JPH0367316B2 - - Google Patents

Info

Publication number
JPH0367316B2
JPH0367316B2 JP23891783A JP23891783A JPH0367316B2 JP H0367316 B2 JPH0367316 B2 JP H0367316B2 JP 23891783 A JP23891783 A JP 23891783A JP 23891783 A JP23891783 A JP 23891783A JP H0367316 B2 JPH0367316 B2 JP H0367316B2
Authority
JP
Japan
Prior art keywords
carbon
heating element
metal compound
composition
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23891783A
Other languages
Japanese (ja)
Other versions
JPS60131783A (en
Inventor
Takamasa Kawakubo
Takao Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pencil Co Ltd
Original Assignee
Mitsubishi Pencil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co Ltd filed Critical Mitsubishi Pencil Co Ltd
Priority to JP23891783A priority Critical patent/JPS60131783A/en
Publication of JPS60131783A publication Critical patent/JPS60131783A/en
Publication of JPH0367316B2 publication Critical patent/JPH0367316B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Description

【発明の詳細な説明】 本発明は炭素発熱体の製造法に関する。詳しく
は、本発明は空気中で使用でき、しかも自由な賦
形性をもつ耐酸化性炭素発熱体の製造法に関す
る。 炭素材料は耐熱性、耐熱衝撃性、耐蝕性に優
れ、発熱体材料として期待されるが、炭素は高温
で酸素、二酸化炭素、水蒸気等のガスと反応して
酸化消耗してしまう。この現象が炭素を空気中で
発熱体として使用する場合の大きな障害となつて
いる。従つて、従来の炭素発熱体は不活性雰囲気
中でのみ使用可能という欠点を有していた。この
ため、近年、耐酸化物を耐熱表面に被覆すること
なく炭材に耐酸化性を持たせる方法が種々開発さ
れている。例えば、九工試の炭素−セラミツク複
合材の製造方法(特開昭56−140075号公報)等の
磨砕生コークスを主原料とする炭素−セラミツク
複合材料が提供されたが、炭素源に生コークスを
用いるため、例えば、コイル状のような複雑で自
由な賦形性を有する耐酸化性炭材を得ることがで
きないという欠点がある。 本願発明者等は賦形性が自由で、しかも空気中
において使用可能な耐熱発熱体を開発するために
鋭意研究を重ねた結果、耐熱マトリツクス中に空
気酸化をうけると均一なガラス質を構築するよう
な金属化合物を複合化することによつて、耐酸化
被膜に対して自発的治癒性を持たせて内部への酸
素拡散を防ぐという発想と、炭素前駆体として合
成樹脂を使用することにより、通常のプラスチツ
クス成形と同等の成形が可能になるという考えか
ら合成樹脂に金属化合物を均一に分散させるとい
う2つの発想から本研究は始められた。 研究の結果、合成樹脂に金属化合物を均一に分
散させたものを丸棒状に成形して炭素化させたも
のは、酸化雰囲気において表面上の炭素が酸化消
耗する過程において、露出してきた金属化合物が
酸化を受け均一なガラス質被膜を構築し内部への
酸素拡散が防げることにより、炭素の酸化消耗が
防止され、それによつて炭素発熱体が空気中にお
いても酸化されることなく安定に発熱するという
事実を見いだした。 本発明はこのような知見に基づいてなされたも
ので、賦形性を有し焼成後高い炭素残査収率を示
す合成樹脂のごとき組成物と空気酸化においてガ
ラス質を構築する金属化合物を均一混練して成形
用組成物を得、この成形用組成物を自由な形に賦
形し、これを空気オーブン中で炭素前駆体処理を
行い、その後不活性ガス雰囲気中にて炭化焼成を
することから成る。而して、該金属化合として
は、炭化ホウ素及び/又は炭化ケイ素が好まし
く、また、該組成物中に、好ましくは、カーボン
ブラツク、黒鉛、ピツチ、コークス等の炭素質の
粉末をフイラーとして含む。これによつて得られ
た炭素発熱体は空気中で800℃−30時間発熱させ
ても、発熱前後の外観、重量差はほとんど認めら
れない。 次に、実施例によつて本発明をさらに詳細に説
明する。 実施例 1 塩素化塩化ビニル200g、粒径10μm以下の黒
鉛粉末175g、粒径10μm以下の炭化ホウ素粉75
g、粒径10μm以下の炭化ケイ素粉末50g、ジア
リルフタレートモノマー100gをヘンシエルミキ
サーで室温にて30分間混合し、得られた混合物を
2本ロールを使用して混練し、フイルム状に成形
したものをプランジヤーによつて2mmφの丸棒状
の線に押し出した。得られた丸棒状の線を第1図
のごときスプリング状に成形し、空気オーブン中
で5℃/hrで180℃まで処理し、次いで横型管状
炉により、窒素ガス雰囲気中にて5℃/hrで300
℃まで昇温させ、さらに1100℃まで20℃/hrで昇
温させ、1100℃で3時間保持し、その後自然冷却
を行つた。 以上のような工程によつて得られたコイル状炭
素発熱体を空気中にて第3図に示す装置で通電加
熱方式により、耐酸化性試験を行つた。結果を第
1表に示す。第1表に示すように、発熱前後にお
いて重量欠損及び外観には、ほとんど変化が見ら
れなかつた。しかも、発熱体は耐酸化試験の間、
終始安定した発熱をしていた。 実施例 2 フラン樹脂400g、粒径10μm以下の黒鉛粉350
g、粒径10μm以下の炭化ホウ素150g、粒径10μ
m以下の炭化ケイ素粉100gをボニーミキサーで
30分間室温にて混練し、得られた混練物を2本ロ
ールを使用いてさらに混練を行い、次いで、シー
ト状に成形してプランジヤーにより2mmφの丸棒
状に押出した。得られた丸棒を第2図のごとく長
さ100mmに切断し、空気オーブン中で5℃/hrで
180℃まで処理を行い、次いで横型管状炉により、
窒素ガス雰囲気中にて5℃/hrで300℃まで昇温
し、次いで、1100℃まで20℃/hrで昇温し、1100
℃で3時間保持した。その後、自然冷却を行つ
た。このようにして得られた丸棒を第3図に示す
装置で通電加熱方式により耐酸化性試験を行つ
た。結果を第1表に示す。第1表に示すように、
発熱前後において重量欠損及び外観には、ほとん
ど変化が見られなかつた。しかも、発熱体は耐酸
化試験の間、終始安定した発熱をしていた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing carbon heating elements. Specifically, the present invention relates to a method for producing an oxidation-resistant carbon heating element that can be used in air and has free formability. Carbon materials have excellent heat resistance, thermal shock resistance, and corrosion resistance, and are expected to be used as heating element materials, but carbon reacts with gases such as oxygen, carbon dioxide, and water vapor at high temperatures and is oxidized and consumed. This phenomenon is a major obstacle when using carbon as a heating element in air. Therefore, conventional carbon heating elements have the disadvantage that they can only be used in an inert atmosphere. For this reason, in recent years, various methods have been developed to impart oxidation resistance to carbonaceous materials without coating the heat-resistant surface with an oxidation-resistant material. For example, carbon-ceramic composite materials using ground raw coke as the main raw material have been provided, such as the manufacturing method of carbon-ceramic composite materials by Kyukoken (Japanese Patent Application Laid-Open No. 140075/1983), but Since coke is used, there is a drawback that, for example, it is not possible to obtain an oxidation-resistant carbon material having complex and free shapeability such as a coil shape. The inventors of the present application have conducted intensive research to develop a heat-resistant heating element that can be shaped freely and can be used in air, and as a result, they have found that when subjected to air oxidation in a heat-resistant matrix, a uniform glassy structure is formed. By combining metal compounds such as these, the oxidation-resistant film has spontaneous healing properties and prevents oxygen diffusion into the interior, and by using a synthetic resin as a carbon precursor, This research began with the two ideas of uniformly dispersing a metal compound in a synthetic resin, with the idea that it would be possible to perform molding equivalent to ordinary plastic molding. As a result of research, it was found that when a synthetic resin with metal compounds uniformly dispersed is molded into a round rod shape and carbonized, the exposed metal compounds are removed during the process in which the carbon on the surface is oxidized and consumed in an oxidizing atmosphere. By creating a uniform glassy film that undergoes oxidation and preventing oxygen from diffusing into the interior, oxidative consumption of carbon is prevented, and as a result, the carbon heating element stably generates heat without being oxidized even in the air. I found the facts. The present invention was made based on this knowledge, and involves uniformly kneading a composition such as a synthetic resin that has formability and a high carbon residue yield after firing, and a metal compound that forms glass in air oxidation. A molding composition is obtained, this molding composition is shaped into a free shape, it is treated with a carbon precursor in an air oven, and then carbonized and fired in an inert gas atmosphere. Become. The metal compound is preferably boron carbide and/or silicon carbide, and the composition preferably contains carbonaceous powder such as carbon black, graphite, pitch, or coke as a filler. Even when the carbon heating element thus obtained is heated in air at 800°C for 30 hours, there is almost no difference in appearance or weight before and after heating. Next, the present invention will be explained in more detail with reference to Examples. Example 1 200 g of chlorinated vinyl chloride, 175 g of graphite powder with a particle size of 10 μm or less, 75 g of boron carbide powder with a particle size of 10 μm or less
g, 50 g of silicon carbide powder with a particle size of 10 μm or less, and 100 g of diallyl phthalate monomer were mixed for 30 minutes at room temperature in a Henschel mixer, and the resulting mixture was kneaded using two rolls and formed into a film. was extruded into a round bar-shaped wire with a diameter of 2 mm using a plunger. The obtained round rod-shaped wire was formed into a spring shape as shown in Fig. 1, and treated in an air oven at 5°C/hr up to 180°C, and then heated at 5°C/hr in a nitrogen gas atmosphere in a horizontal tube furnace. for 300
The temperature was raised to 1100°C, further raised to 1100°C at a rate of 20°C/hr, held at 1100°C for 3 hours, and then naturally cooled. The coiled carbon heating element obtained through the above steps was subjected to an oxidation resistance test in air using an electric heating method using the apparatus shown in FIG. The results are shown in Table 1. As shown in Table 1, there was almost no change in weight loss or appearance before and after heating. Moreover, during the oxidation resistance test, the heating element
He had a steady fever from beginning to end. Example 2 400g of furan resin, 350g of graphite powder with a particle size of 10μm or less
g, 150 g of boron carbide with particle size of 10 μm or less, particle size of 10 μm
100g of silicon carbide powder with a size of less than m in a Bonnie mixer
After kneading for 30 minutes at room temperature, the resulting kneaded product was further kneaded using two rolls, and then formed into a sheet and extruded into a round bar shape of 2 mmφ using a plunger. The obtained round bar was cut into lengths of 100 mm as shown in Figure 2, and heated at 5°C/hr in an air oven.
Processed to 180℃, then in a horizontal tube furnace.
The temperature was raised to 300°C at a rate of 5°C/hr in a nitrogen gas atmosphere, then the temperature was raised to 1100°C at a rate of 20°C/hr, and the temperature was increased to 1100°C.
It was kept at ℃ for 3 hours. After that, natural cooling was performed. The thus obtained round bar was subjected to an oxidation resistance test using an electric heating method using the apparatus shown in FIG. The results are shown in Table 1. As shown in Table 1,
There was almost no change in weight loss or appearance before and after heating. Moreover, the heating element generated stable heat throughout the oxidation resistance test. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図はコイル状発熱体、第2図は棒状発熱体
を示し、第3図は耐酸化性試験のための装置の略
図である。図において、 1……発熱体、2……パイロメーター、3……
記録計、4……発熱支持用電極、5……電極、6
……絶縁体ブロツク。
FIG. 1 shows a coil-shaped heating element, FIG. 2 shows a rod-shaped heating element, and FIG. 3 is a schematic diagram of an apparatus for an oxidation resistance test. In the figure, 1... heating element, 2... pyrometer, 3...
Recorder, 4... Electrode for supporting heat generation, 5... Electrode, 6
...Insulator block.

Claims (1)

【特許請求の範囲】 1 賦形性を有し焼成後高い炭素残渣収率を示す
合成樹脂と空気酸化においてガラス質を構築する
金属化合物とを均一に混練して成形用組成物を
得、該組成物を賦形し、得られた賦形物を酸化雰
囲気中で昇温加熱して炭素前駆体処理を行い、そ
の後不活性ガス雰囲気中で炭化焼成することから
成る炭素発熱体の製造法。 2 該金属化合物は炭化ホウ素及び/又は炭化ケ
イ素である特許請求の範囲第1項の炭素発熱体の
製造方法。 3 該組成物中に、カーボンブラツク、黒鉛、ピ
ツチ、コークス等の炭素質の粉末をフイラーとし
て含む特許請求の範囲第1項の炭素発熱体の製造
方法。
[Claims] 1. A molding composition is obtained by uniformly kneading a synthetic resin that has formability and exhibits a high carbon residue yield after firing, and a metal compound that forms a glassy substance in air oxidation. A method for producing a carbon heating element, which comprises shaping a composition, heating the resulting shaped product in an oxidizing atmosphere to perform a carbon precursor treatment, and then carbonizing and firing it in an inert gas atmosphere. 2. The method for producing a carbon heating element according to claim 1, wherein the metal compound is boron carbide and/or silicon carbide. 3. The method for manufacturing a carbon heating element according to claim 1, wherein the composition contains carbonaceous powder such as carbon black, graphite, pitch, coke, etc. as a filler.
JP23891783A 1983-12-20 1983-12-20 Method of producing carbon heater Granted JPS60131783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23891783A JPS60131783A (en) 1983-12-20 1983-12-20 Method of producing carbon heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23891783A JPS60131783A (en) 1983-12-20 1983-12-20 Method of producing carbon heater

Publications (2)

Publication Number Publication Date
JPS60131783A JPS60131783A (en) 1985-07-13
JPH0367316B2 true JPH0367316B2 (en) 1991-10-22

Family

ID=17037190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23891783A Granted JPS60131783A (en) 1983-12-20 1983-12-20 Method of producing carbon heater

Country Status (1)

Country Link
JP (1) JPS60131783A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998059526A1 (en) * 1997-06-25 1998-12-30 Mitsubishi Pencil Co., Ltd. Carbonaceous heating element and process for producing the same
JP4554773B2 (en) * 2000-06-30 2010-09-29 パナソニック株式会社 Infrared light bulb and apparatus using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644506B2 (en) * 1987-08-27 1994-06-08 イビデン株式会社 Resistance heating element
JP4766742B2 (en) * 2000-12-18 2011-09-07 三菱鉛筆株式会社 Method for producing carbon-based heating element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998059526A1 (en) * 1997-06-25 1998-12-30 Mitsubishi Pencil Co., Ltd. Carbonaceous heating element and process for producing the same
JP4554773B2 (en) * 2000-06-30 2010-09-29 パナソニック株式会社 Infrared light bulb and apparatus using the same

Also Published As

Publication number Publication date
JPS60131783A (en) 1985-07-13

Similar Documents

Publication Publication Date Title
US3558276A (en) Process for producing formed carbon articles
JPH0367316B2 (en)
US3725533A (en) Boron carbide fiber production
US3825469A (en) Boron carbide fiber production
US3065088A (en) Oxidation-resistant graphite article and method
DE3229701A1 (en) METHOD FOR PRODUCING A Sintered Shaped Body From Refractory Material
Shimoo et al. Effect of Firing Temperature on the Thermal Stability of Low‐Oxygen Silicon Carbide Fibers
US5306415A (en) Oxygenated pitch and processing same
JPH0556284B2 (en)
US4863649A (en) Process for producing carbon heat generator
US2992901A (en) Production of artificial graphite
US1222593A (en) Art of producing aluminum carbid.
JPS5824394B2 (en) Titsukahousofukugoutaino Seizouhouhou
US3348917A (en) Glass containing dissolved carbon, methods of making and using, and obtaining graphite
JPS6042212A (en) Manufacture of heat resistant impermeable carbonaceous material
JPS623767B2 (en)
US1989824A (en) Method of glazing refractory bodies
JP2996539B2 (en) Acetylene black and its production method and use
JPS583996B2 (en) Chimitunatanka Keiso Shitsu Keitaino Seizouhouhou
US2734799A (en) Brooks
JPH0352412B2 (en)
US1349053A (en) Non-metallic resistance element and process of making same
JPS5849483B2 (en) Cathode carbon block manufacturing method for aluminum electrolyzer
KR920005409B1 (en) Preparing method of carbon/ceramic composite
JPH11242984A (en) Carbonic heating element