性は極めて重要であり、本発明は下水汚
泥など高濃度のSSを含むスラリーには適用不適
な、固定化微生物によるメタン発酵法(UASB
法など)を適用可能にした。
This characteristic is extremely important, and the present invention has developed a methane fermentation method using immobilized microorganisms (UASB
laws, etc.) can be applied.

脱水分離水7は、ついで固定化されたメタン生
成菌を利用するメタン発酵槽8に導入され高速度
で各種有機酸がメタンと炭酸ガスに転換される。
The dehydrated separated water 7 is then introduced into a methane fermentation tank 8 that utilizes immobilized methane-producing bacteria, and various organic acids are converted into methane and carbon dioxide gas at a high rate.

固定化メタン生成菌によるメタン発酵槽8とし
ては微生物担体が不要で、極めて高い負荷をとる
ことが可能なUASB法(Upflow Anaerobic
Sludge Blanketの略称で、メタン生成菌を自己
固定化によるグラニユール形成現象を利用する)
が最適であるが、砂、セラミツク、活性炭などの
粒状担体を利用する嫌気性流動層法、嫌気性固定
床法を採用することも可能である。
The methane fermentation tank 8 using immobilized methane-producing bacteria requires no microbial carrier and uses the UASB method (Upflow Anaerobic Method), which can take an extremely high load.
Abbreviation for Sludge Blanket, which utilizes the granule formation phenomenon by self-immobilizing methanogens)
is optimal, but it is also possible to adopt an anaerobic fluidized bed method or an anaerobic fixed bed method that utilizes a granular carrier such as sand, ceramic, or activated carbon.

第1図においてはUASB法を利用する方法が
示されている。
In Figure 1, a method using the UASB method is shown.

UASBリアクター8内には、MLSS75000〜
90000mg/の非常に高濃度のメタン生成菌グラ
ニユール(粒径2〜3mm程度)ブランケツト9が
維持されている。
Inside UASB Reactor 8, MLSS75000 ~
A very high concentration of 90,000 mg/blanket 9 of methanogen granules (particle size of about 2 to 3 mm) is maintained.

SEMによる観察によれば、グラニユール内部
は高密度のMethanotrix属のメタン菌で構成さ
れ、その表面をメタン菌自身が分泌した粘質物が
覆つているのが認められる。
According to observation using SEM, the inside of the granule is composed of a high density of methane bacteria belonging to the genus Methanotrix, and the surface is observed to be covered with a mucilage secreted by the methane bacteria themselves.

本発明者の実験結果によれば、UASBリアク
ターはBOD除去率90%を満足させる条件におい
て35〜40Kg/CODcr/m3・日という著しい高負荷
が可能であり、固形物濃度3%の下水混合生汚泥
を本発明のフローによつて嫌気性消化する場合、
UASBリアクター(温度35℃の中温消化)の所
要滞留日数は1日で充分であることが確認され、
メタン発酵槽の著しいコンパクトが可能になつ
た。
According to the inventor's experimental results, the UASB reactor is capable of a significantly high load of 35 to 40 kg/COD cr /m 3 ·day under conditions that satisfy a BOD removal rate of 90%, and is capable of handling sewage with a solids concentration of 3%. When mixed raw sludge is anaerobically digested by the flow of the present invention,
It was confirmed that the required residence time in the UASB reactor (medium-temperature digestion at 35°C) is one day.
It has become possible to significantly downsize the methane fermentation tank.

酸発酵槽2とUASBリアクター8の合計滞留
日数は2〜4日であり、下水道施設基準記載のコ
ンベンシヨナルプロセスの滞留日数20〜30日と比
較して著しく短い。
The total residence time in the acid fermenter 2 and the UASB reactor 8 is 2 to 4 days, which is significantly shorter than the 20 to 30 days residence time in the conventional process described in the sewerage facility standards.

なお、10はガスコレクター、11は消化ガ
ス、12はUASB処理水である。
Note that 10 is a gas collector, 11 is a digestion gas, and 12 is UASB treated water.

しかして水分80%程度の汚泥脱水ケーキ6は、
汚泥乾燥機13に供給され、消化ガス11を燃料
とする熱風発生炉14から供給される熱風15に
よつて乾燥されて水分20%以下の乾燥ケーキ16
となる。
However, the sludge dewatered cake 6, which has a water content of about 80%,
A dried cake 16 with a moisture content of 20% or less is supplied to a sludge dryer 13 and dried by hot air 15 supplied from a hot air generating furnace 14 using digestion gas 11 as fuel.
becomes.

脱水ケーキ6の乾燥用熱量は、UASBリアク
ター8から発生する消化ガス11の熱量でほぼま
かなうことが可能であり、重油などの購入燃料は
ほとんど必要としない。
The amount of heat for drying the dehydrated cake 6 can be almost covered by the amount of heat of the digestion gas 11 generated from the UASB reactor 8, and almost no purchased fuel such as heavy oil is required.

汚泥乾燥機13の型式としては、撹拌流動層の
作用によつて、汚泥の造粒と乾燥を同時に遂行で
きる造粒乾燥機が好適である。
As the type of sludge dryer 13, a granulation dryer that can simultaneously perform granulation and drying of sludge by the action of an agitated fluidized bed is suitable.

なぜなら、撹拌流動層による造粒乾燥機は、熱
利用効率が高く、乾燥排ガスが湿球温度計で温度
70〜80℃、湿度100%を示すので、凝縮潜熱を回
収するために、極めて好ましい特性を示すからで
ある。
This is because the granulation dryer using an agitated fluidized bed has high heat utilization efficiency, and the dry exhaust gas has a temperature measured by a wet bulb thermometer.
This is because it exhibits a temperature of 70 to 80°C and a humidity of 100%, which is an extremely favorable characteristic for recovering latent heat of condensation.

しかして、乾燥排ガス17はスクラバー18に
流入し、酸発酵槽2内のスラリー3と直接気液接
触し、温度34〜37℃の酸発酵スラリーによつて温
度70〜80℃程度の乾燥排ガスが冷却除湿され、凝
縮潜熱が回収される。この工程は本発明の最重要
ポイントであり、従来プロセスでは実現不可能な
効果である。
The dry exhaust gas 17 flows into the scrubber 18 and comes into direct gas-liquid contact with the slurry 3 in the acid fermentation tank 2, and the acid fermentation slurry at a temperature of 34 to 37°C converts the dry exhaust gas at a temperature of about 70 to 80°C. It is cooled and dehumidified, and the latent heat of condensation is recovered. This step is the most important point of the present invention, and is an effect that cannot be achieved with conventional processes.

なぜならば、従来のプロセスでは、酸発酵とメ
タン発酵工程が同一の槽内にて行なわれ、この槽
から消化ガスが発生するので、汚泥乾燥排ガス
を、メタンが飽和溶解状態にある、消化槽内スラ
リーと直接接触させると、メタンを主成分とする
消化ガスに無価値な乾燥排ガスが混入してしまう
だけでなく、乾燥排ガスとともにメタンガスが系
外に散逸されてしまうという重大欠点があるため
である。
This is because in conventional processes, the acid fermentation and methane fermentation steps are carried out in the same tank, and digestion gas is generated from this tank. This is because direct contact with the slurry not only mixes the worthless dry exhaust gas into the digestion gas, which is mainly composed of methane, but also has the serious drawback that methane gas is dissipated out of the system along with the dry exhaust gas. .

これに対し、本発明は、意図的にメタンガスを
生成させずに、有機酸生成反応だけを進行させる
酸発酵槽2内のスラリー3と汚泥乾燥排ガス17
とを直接接触させるという新規な方法を採用する
ので、上記のような重大な欠点がなく、極めて合
理的かつ容易に乾燥排ガスの凝縮潜熱を回収し、
嫌気性消化工程の加温源に有効利用できる。
In contrast, in the present invention, the slurry 3 and sludge dry exhaust gas 17 in the acid fermentation tank 2 allow only the organic acid production reaction to proceed without intentionally producing methane gas.
Since we use a new method of bringing the dry exhaust gas into direct contact with the
It can be effectively used as a heating source in the anaerobic digestion process.

19は凝縮潜熱が回収された乾燥排ガスであ
り、脱臭装置(図示せず)に導かれて脱臭され
る。
Reference numeral 19 denotes dry exhaust gas from which latent heat of condensation has been recovered, and is led to a deodorizing device (not shown) to be deodorized.

この際、次のような本発明独特の効果を得るこ
とが出来る。即ち、酸発酵スラリーは、H2Sを主
体とする強い腐敗臭がするのであるが、スクラバ
ー18において、乾燥排ガス17と直接接触する
過程で、悪臭成分がストリツピングされる結果、
汚泥脱水ケーキ6の腐敗臭が軽減されるという大
きな効果が得られる。
At this time, the following effects unique to the present invention can be obtained. That is, the acid fermentation slurry has a strong putrid odor mainly composed of H 2 S, but as a result of the scrubber 18 stripping the malodorous components in the process of direct contact with the dry exhaust gas 17,
A great effect is obtained in that the putrid odor of the sludge dewatered cake 6 is reduced.

なお、乾燥排ガス17を酸発酵槽2内に直接吹
きこんでもよいが、乾燥排ガス17の圧力を高く
する必要があるので、第2図に示したスクラバー
方式のほうが好ましい。
Note that the dry exhaust gas 17 may be directly blown into the acid fermentation tank 2, but since it is necessary to increase the pressure of the dry exhaust gas 17, the scrubber method shown in FIG. 2 is preferable.

さらに酸発酵槽2の滞留時間は1〜3日であ
り、槽がコンパクトであるため槽壁からの放散熱
量が少くこの結果乾燥排ガス17の保有熱量が過
剰になるので、乾燥排ガスの一部17′を脱水分
離水7と直接接触させて凝縮潜熱を回収し、
UASBリアクターの加温源として利用するのが
好ましい。
Furthermore, the residence time of the acid fermentation tank 2 is 1 to 3 days, and since the tank is compact, the amount of heat dissipated from the tank wall is small, and as a result, the amount of heat retained in the dry exhaust gas 17 becomes excessive. ' is brought into direct contact with the dehydrated separated water 7 to recover the latent heat of condensation,
It is preferable to use it as a heating source for the UASB reactor.

〔発明の効果〕〔Effect of the invention〕

以上述べたような本発明によれば、次のような
重要な効果を得ることができ、従来の汚泥嫌気性
消化方法の問題点をことごとく解決できる。
According to the present invention as described above, the following important effects can be obtained, and all the problems of conventional sludge anaerobic digestion methods can be solved.

有機性汚泥を著しく高速に(所要滞留日数2
〜4日)嫌気性消化することが可能となる結果
設置面積、建設費をコンベンシヨナルプロセス
に比較して大幅に節減できる。
Organic sludge is processed at a significantly faster rate (required residence time: 2 days)
~4 days) As a result of being able to perform anaerobic digestion, the installation area and construction costs can be significantly reduced compared to conventional processes.

汚泥脱水ケーキを乾燥するのに、処理系内か
ら回収した消化ガスを燃料として使用するの
で、重油などの購入燃料をほぼ不要にできるの
で顕著な省エネルギー効果があり、乾燥ケーキ
を肥料などに活用しやすい。
Digestion gas recovered from the treatment system is used as fuel to dry the sludge dewatering cake, which eliminates the need for purchased fuel such as heavy oil, resulting in significant energy savings, and the dried cake can be used for fertilizers, etc. Cheap.

酸性発酵せしめたあとの汚泥の悪臭を軽減で
きるので汚泥脱水工程の作業環境が改善され
る。
The work environment of the sludge dewatering process is improved because the odor of sludge after acidic fermentation can be reduced.

汚泥脱水ケーキの乾燥排ガスを酸発酵槽内ス
ラリーと直接接触させて、乾燥排ガスの凝縮潜
熱を回収し、酸発酵槽を加温するという新規な
方法を採用したのでメタンガスの散逸を防ぐこ
とができる。また維持管理の面倒な間接加熱型
熱交換器も不要にできる。
A new method has been adopted in which the dry exhaust gas from the sludge dewatering cake is brought into direct contact with the slurry in the acid fermentation tank, and the latent heat of condensation of the dry exhaust gas is recovered and the acid fermentation tank is heated, thereby preventing methane gas from dissipating. . It also eliminates the need for indirect heating type heat exchangers, which are troublesome to maintain.

UASBなどの固定化メタン生成菌をもちい
るメタン発酵工程に確実に低SSの液を供給で
きるのでメタン発酵をトラブル無くで運転でき
る(SSがUASBリアクター内に多重に流入す
るとグラニユールの生成が困難になり、さらに
スカム発生トラブルを招く)。
Since low SS liquid can be reliably supplied to the methane fermentation process that uses immobilized methane-producing bacteria such as UASB, methane fermentation can be operated without trouble (if multiple SS flows into the UASB reactor, it will be difficult to produce granules) (which leads to further scum generation troubles).

メタン発酵槽からのSSのキヤリオーバーが
おきないので、SSの返流トラブルを未然に防
止できる。
SS carryover from the methane fermentation tank does not occur, so problems with SS return flow can be prevented.

酸発酵槽およびメタン発酵槽の槽容量がコン
パクトであるため、槽壁面積も小さく、放散熱
量が少い。この結果、汚泥脱水ケーキの乾燥排
ガスのエンタルピーのみで年間を通じて嫌気性
消化工程の加温熱量を充分まかなうことができ
る。
Since the tank capacity of the acid fermenter and methane fermenter is compact, the tank wall area is also small and the amount of heat dissipated is small. As a result, the enthalpy of the dry exhaust gas from the sludge dewatering cake alone can cover the heating heat of the anaerobic digestion process throughout the year.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を説明するための概略工程
図である。 1……下水汚泥、2……酸発酵槽、4……凝集
剤、5……汚泥脱水機、6……脱水ケーキ、8…
…UASBメタン発酵槽、9……メタン生成菌グ
ラニユールブランケツト、10……ガスコレクタ
ー、11……消化ガス、13……汚泥乾燥機、1
4……熱風発生炉、16……乾燥ケーキ、18…
…スクラバー。
FIG. 1 is a schematic process diagram for explaining the method of the present invention. 1...Sewage sludge, 2...Acid fermenter, 4...Flocculant, 5...Sludge dehydrator, 6...Dehydrated cake, 8...
...UASB methane fermenter, 9...Methanogen granule blanket, 10...Gas collector, 11...Digestion gas, 13...Sludge dryer, 1
4...Hot air generator, 16...Dried cake, 18...
...Scrubber.

Claims (1)

【特許請求の範囲】 1 下水汚泥などの有機性汚泥を酸発酵せしめた
のち固液分離し、該分離液を固定化されたメタン
生成菌によつてメタン発酵せしめ、該メタン発酵
工程から発生する消化ガスを燃料として前記固液
分離された酸発酵汚泥の脱水ケーキを乾燥処理す
るとともに、該乾燥排ガスを前記酸発酵工程から
のスラリーと直接接触せしめることを特徴とする
有機性汚泥の嫌気性消化方法。 2 前記固定化されたメタン生成菌によるメタン
発酵が、UASB(上向流嫌気性スラツジブランケ
ツト)法を用いるものである特許請求の範囲第1
項記載の方法。
[Scope of Claims] 1. Organic sludge such as sewage sludge is subjected to acid fermentation, then solid-liquid separation is carried out, and the separated liquid is subjected to methane fermentation by immobilized methanogen-producing bacteria, which is produced from the methane fermentation process. Anaerobic digestion of organic sludge, characterized by drying the solid-liquid separated dehydrated cake of acid fermented sludge using digestion gas as fuel, and bringing the dried exhaust gas into direct contact with the slurry from the acid fermentation process. Method. 2. Claim 1, wherein the methane fermentation by the immobilized methane-producing bacteria uses the UASB (upflow anaerobic sludge blanket) method.
The method described in section.
JP61258151A 1986-10-31 1986-10-31 Anaerobic digestion method for organic sludge Granted JPS63112000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61258151A JPS63112000A (en) 1986-10-31 1986-10-31 Anaerobic digestion method for organic sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61258151A JPS63112000A (en) 1986-10-31 1986-10-31 Anaerobic digestion method for organic sludge

Publications (2)

Publication Number Publication Date
JPS63112000A JPS63112000A (en) 1988-05-17
JPH0367760B2 true JPH0367760B2 (en) 1991-10-24

Family

ID=17316231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61258151A Granted JPS63112000A (en) 1986-10-31 1986-10-31 Anaerobic digestion method for organic sludge

Country Status (1)

Country Link
JP (1) JPS63112000A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483598A (en) * 1990-07-24 1992-03-17 Kubota Corp Recovery of methane gas from exhaust gas of sludge dryer
JP2002292394A (en) * 2001-03-30 2002-10-08 Sumitomo Heavy Ind Ltd Wastewater disposal equipment
JP4225866B2 (en) * 2003-09-01 2009-02-18 株式会社栗本鐵工所 Organic sludge treatment method
CN103787559A (en) * 2013-08-27 2014-05-14 上海新纯新能源科技有限公司 Sludge resourceful-treatment method

Also Published As

Publication number Publication date
JPS63112000A (en) 1988-05-17

Similar Documents

Publication Publication Date Title
US7153427B2 (en) Nitrogen recovery system and method using heated air as stripping gas
CN108569836B (en) Method and device for dehydrating and stabilizing chromium-containing sludge
CN109250884B (en) Biogas slurry efficient deamination process combining digested sludge with thermal hydrolysis
CN101987772A (en) Method for improving sludge dewatering performance through thermal conditioning of sludge
CN111153579A (en) Sludge heatless drying method and device system thereof
CN105417777A (en) Sewage coagulation and adsorption sedimentation separation-separator anaerobic bio-gas regeneration treatment method
CN110304786A (en) The processing water of debirs food waste water is without releasing processing equipment for recycling and its processing method
KR101123854B1 (en) Wet-dry serial parallel anaerobic digestion apparatus and method for treating organic waste
CN108249733A (en) A kind of low energy consumption municipal sludge heat treatment dehydration device and method
JP2000282071A (en) Method and apparatus for producing dried material from wet organic waste
CN113354242A (en) Sludge treatment system and treatment method
JPH0367760B2 (en)
JPS61120699A (en) Treatment of organic sludge
US11185816B2 (en) Process and plant for the thermal abatement of malodorous emission from a purification plant with energy recovery from said abatement
JPH0373360B2 (en)
CN204298210U (en) A kind of for municipal sludge advanced treatment system
CN110183083B (en) Leather sludge drying and reducing method and device
JPH0367759B2 (en)
CN209065710U (en) Quick processing system is combined in sludge pyrohydrolysis solar low-temperature film anaerobic digestion
JPS59160597A (en) Process for disposing night soil
JPS59123600A (en) Treatment of organic hydrous material
JPH0446199B2 (en)
JPS58122092A (en) Methane fermenting method for organic waste
CN210505989U (en) Sludge recycling system
JPS54123246A (en) Heat treatment of organic waste