JPH0367730B2 - - Google Patents
Info
- Publication number
- JPH0367730B2 JPH0367730B2 JP62078180A JP7818087A JPH0367730B2 JP H0367730 B2 JPH0367730 B2 JP H0367730B2 JP 62078180 A JP62078180 A JP 62078180A JP 7818087 A JP7818087 A JP 7818087A JP H0367730 B2 JPH0367730 B2 JP H0367730B2
- Authority
- JP
- Japan
- Prior art keywords
- laser
- separation method
- irradiation
- isotope separation
- fluence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 238000010494 dissociation reaction Methods 0.000 claims description 5
- 230000005593 dissociations Effects 0.000 claims description 5
- 239000008207 working material Substances 0.000 claims description 5
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 238000005369 laser isotope separation Methods 0.000 claims 5
- 239000000126 substance Substances 0.000 claims 3
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical group FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 claims 2
- BOUGCJDAQLKBQH-UHFFFAOYSA-N 1-chloro-1,2,2,2-tetrafluoroethane Chemical compound FC(Cl)C(F)(F)F BOUGCJDAQLKBQH-UHFFFAOYSA-N 0.000 claims 1
- 238000000926 separation method Methods 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000000155 isotopic effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005372 isotope separation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- JFALSRSLKYAFGM-OIOBTWANSA-N uranium-235 Chemical compound [235U] JFALSRSLKYAFGM-OIOBTWANSA-N 0.000 description 1
- FEPMHVLSLDOMQC-UHFFFAOYSA-N virginiamycin-S1 Natural products CC1OC(=O)C(C=2C=CC=CC=2)NC(=O)C2CC(=O)CCN2C(=O)C(CC=2C=CC=CC=2)N(C)C(=O)C2CCCN2C(=O)C(CC)NC(=O)C1NC(=O)C1=NC=CC=C1O FEPMHVLSLDOMQC-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Lasers (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はレーザーを照射することにより、同位
体を分離する方法、更に詳しくは、赤外多光子解
離による同位体分離方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for separating isotopes by laser irradiation, and more specifically to a method for isotope separation by infrared multiphoton dissociation.
強力なパルス発振の赤外レーザーを重金属化合
物に照射し、レーザー波長を特定の同位体化合物
の選択的波長に同調させることにより、特定の同
位体化合物を赤外多光子解離過程により分離し生
成物中に同位体を濃縮する原理はすでに知られて
いる。
By irradiating a heavy metal compound with a powerful pulsed infrared laser and tuning the laser wavelength to the selective wavelength of a specific isotope compound, the specific isotope compound is separated by an infrared multiphoton dissociation process and a product is produced. The principle of concentrating isotopes in
例えば、UF6ガスに水素ラマンレーザー光を照
射して、UF6を分離し、固体生成物(UF5)中に
ウラン−235を濃縮できる。 For example, UF 6 gas can be irradiated with hydrogen Raman laser light to separate UF 6 and enrich uranium-235 in a solid product (UF 5 ).
従来の照射方法を模式的に第2図に示す。ガス
線速度v(cm/s)、レーザーパルス繰返し速度h
(1/s)、流れ方向ビームの大きさL(cm)とす
る。h=v/Lを満足する条件で、作業物質ガス
3は反応部分において必ずレーザー1の1パルス
分だけ露光される。レーザーのフルエンスがΦで
ある時、作業物質中の同位体化合物A,Bの濃度
は照射前に各々CA0、
CB0(mol/cm3)であつたものが1パルスの照射後
はCA1、CB1となる。A,Bの1パルスあたりの反
応率(反応確立ともいう)をqA、qBを次式で定義
する。 A conventional irradiation method is schematically shown in FIG. Gas linear velocity v (cm/s), laser pulse repetition rate h
(1/s), and the size of the streamwise beam L (cm). Under the condition that h=v/L is satisfied, the working material gas 3 is always exposed by one pulse of the laser 1 in the reaction area. When the laser fluence is Φ, the concentrations of isotopic compounds A and B in the working material are C A0 and C B0 (mol/cm 3 ), respectively, before irradiation, but after one pulse of irradiation, they are C A1 , C B1 . The reaction rate (also referred to as reaction probability) per pulse of A and B is defined as q A and q B by the following equations.
qA=1−(CA1/CA0) (1)
qB=1−(CB1/CB0) (2)
レーザー法のヘツド分離係数SEは次式で定義さ
れる。 q A = 1 - (C A1 /C A0 ) (1) q B = 1 - (C B1 /C B0 ) (2) The head separation coefficient S E of the laser method is defined by the following equation.
SE=〔CA0−CAE/CA0〕・〔CB0/CB0−CAE〕 (3)
添字Eは照射部出口を示し、1パルス照射では
E=1、2パルス照射ではE=2を示すものとす
る。在来法のように1パルスの照射を用いるワン
スルー型であれば
SE=S1=qA/qB (4)
となる。SE>1であれば、同位体aは生成物中に
濃縮される。 S E = [C A0 −C AE /C A0 ]・[C B0 /C B0 −C AE ] (3) The subscript E indicates the exit of the irradiation part, and E = 1 for 1-pulse irradiation and E = 2 for 2-pulse irradiation. 2. If it is a one-through type that uses one pulse of irradiation like the conventional method, S E =S 1 =q A /q B (4). If S E >1, isotope a is enriched in the product.
ところで、1パルスあたりの反応率はフルエン
スΦに対しては第3図に示すような依存性を示
す。Φの低い領域(第3図の領域A)〔この領域
を『線形領域』と定義する〕では両対数プロツト
でqA(Φ)とqB(Φ)がほぼ平行となり、S1(≡
qA/qB)はフルエンスΦによらず一定値を示すこ
とが知られている。しかし、この線形領域内Aで
はqAは小さく、大部分のaは未反応側つまり廃棄
物側へ含まれるのでaの回収効率はわるい。つま
りカツトを向上出来ない。qA、qBはともに1を飽
和する方向へ向かうので、分離係数Sはフルエン
スΦの高い領域(第3図の領域B)〔この領域を
『非線形領域』と定義する〕では低下する。 By the way, the reaction rate per pulse shows dependence on the fluence Φ as shown in FIG. In the region where Φ is low (region A in Figure 3) [this region is defined as the "linear region"], q A (Φ) and q B (Φ) are almost parallel in the logarithmic plot, and S 1 (≡
It is known that q A /q B ) exhibits a constant value regardless of the fluence Φ. However, in this linear region A, q A is small and most of the a is contained in the unreacted side, that is, the waste side, so the recovery efficiency of a is poor. In other words, you can't improve your cut. Since both q A and q B tend to saturate to 1, the separation coefficient S decreases in a region where the fluence Φ is high (region B in FIG. 3) [this region is defined as a "nonlinear region"].
従つて、この非線形領域内Bではaの回収率は
増大させられるものの分離係数Sが低下する。 Therefore, in this nonlinear region B, although the recovery rate of a is increased, the separation coefficient S is decreased.
この問題点を解決する方向として、同位体化合
物ガスを循環して流す方法が知られているが、こ
の方法だと、循環流を生じるためのポンプ等の循
環系の劣化、損傷を生じ、循環を伴わないワンス
ルー方式により目的同位体の回収率および分離係
数を高めることが望まれている。 As a way to solve this problem, it is known to circulate isotope compound gas, but this method causes deterioration and damage to the circulation system such as the pump that generates the circulation flow. It is desired to increase the recovery rate and separation coefficient of the target isotope using a one-through method that does not involve
本発明は以上の状況を考慮して、レーザーのフ
ルエンスを第3図の線形領域Aのまま、第1図に
示すように異なる位置でレーザー1,2照射を行
うことにより、分離係数Sを低下させずにAの回
収率の向上を計るものである。
In consideration of the above situation, the present invention lowers the separation coefficient S by irradiating lasers 1 and 2 at different positions as shown in Figure 1 while keeping the laser fluence in the linear region A in Figure 3. This aims to improve the recovery rate of A without causing any problems.
照射前のA、Bの濃度をCA0、CB0、1パルス照
射後の濃度をCA1、CB1、2パルス照射後をCA2、
CB2とする。赤外多光子解離の反応特製q(Φ)は
作業物質ガスの圧力に対してあまり敏感ではない
から次のようにCA2、CB2を示すことができる。
The concentrations of A and B before irradiation are C A0 , C B0 , the concentrations after 1 pulse irradiation are C A1 , C B1 , and the concentrations after 2 pulse irradiation are C A2 ,
C B2 . Since the reaction special q(Φ) of infrared multiphoton dissociation is not very sensitive to the pressure of the working material gas, C A2 and C B2 can be expressed as follows.
CA2=CA1(1−qA)=CA0(1−qA)2 (5)
CB2=CB1(1−qB)=CB0(1−qB)2 (6)
2パルス照射の時、分離係数SEは次のようにな
る。C A2 = C A1 (1-q A ) = C A0 (1-q A ) 2 (5) C B2 = C B1 (1-q B ) = C B0 (1-q B ) 2 (6) 2 pulses At the time of irradiation, the separation factor S E is as follows.
SE=2=〔CA0−CA2/CA0〕・〔CB0/CB0CA2〕 (7)
(5)〜(7)より
S2{1-(1−qA)2}/{1−(1−qB)2}
=(2−qA)qA/{(2−qB)qB}
第3図に示される反応特性を有する同位体化合
物A,Bを用いて、Aの全反応率XAとして0.75
を得ようとすると、2パルス照射ではフルエンス
はΦ2=0.43(J/cm3)必要とされ、この時の分離
係数はS2=3.95となる。これに対して同じ全反応
率XA=0.75を1パルス照射で得ようとするとΦ1
=0.64(J/cm3)のフルエンスを必要とし、分離
係数はS1=1.8となる。繰り返しパルスの照射法
が有利であることがわかる。第3図に示す反応特
性のフルエンスΦは特許請求の範囲4項に記載の
二波長励起法の場合、一方の波長のレーザー条件
を固定した時の他方の波長のレーザーのフルエン
スと考えることができる。 S E=2 = [C A0 −C A2 /C A0 ]・[C B0 /C B0 C A2 ] (7) From (5) to (7), S 2 {1-(1−q A ) 2 }/ {1-(1-q B ) 2 } = (2-q A ) q A / {(2-q B ) q B } Using isotopic compounds A and B having the reaction characteristics shown in Figure 3. , the total reaction rate of A x A as 0.75
In order to achieve this, two-pulse irradiation requires a fluence of Φ 2 =0.43 (J/cm 3 ), and the separation factor at this time is S 2 =3.95. On the other hand, if you try to obtain the same total reaction rate X A = 0.75 with one pulse irradiation, Φ 1
A fluence of =0.64 (J/cm 3 ) is required, and the separation factor is S 1 =1.8. It can be seen that the repeated pulse irradiation method is advantageous. In the case of the dual-wavelength excitation method described in claim 4, the fluence Φ of the reaction characteristics shown in FIG. 3 can be considered as the fluence of the laser of the other wavelength when the laser conditions of one wavelength are fixed. .
本発明によると、目的とする同位体を高回収率
および高分離係数で得ることができる。
According to the present invention, a target isotope can be obtained with a high recovery rate and a high separation coefficient.
第1図は本発明の方法を模式的に示す概略図、
第2図は従来の照射方法を模式的に示す概略図、
第3図は同位体化合物の典型的な反応特性、即ち
レーザーフルエンス対反応率の関係を示す図。
1,2……レーザー、3……作業物質の流れ。
FIG. 1 is a schematic diagram schematically showing the method of the present invention,
Figure 2 is a schematic diagram schematically showing the conventional irradiation method;
FIG. 3 is a diagram showing typical reaction characteristics of isotopic compounds, that is, the relationship between laser fluence and reaction rate. 1, 2...laser, 3...work material flow.
Claims (1)
方法において、作業物質ガスの流れの2以上の異
なる箇所で、作業物質の赤外多光子解離の反応特
性が線形領域内にあるフルエンスのレーザーを照
射することを特徴とするレーザー同位体分離方
法。 2 前記の作業物質ガスがUF6ガスであることを
特徴とする特許請求の範囲第1項記載のレーザー
同位体分離方法。 3 前記の作業物質がトリフルオロメタンまたは
クロロテトラフルオロエタンであることを特徴と
する特許請求の範囲第1項記載のレーザー同位体
分離方法。 4 前記の作業物質ガスの流れの2以上の異なる
箇所で照射するレーザーが、2つの異なる波長の
レーザーからなることを特徴とする特許請求の範
囲第1項記載のレーザー同位体分離方法。[Claims] 1. In a laser isotope separation method using infrared multiphoton dissociation, the reaction characteristics of infrared multiphoton dissociation of a working substance are within a linear region at two or more different points in the flow of a working substance gas. A laser isotope separation method characterized by irradiating a laser with a certain fluence. 2. The laser isotope separation method according to claim 1, wherein the working material gas is UF 6 gas. 3. The laser isotope separation method according to claim 1, wherein the working substance is trifluoromethane or chlorotetrafluoroethane. 4. The laser isotope separation method according to claim 1, wherein the laser irradiating at two or more different locations in the flow of the working material gas comprises lasers having two different wavelengths.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7818087A JPS63242327A (en) | 1987-03-31 | 1987-03-31 | Separation of isotope by laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7818087A JPS63242327A (en) | 1987-03-31 | 1987-03-31 | Separation of isotope by laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63242327A JPS63242327A (en) | 1988-10-07 |
JPH0367730B2 true JPH0367730B2 (en) | 1991-10-24 |
Family
ID=13654767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7818087A Granted JPS63242327A (en) | 1987-03-31 | 1987-03-31 | Separation of isotope by laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63242327A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5966333A (en) * | 1982-09-07 | 1984-04-14 | ウエスチングハウス・エレクトリツク・コ−ポレ−シヨン | Separation of isotope of zirconium |
-
1987
- 1987-03-31 JP JP7818087A patent/JPS63242327A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5966333A (en) * | 1982-09-07 | 1984-04-14 | ウエスチングハウス・エレクトリツク・コ−ポレ−シヨン | Separation of isotope of zirconium |
Also Published As
Publication number | Publication date |
---|---|
JPS63242327A (en) | 1988-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3937956A (en) | Isotope separation process | |
US5015348A (en) | High mass isotope separation arrangement | |
Zellweger et al. | Isotopically selective condensation and infrared-laser-assisted gas-dynamic isotope separation | |
JPH0367730B2 (en) | ||
US4212716A (en) | Method and device for excitation and selective dissociation by absorption of laser light and application to isotopic enrichment | |
US4168474A (en) | Generation of 14 μm and 16 μm laser radiation from a CO2 gas laser | |
Hassler et al. | FAR‐INFRARED LASING IN H2S, OCS, AND SO2 | |
US4437958A (en) | Device and method for separating oxygen isotopes | |
US4254348A (en) | Tunable ultra-violet generator for use in the isotope separation of deuterium | |
US4120767A (en) | Photochemical method for carbon isotopic enrichment | |
US5110430A (en) | High mass isotope separation arrangement | |
US4461686A (en) | Sequential multiphoton excitation method | |
JP2604395B2 (en) | Laser processing method | |
Nelson et al. | The kinetics and product yield of the reaction of HO with HNO3 | |
US5323413A (en) | Apparatus for the laser dissociation of molecules | |
US4004250A (en) | Laser action by optically depumping lower states | |
D'Ambrosio et al. | 13C-separation by a continuous discharge CO2 laser q-switched at 10 kHz | |
Hackett et al. | Intensity and pressure effects in infrared multiphoton dissociation. Photolysis of hexafluoroacetone and trifluoromethyl bromide with 2-ns laser pulses | |
US4139435A (en) | Method of separating isotopes | |
US4302305A (en) | Isotope separation process | |
JPS61161127A (en) | Separating method of isotope | |
Nayak et al. | T/D isotope selectivity in CO 2 laser induced multiple-frequency multiphoton dissociation of trifluoromethane-T | |
Badcock et al. | Isotopic HCl transfer laser | |
JPH02135127A (en) | Separation of isotopes from uranium hexafluoride, etc., by irradiation with laser light | |
Takeuchi et al. | Intensity and Pressure Effects in CO2 Laser Isotope Separation of Tritium Photolysis of CF3CTCIF with 2-ns Pulses |