JPH0367486A - Induction heating cooking unit - Google Patents

Induction heating cooking unit

Info

Publication number
JPH0367486A
JPH0367486A JP20446489A JP20446489A JPH0367486A JP H0367486 A JPH0367486 A JP H0367486A JP 20446489 A JP20446489 A JP 20446489A JP 20446489 A JP20446489 A JP 20446489A JP H0367486 A JPH0367486 A JP H0367486A
Authority
JP
Japan
Prior art keywords
magnetic field
temperature
wireless probe
induction
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20446489A
Other languages
Japanese (ja)
Inventor
Yuichi Okumura
勇市 奥村
Hideaki Koyama
英明 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP20446489A priority Critical patent/JPH0367486A/en
Publication of JPH0367486A publication Critical patent/JPH0367486A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the constitution of a temperature detecting device by equipping the device for sending a radiowave signal to a control device upon detecting the temperature of contents in a cooking unit, with a power supply device for generating power from magnetic field given by an alternating magnetic field supply device. CONSTITUTION:A wireless probe 18 is set in a pot 11 and a variable resistor 22 is adjusted to set a temperature value corresponding to a cooking temperature. When a DC power supply circuit 1 is supplied with power, a magnetic field feed device operates and alternating magnetic field is generated from an induction heating coil 7. This magnetic field is given to the pot 11 and a heating process starts. In the wireless probe 18, the alternating magnetic field generated from the induction heating coil 7 acts on an induction coil 28 and an electromotive force is generated in the induction coil 28, due to electromagnetic induction. This electromotive force is rectified with a diode 29 and stored in a capacitor 30 for use as a power supply for the succeeding operation of the wireless probe 19.

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ)産業上の利用分野 本発明は誘導加熱r+理器に関する。 (ロ) 従来の技術 誘導加熱調理器は、載置板上にallされる鍋等の調理
具に交番磁界を供給して加熱を行い、同時にa’l板下
面に設けたサーミスタ等により調IjJl具の内容物の
温度を間接的に検知して加熱のM郵を行っていた(特開
昭59−226495号公報参照)。ところがこの方式
では、実際にはarIt板の温度を検知することになる
ため、内容物の温度を正確に検知し厳密な温度制御を行
うことは不可能であった。 それに対し、特開昭62−254389号公報に示され
るように、本体に対してず3号線と接続プラグを介して
接続され、調理具の内容物の温度を直接的に検知する温
度プローブを設ければ、内容物の温度は正確に検知され
る。しかしながらかかる構成では、その接続プラグが差
し込まれるジャックを本体側に設けなければならず、加
熱時に煮こぼれ汁等がそのジャ・lりを介して本体内に
侵入するなどして故障の原因となる。 また1本体とは分離した状態で調理具内容物のpJ度を
検知し、本体内の制御装置に無線信号によってかかる検
知結果を伝えるワイヤレスプローブを使用すれば、本体
側にはジャックを設ける必要はなくなるが、今度はその
ワイヤレスプローブの温度検知や無線信号送信のための
電源として、その内部に電池などを内蔵しなければなら
ず、また電池が消耗すれば交換する必要があるなど、購
戊、使用法の複雑化やコストアップを招く。 (ハ〉 発明が解決しようとする課題 本発明は、調理具内容物の正確な温度検知が可能で、し
かも本体側にジャックなどを設ける必要がないワイヤレ
スプローブ方式を、溝底、使用法の?!雑化などを招く
ことなく実現するものである。 (ニ)課題を解決するための手段 本発明の誘導加熱調理器は、近接配置される調理具に交
番磁界を供給する磁界供給装置と、該磁界PA給装置を
制御する1I119p装置と、前記調理具の内容物の温
度を検知し前記制御装置に無線信号を与・える温度検知
装置とよりなり、該温度検知装置は前記磁界供給装置が
与える磁界から電源電力を発生する電源供給手段を備え
たことを特徴とする。 (ホ)作用 加熱実行時には調理具に磁界が供給されるとともに、温
度検知装置が調理具の内容物の温度を検知し、本体側の
制御装置に無線信号により検知結果を伝える。温度検知
装置の電源電力は、磁界供給手段が、8える磁界から電
源供給手段が電力を発生することにより賄われる。 (へ)実施例 第1図乃至第3図は本発明の第1の実施例を示す。 第1図は全体の構成を示し、1 (j商用交流電源2に
つながれた直流電源回路、3はこの直流電源II!1路
]に1&続されたインバータ回路である。直流電源回路
lは全波整流D4、チラークコイル5、警F滑コンデン
サ6よりなり、インバータ回路3は直流′itt源回路
1に接続された誘導加熱コイル7.1チ振コンデンサ8
、スイッチング素子9よりなる。10は調理具である鍋
11が載置される載置板であり、誘導加熱コイル7はセ
ラミック製載置板10の直下に位置してその上に載置さ
れる磁性金属材製の鍋11に交番磁界を供給する。即ち
、この直流電源回路l、インバータ回路3により磁界供
給装置が溝底される。 12は載1[10の裏面に取り付けられた温度検出素子
(A) Industrial Application Field The present invention relates to an induction heating r+ heating device. (b) A conventional induction heating cooker heats cooking utensils such as pots placed on a mounting plate by supplying an alternating magnetic field, and at the same time adjusts the temperature using a thermistor etc. provided on the lower surface of the plate. Heating was performed by indirectly detecting the temperature of the contents of the ingredients (see Japanese Patent Laid-Open No. 59-226495). However, in this method, since the temperature of the arIt board is actually detected, it is impossible to accurately detect the temperature of the contents and perform strict temperature control. On the other hand, as shown in Japanese Patent Application Laid-Open No. 62-254389, a temperature probe is provided which is connected to the main body via Line 3 and a connection plug to directly detect the temperature of the contents of the cooking utensil. If so, the temperature of the contents can be accurately detected. However, in such a configuration, a jack into which the connection plug is inserted must be provided on the main body side, and boiled liquid etc. may enter the main body through the jack during heating, causing a malfunction. . In addition, if you use a wireless probe that detects the pJ degree of the contents of the cooking utensil while separated from the main unit and transmits the detection result to the control device inside the main unit using a wireless signal, there is no need to install a jack on the main unit. However, this time, the wireless probe must have a built-in battery as a power source for temperature detection and wireless signal transmission, and if the battery wears out, it must be replaced. This leads to complicated usage and increased costs. (C) Problems to be Solved by the Invention The present invention uses a wireless probe method that enables accurate temperature detection of the contents of cooking utensils and does not require a jack on the main body. !Achieved without causing clutter etc. (d) Means for solving the problem The induction heating cooker of the present invention includes a magnetic field supply device that supplies an alternating magnetic field to cooking utensils placed in close proximity, It consists of a 1I119p device that controls the magnetic field PA supply device, and a temperature detection device that detects the temperature of the contents of the cooking utensil and provides a wireless signal to the control device. It is characterized by comprising a power supply means that generates power from the applied magnetic field. (E) When performing action heating, a magnetic field is supplied to the cooking utensil, and a temperature detection device detects the temperature of the contents of the cooking utensil. Then, the detection result is transmitted to the control device on the main body side by a wireless signal.The power supply for the temperature detection device is provided by the power supply means generating electric power from the magnetic field of the magnetic field supply means.(F) Implementation Example Figures 1 to 3 show a first embodiment of the present invention. The inverter circuit 3 is an inverter circuit connected to the DC power source circuit 1. Heating coil 7.1 swing capacitor 8
, a switching element 9. Reference numeral 10 denotes a mounting plate on which a pot 11, which is a cooking tool, is placed, and the induction heating coil 7 is located directly below the ceramic mounting plate 10, and the pot 11 made of a magnetic metal material is placed on it. An alternating magnetic field is supplied to the That is, the magnetic field supply device is formed by the DC power supply circuit 1 and the inverter circuit 3. 12 is a temperature detection element attached to the back side of mounting 1 [10,

【3はこの温度検出素子12からの信号や後述するワ
イヤレスプローブからの無線信号に蟇づいて磁界供給装
置の運転条件を設定する条件設定回路、14はこの条件
設定回路13からの(3号に基づきスイッチング素子9
をON、OFF制御する発振lIi1gp回路である6
条件設定回路13は、温度検出素子12からの信号を基
準信号と比較する比較部15と、フォトトランジスタ等
の受光素子を有しワイヤレス70−ブからの赤外線48
号を受信する赤外線受光モジユール16と、それによっ
て受信された信号を解読する信号解読部17とよりなっ
ている。そしてこの条件設定回路13、発rIiMFj
p回路14により制御装置が溝底される。 18はallの内容物19(テンプラ油、汁等)に検知
部20を差し込まれてその温度を直後的に検知し、条件
設定回路13にその検知結果を赤外at倍信号より送信
する温度検知装置としてのワイヤレスプローブである。 第2図及び第3図はワイヤレスプローブ18をポし、2
】は検知fa 20の先端に位置したサーミスタ、22
は温度設定用の可変抵抗器、23はそのire批抗υ2
2の摘み、24は可変抵抗器22とサーミスタ21から
の信号を比較する比較器、25は比較器24の出力に応
じてトランジスタ26をi11制御し、赤外線発光LE
D27を駆動するエンコーダである。 さらに、28は磁界供給装置の誘導加熱コイル7から与
えられる電磁界をうけて、電磁誘導作用により起電力を
生じる誘導コイル、29は整流用ダイオード、30は誘
導コイル28が発生した起電力により充電される大容量
のコンデンサ、31はツェナーダイオードである。そし
てこれらは、磁界供給装置が与える磁界からその温度検
知装置の電源電力を発生する電源供給手段を構成する。 尚、32.33は比較器24の出力をエンコーダ25に
f云えるトランジスタである。 次に本誘導加熱調理器の動作を説明する。 まず、鯛理者がワイヤレスプローブ18を鍋llにセッ
トし、り変抵抗器22を調節して調理温度(例えば約2
00℃)に相当する値に設定する。 I/I:流電源回路lに通電すると磁界供給装置が動作
し、誘導加熱コイル7から交番磁界が発生して鍋11に
与えられ加熱が開始される。このとき載置11fi10
の温度は低く、比較部15の出力+4 Lレベルである
。 flk 方、ワイヤレスプローブ18においては、誘導
加熱コイル7から発生した交番磁界が誘導コイル28に
作用し、電磁誘導によりかかる誘導コイル28に起電力
を発生する。この起電力はダイオード29により整流さ
れ、コンデンサ30に貯えられて、以後のワイヤレスプ
ローブ18の動作電源となる。 加熱開始時においては、ワイヤレスプローブ18の検知
部20の温度も200℃よりも低いため、比較1524
の出力はLレベルであり、トランジスタ33がONする
。この時エンコーダ25はトランジスタ26を1liI
Iして、加熱実行信号で変調された赤外線を赤外線発光
LED27から赤外線受光モジユール16に向けて発射
する。赤外線受光モジユール1Gによって受信されたか
かる信号は信号解読部17によって解読され、加熱実行
Li号であることが判別され、このとき信号解読部+7
は!、レベル信号を出力する。発振制御回路11は、比
較部15及び信号解読部17からの信号に応じ、スイ・
7チンダ素子9をON、OFF制御して誘導加熱コイル
7からの交番磁界の供給を継続し、加熱動作を続ける。 加熱が進み、内容物の温度が上昇して、ワイヤレスプロ
ーブ18の検知部20の温度が200℃を超えると、比
較@24の出力はLレベルからHレベルに反転し、トラ
ンジスタ32がONする。 このときエンコーダ25はトランジスタ26を制御して
、加熱停止信号で変調された赤外線を赤外!II!51
!光LEI)27から赤外線受光モジユール16に向け
て発射する。受信された信号は加熱停止信号であるため
、信号解読部17の出力はLレベルからHレベルに反転
し、発振制御回路14は、スイッチング素子9をOFF
して誘導加熱コイル7からの交番磁界の供給を停止し、
加熱動作を停止する。 尚、加熱勤(ijが停止されると誘導コイル28による
起電力は発生しなくなるが、コンデンサ30に容散が十
分大きいものを使用し、またコンデンサ30に貯えられ
た1!荷が完全に放電してしまうまでの時間よりも短い
周期で数秒間だけ磁界供給P段を間欠的に作動させるよ
うに制御装置を構成すれば、加熱動作停止中においても
ワイヤレスプローブ18による温度検知を!I続するこ
とができろ。そして、加熱停止によってwAllの内容
物の温度が徐々に低下し、それが200℃よりも低くな
ると、再び比較器24の出力がLレベルとなり、エンコ
ーダ25は加熱実行信号で変調された赤外線を発射して
、加熱動作が再開される。 尚、本実施例によれば、憾線信号として赤外線信号を用
いているので、その信号が誘導加熱コイル7から発生す
る電磁界によって悪影響を受けることがなく、安定した
動作が期待できる。また、比較部15における基準信号
の値は、ワイヤレスプローブ18を使用しない場合の異
常温度上昇防止レベルなどを考慮して決定される。 第4図は本発明の第2の実施例を示す。この実施例は先
に述べた第1の実施例のワイヤレスプローブ18の形状
を変えたものであり、第1の実施例と同・−若しくは対
応する部分については同−狩りを付し、説明は省略する
。 34は磁界供給装置、制御装置等を内蔵した本体、35
!jワイヤレスプローブ18の下部に円環状に形成され
内部に誘導コイル28を収めた環状ケースである。環状
ケース35はMllの外径よりも大きな内径をもち、鍋
11の周囲に位置するようにa″X板lO上に置かれる
。そして加熱実行時には、allと共に誘導コイル28
が載置板lOを介して磁界の供給を受け、ワイヤレスプ
ローブ18の動作電源を発生する。赤外11AQ光1.
 E D27はワイヤレスプローブ18の上部下面に下
向きに設けられ、本体34の上面に露出した赤外線受光
モジユール16の受光面に対向して、赤外線54号を送
受する。 第5図乃至第7図は本発明の第3の実施例を示す。 36は誘導コイル28など第7図に示す回路を内威した
ケースで1本体34に対してその上面に4悦載置可能な
ように別体に溝底されている。そしてワイヤレスプロー
ブ18は、サーミスタ21を備えた検知部20と、この
ケース3Gの両者を核続して隔成される。本体34の上
面には赤外線受光モジユール16の受光面が露出して設
けられており、またケース3Gの下面には、Js誘導コ
イル28赤外線発光LED27が設けられるとともに1
本体34.ケース36には共に位置決めのための磁石3
7.38が設けられている。そしてそれらの磁石37.
38の吸引力によりケース3Gが本体34に対して?6
6図に示すように位置決めさiL、この時赤外線受光モ
ジユール16と赤外線5を光LED27が対向するよう
に位置し、それらの間で赤外線信号が送受される。!!
誘導コイル28どの電源供給手段によるワイヤレスプロ
ーブ18のXtt 源電力の発生や、サーミスタ21の
検知結果による加熱の温度制御は第1の実施例と同様で
ある。 (ト)発明の効果 本発明によれば、温度検知装置の電源電力は、磁界供給
手段が与える磁界から電源供給手段が電力を発生するこ
とにより賄われるので、温度検知’ji itの電源と
して電池などを設けたり、またその口゛1粍時に交換す
るなどの必要がない。従って、調J1!具内容物の正確
な温度検知が可能なワイヤレスプローブ方式を、構成、
使用法の複雑化などを招くことなく実現することができ
る。
[3 is a condition setting circuit that sets the operating conditions of the magnetic field supply device based on the signal from this temperature detection element 12 and a radio signal from a wireless probe to be described later; based switching element 9
6, which is an oscillation lIi1gp circuit that controls ON and OFF.
The condition setting circuit 13 includes a comparison section 15 that compares the signal from the temperature detection element 12 with a reference signal, and a light receiving element such as a phototransistor, and receives infrared rays 48 from the wireless 70-b.
It consists of an infrared light receiving module 16 that receives signals, and a signal decoder 17 that decodes the signals received thereby. Then, this condition setting circuit 13 generates rIiMFj
The control device is controlled by the p-circuit 14. 18 is a temperature detection device which immediately detects the temperature of the contents 19 (templar oil, juice, etc.) of all by inserting the detection section 20 therein, and transmits the detection result to the condition setting circuit 13 using an infrared AT signal. It is a wireless probe as a device. 2 and 3 show the wireless probe 18 and the 2
] is the thermistor located at the tip of the detection fa 20, 22
is a variable resistor for temperature setting, 23 is its ire resistance υ2
Knob 2, 24 is a comparator that compares the signals from the variable resistor 22 and thermistor 21, 25 controls the transistor 26 according to the output of the comparator 24, and controls the infrared light emitting LE.
This is an encoder that drives D27. Further, 28 is an induction coil that receives an electromagnetic field from the induction heating coil 7 of the magnetic field supply device and generates an electromotive force by electromagnetic induction, 29 is a rectifier diode, and 30 is charged by the electromotive force generated by the induction coil 28. The large capacity capacitor 31 is a Zener diode. These constitute a power supply means that generates power for the temperature detection device from the magnetic field provided by the magnetic field supply device. Note that 32 and 33 are transistors that can transmit the output of the comparator 24 to the encoder 25. Next, the operation of this induction heating cooker will be explained. First, the sea bream chef sets the wireless probe 18 in the pot, adjusts the variable resistor 22, and adjusts the cooking temperature (for example, about 2
00°C). I/I: When the current power supply circuit 1 is energized, the magnetic field supply device operates, and an alternating magnetic field is generated from the induction heating coil 7 and applied to the pot 11 to start heating. At this time, place 11fi10
The temperature is low, and the output of the comparator 15 is +4L level. On the other hand, in the wireless probe 18, the alternating magnetic field generated from the induction heating coil 7 acts on the induction coil 28, and generates an electromotive force in the induction coil 28 due to electromagnetic induction. This electromotive force is rectified by the diode 29, stored in the capacitor 30, and becomes the operating power source for the wireless probe 18 from now on. At the start of heating, the temperature of the detection unit 20 of the wireless probe 18 is also lower than 200°C, so comparison 1524
The output of is at L level, and the transistor 33 is turned on. At this time, the encoder 25 switches the transistor 26 to 1liI
I, the infrared light modulated by the heating execution signal is emitted from the infrared light emitting LED 27 toward the infrared light receiving module 16. The signal received by the infrared receiving module 1G is decoded by the signal decoder 17 and determined to be the heating execution Li.
teeth! , outputs a level signal. The oscillation control circuit 11 responds to signals from the comparator 15 and the signal decoder 17 to
7 The Cinda element 9 is controlled ON and OFF to continue supplying the alternating magnetic field from the induction heating coil 7 and continue the heating operation. As the heating progresses and the temperature of the contents rises, and the temperature of the detection section 20 of the wireless probe 18 exceeds 200° C., the output of the comparison @24 is reversed from L level to H level, and transistor 32 is turned on. At this time, the encoder 25 controls the transistor 26 to convert the infrared rays modulated by the heating stop signal into infrared rays! II! 51
! The light LEI) 27 emits light toward the infrared receiving module 16. Since the received signal is a heating stop signal, the output of the signal decoder 17 is inverted from L level to H level, and the oscillation control circuit 14 turns off the switching element 9.
and stop supplying the alternating magnetic field from the induction heating coil 7,
Stop heating operation. Note that when the heating cycle (ij) is stopped, the electromotive force due to the induction coil 28 is no longer generated. If the control device is configured to intermittently operate the magnetic field supply P stage for only a few seconds at a cycle shorter than the time required for heating to occur, temperature detection by the wireless probe 18 can continue even when the heating operation is stopped. Then, when the heating is stopped, the temperature of the contents of wAll gradually decreases, and when it becomes lower than 200°C, the output of the comparator 24 becomes L level again, and the encoder 25 modulates it with the heating execution signal. The heating operation is restarted by emitting the infrared rays generated by the induction heating coil 7. According to this embodiment, since an infrared signal is used as the infrared signal, the signal may be adversely affected by the electromagnetic field generated from the induction heating coil 7. In addition, the value of the reference signal in the comparator 15 is determined in consideration of the abnormal temperature rise prevention level when the wireless probe 18 is not used. 2 shows a second embodiment of the present invention. This embodiment has a different shape of the wireless probe 18 of the first embodiment described above, and is the same as or corresponds to the first embodiment. The same parts are given the same name and the explanation is omitted. 34 is a main body containing a magnetic field supply device, a control device, etc.; 35
! j This is an annular case formed in an annular shape at the bottom of the wireless probe 18 and housing an induction coil 28 inside. The annular case 35 has an inner diameter larger than the outer diameter of Mll and is placed on the a''
is supplied with a magnetic field via the mounting plate 1O, and generates power for operating the wireless probe 18. Infrared 11AQ light 1.
The E D 27 is provided facing downward on the upper and lower surface of the wireless probe 18, faces the light receiving surface of the infrared receiving module 16 exposed on the upper surface of the main body 34, and transmits and receives the infrared ray 54. 5 to 7 show a third embodiment of the present invention. Reference numeral 36 denotes a case in which the induction coil 28 and other circuits shown in FIG. 7 are housed, and a separate groove bottom is formed on the upper surface of the main body 34 so that four parts can be placed on the upper surface thereof. The wireless probe 18 is isolated by connecting the detection section 20 including the thermistor 21 and the case 3G. The light receiving surface of the infrared light receiving module 16 is exposed on the upper surface of the main body 34, and a Js induction coil 28 and an infrared light emitting LED 27 are provided on the lower surface of the case 3G.
Main body 34. The case 36 also includes a magnet 3 for positioning.
7.38 is provided. And those magnets 37.
Is the case 3G against the main body 34 due to the suction force of 38? 6
As shown in FIG. 6, the infrared light receiving module 16 and the infrared light 5 are positioned so that the light LED 27 faces each other, and infrared signals are transmitted and received between them. ! !
The generation of the Xtt source power of the wireless probe 18 by the power supply means of the induction coil 28 and the heating temperature control based on the detection result of the thermistor 21 are the same as in the first embodiment. (g) Effects of the Invention According to the present invention, the power supply for the temperature detection device is provided by the power supply means generating power from the magnetic field provided by the magnetic field supply means, so that a battery is used as the power supply for the temperature detection device. There is no need to install or replace it when necessary. Therefore, key J1! Constructs a wireless probe method that can accurately detect the temperature of contents.
This can be realized without complicating usage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す模式的回路図、第
2図は同ワイヤレスプローブの回路図、第3図は同ワイ
ヤレスプローブの外観斜視図、第4FAは第2の実施例
を示す外観斜視図、第5図は第3の実施例を示す外観斜
視図、第6図は同要部断面図、第7図はfThJワイヤ
レスプローブの回路図である。 !・・・直流電源回路、3・・・インバータ回路、11
・・・鍋、13・・・条件設定回路、14・・・発振制
御回路、18・・・ワ・fヤレスプローブ、28・・・
誘導コイノ1.29・・・ダイオード、30・・・コン
デンサ、31・・・ツェナーダイオード。
Fig. 1 is a schematic circuit diagram showing the first embodiment of the present invention, Fig. 2 is a circuit diagram of the same wireless probe, Fig. 3 is an external perspective view of the same wireless probe, and 4th FA shows the second embodiment. FIG. 5 is an external perspective view showing the third embodiment, FIG. 6 is a sectional view of the same essential parts, and FIG. 7 is a circuit diagram of the fThJ wireless probe. ! ...DC power supply circuit, 3...Inverter circuit, 11
... pot, 13 ... condition setting circuit, 14 ... oscillation control circuit, 18 ... wireless probe, 28 ...
Induction Koino 1.29...Diode, 30...Capacitor, 31...Zener diode.

Claims (1)

【特許請求の範囲】[Claims] (1)近接配置される調理具に交番磁界を供給する磁界
供給装置と、該磁界供給装置を制御する制御装置と、前
記調理具の内容物の温度を検知し前記制御装置に無線信
号を与える温度検知装置とよりなり、該温度検知装置は
前記磁界供給装置が与える磁界から電源電力を発生する
電源供給手段を備えたことを特徴とする誘導加熱調理器
(1) A magnetic field supply device that supplies an alternating magnetic field to cooking utensils placed in close proximity, a control device that controls the magnetic field supply device, and a wireless signal that detects the temperature of the contents of the cooking utensil and provides a wireless signal to the control device. 1. An induction heating cooker comprising a temperature detection device, the temperature detection device comprising power supply means for generating power from the magnetic field provided by the magnetic field supply device.
JP20446489A 1989-08-07 1989-08-07 Induction heating cooking unit Pending JPH0367486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20446489A JPH0367486A (en) 1989-08-07 1989-08-07 Induction heating cooking unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20446489A JPH0367486A (en) 1989-08-07 1989-08-07 Induction heating cooking unit

Publications (1)

Publication Number Publication Date
JPH0367486A true JPH0367486A (en) 1991-03-22

Family

ID=16490971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20446489A Pending JPH0367486A (en) 1989-08-07 1989-08-07 Induction heating cooking unit

Country Status (1)

Country Link
JP (1) JPH0367486A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155089A (en) * 1989-11-14 1991-07-03 Matsushita Electric Ind Co Ltd Induction heater cooking device
KR20020057626A (en) * 2001-01-02 2002-07-12 서석종 Apparatus printing a fast photo using digital camera and method thereof
US6832954B2 (en) 2000-05-30 2004-12-21 Namco Ltd. Photographing game machine, photographing game processing method and information storage medium
WO2009146663A1 (en) * 2008-06-06 2009-12-10 Ye Xiaozhou Non-contact temperature detecting and controlling method of a cooker and electromagnetic oven

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013695B2 (en) * 1981-02-19 1985-04-09 三菱電機株式会社 How to clean cleaning equipment
JPS6188487A (en) * 1984-10-05 1986-05-06 株式会社日立ホームテック High frequency heater with wireless temperature probe
JPS6188486A (en) * 1984-10-05 1986-05-06 株式会社日立ホームテック High frequency heater with wireless temperature probe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013695B2 (en) * 1981-02-19 1985-04-09 三菱電機株式会社 How to clean cleaning equipment
JPS6188487A (en) * 1984-10-05 1986-05-06 株式会社日立ホームテック High frequency heater with wireless temperature probe
JPS6188486A (en) * 1984-10-05 1986-05-06 株式会社日立ホームテック High frequency heater with wireless temperature probe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155089A (en) * 1989-11-14 1991-07-03 Matsushita Electric Ind Co Ltd Induction heater cooking device
US6832954B2 (en) 2000-05-30 2004-12-21 Namco Ltd. Photographing game machine, photographing game processing method and information storage medium
KR20020057626A (en) * 2001-01-02 2002-07-12 서석종 Apparatus printing a fast photo using digital camera and method thereof
WO2009146663A1 (en) * 2008-06-06 2009-12-10 Ye Xiaozhou Non-contact temperature detecting and controlling method of a cooker and electromagnetic oven

Similar Documents

Publication Publication Date Title
KR100841490B1 (en) Heating cooking system and cooking tool
US7293914B2 (en) Temperature detecting heater with indicating structure for aquarium
EP1951002A1 (en) Cooking device
US4617441A (en) Temperature controlled induction heating and cooking apparatus
JP2009133501A (en) Temperature detecting unit
JP4793153B2 (en) Induction heating cooker
JPH0367486A (en) Induction heating cooking unit
JP2009093805A (en) Heating cooking system and heating cooking device
US4593180A (en) Electric control apparatus with undervoltage protection
JP2847837B2 (en) Pot for induction heating cooker and induction heating cooker
EP0560431B1 (en) Apparatus for heating a liquid medium
KR950025341A (en) Microwave Load Matching Device
JPH0719655B2 (en) Induction heating cooker
JP2013000203A (en) Induction heating rice cooker
JP4280167B2 (en) Cooking system
JP2009093804A (en) Cooking appliance
JP4458060B2 (en) rice cooker
JPH04371108A (en) Pan detecting device for induction heating cooking appliance
JP6690079B2 (en) Heating cooker
JPH09238851A (en) Cooking device
KR940001183Y1 (en) Micro-process error driving circuit of electronic oven
CN111134528B (en) Heating control method, heating control device, storage medium, and liquid heating container
KR920003585Y1 (en) Protection circuit of electromagnetic field cooker
KR970062532A (en) Device for controlling heating temperature of microwave oven
JP2903689B2 (en) Induction heating cooker and its dedicated load device