JPH0367101B2 - - Google Patents

Info

Publication number
JPH0367101B2
JPH0367101B2 JP80384A JP80384A JPH0367101B2 JP H0367101 B2 JPH0367101 B2 JP H0367101B2 JP 80384 A JP80384 A JP 80384A JP 80384 A JP80384 A JP 80384A JP H0367101 B2 JPH0367101 B2 JP H0367101B2
Authority
JP
Japan
Prior art keywords
silane
polyethylene
group
conductor
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP80384A
Other languages
Japanese (ja)
Other versions
JPS60144333A (en
Inventor
Tetsuo Shiromizu
Mitsuo Iwata
Takayuki Chikasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP80384A priority Critical patent/JPS60144333A/en
Publication of JPS60144333A publication Critical patent/JPS60144333A/en
Publication of JPH0367101B2 publication Critical patent/JPH0367101B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はシラン架橋による架橋ポリエチレン絶
縁を施したケーブルの製造方法に係り、特に絶縁
体の加熱変形率を向上するケーブルの製造方法に
係るものである。 従来一般に行なわれているシラン架橋による架
橋ポリエチレンケーブルの製造方法はポリエチレ
ンに有機シラン及び遊離ラジカル生成化合物を反
応させたシラングラフトポリエチレンにシラノー
ル縮合触媒を加えて導体上に押出被覆し、水又は
温水槽中を通してシラン架橋をさせた後ポリ塩化
ビニルシースを別工程で押出被覆していた。 ここに有機シランとは一般式RR′SiY2(Rは一
価のオレフイン性不飽和炭化水素基又はヒドロカ
ルボキシル基、Yは加水分解し得る有機基、
R′は脂肪族不飽和炭化水素基以外の一価の炭化
水素基又は基Yと同じもの)で表わされるもの
で、Rとしてはビニル、アリル、ブテニル、シク
ロヘキセニル、シクロペンタジエニル、シクロヘ
キサジエニル、CH2=C(CH3)COO(CH23−、
CH2=C(CH3)COOCH2CH2O(CH23−、CH2
=C(CH3)COOCH2CH2OCH2CH(OH)CH2O
(CH23−等があり、Yは任意の加水分解可能な
有機基で例えばメトキシ基、エトキシ基、ブトキ
シ基のようなアルコキシ基、ホルミルオキシ基、
アセトキシ基のようなアシルオキシ基又はプロピ
オンオキシ基、−ON=C(CH32、−ON=C
(CH3)C2H5、−ON=C(C6H52のようなオキシ
モ基、−NHC2H5のようなアルアミノ基などであ
り、これらのうちから同一の基又は異なる基を2
ケ用いる。R′は脂肪族炭化水素基以外の一価の
炭化水素基で、例えばメチル、エチル、プロピ
ル、テトラジル、オクタデジル、フエニル、ベン
ジル、トリル等の基又は基Yと同じ基である。 このようなシランの中でもRSiY3形のシランは
最も好ましく、中でもビニルトリエトキシシラ
ン、ビニルトリメトキシシランは好ましい。遊離
ラジカル生成化合物はグラフト反応の条件下でポ
リオレフイン中に遊離ラジカルを生成させること
ができ、かつその反応温度における半減期が6分
以下、好ましくは1分以下の化合物で、これに該
当するものとして有機過酸化物又はパーエステル
があり、例えば過酸化ベンゾイル、過酸化ジクロ
ルベンゾイル、ジクミルパーオキサイド、2・5
−ジ(パーオキシベンゾエート)ヘキシン−3、
1・3−ビス(t−ブチルパーオキシイソプロピ
ル)ベンゼン、ラウロイルパーオキサイド、t−
ブチルパーアセテート、2・5−ジメチル−2・
5−ジ(t−ブチルパーオキシ)ヘキシン−3、
2・5−ジメル−2・5−ジ(t−ブチルパーオ
キシ)ヘキサン、t−ブチルパーベンゾエートな
どがある。又、アゾビスイソブチロニトリル、ジ
メチルアゾジイソブチレートなどのアゾ化合物も
同様に用いられる。 シラノール縮合触媒とは有機金属化合物例えば
ジブチル錫ジラウレート、酢酸第一錫、ジブチル
錫ジアセテート、ジブチル錫オクトエート、ナフ
テン酸鉛、カプリル酸亜鉛、ナフテン酸コバル
ト、チタン酸テトラブチルエステル、チタン酸テ
トラノニルエステル、ステアリン酸鉛、ステアリ
ン酸亜鉛、ステアリン酸カドミウム、ステアリン
酸バリウム、ステアリン酸カルシウム等が用いら
れる。 従来法は前述の如くシラングラフトポリエチレ
ンにシラノール縮合触媒を加え、導体上に押出被
覆し、水又は温水中に通してシラン架橋させる
が、架橋をできるだけ完全に行なうために浸水時
間に長時間を要し、かつ絶縁体の加熱変形率も大
きくこのため塩化ビニルシースは必ず別工程で押
出被覆しなければならなかつた。 本発明者らはケーブルの製造能率を向上するた
めには導体上の押出被覆、該被覆の架橋及びシー
スの押出被覆をタンデムに一工程で行う方が望ま
しいが従来技術ではこれが不可能であることは前
述のとおりである。 本発明者はこのような状況に鑑み種々検討の結
果シラン架橋させる方法を改善し、水又は温水シ
ヤワーとすることにより、絶縁体の加熱変形率を
向上し、塩化ビニルシースのタンデム押出を実現
し品質に優れた架橋ポリエチレンケーブルを能率
よく製造することができたものである。 以下本発明を図面により説明すれば、送出リー
ル1より導体Wを送り出すようにし、キヤタピラ
けん引装置2を経てシラン架橋、ポリエチレンを
押出す第1の押出機3により絶縁体を押出被覆す
る。ここに用いられるコンパウンドはシラングラ
フトポリエチレンにシラノール縮合触媒を加えた
ものであつて、クロスヘツドダイを用いて、160
〜250℃で押出被覆する。押出被覆されたケーブ
ルコアCには水又は温水シヤワー4が激しく浴び
せられて水架橋が行なわれ、つづいて塩化ビニル
コンパウンドが第2の押出機5により押出被覆さ
れ冷却水槽6中を通過した後キヤタピラけん引装
置(引取機)7を経て巻取機8に架橋ポリエチレ
ンケーブルが巻取られる。 この際、塩化ビニルシースの押出の直前に内部
のケーブルコアの表面の水滴をスポンジ等で拭う
等して除去する方が、塩化ビニルシースに発泡を
起さないので好ましい。 次に本発明の実施例について述べる。 ポリエチレン(密度0.920メルトフローレート
2.0g/10min)100重量部に対し、ビニルメトキ
シシラン2重量部、ジクミルパーオキサイド0.05
重量部、ジブチル錫ジラウレート0.08、重量部を
混合混練し、公称断面積200mlの導体に第1の押
出機(口径115mmφ、L/D=25)により2.5mm厚
に押出被覆し、これに約60℃の温水シヤワーをか
け、引きつづいて第2の押出機(口径150mmφ、
L/D=25)によりポリ塩化ビニルシースを1.7
mm厚に押出被覆して架橋ポリエチレンケーブルを
製造した。 比較例 1 温水シヤワーに代えて冷却水槽を通した外は実
施例と同様にして架橋ポリエチレンケーブルを製
造した。 比較例 2 架橋ポリエチレンの押出被覆とポリ塩化ビニル
の押出被覆とを別工程としたほかは比較例1と同
様にして架橋ポリエチレンケーブルを製造した。 上記の実施例及び比較例の方法により得られた
架橋ポリエチレンケーブルの架橋ポリエチレン絶
縁体の物理特性を比較試験した結果は次のとおり
である。
The present invention relates to a method of manufacturing a cable insulated with cross-linked polyethylene by silane cross-linking, and particularly to a method of manufacturing a cable that improves the thermal deformation rate of an insulator. The conventional method for manufacturing cross-linked polyethylene cables using silane cross-linking is to add a silanol condensation catalyst to silane-grafted polyethylene, which is obtained by reacting polyethylene with an organic silane and a free radical-forming compound, to coat the conductor by extrusion, and then to coat the conductor in water or in a hot water bath. After crosslinking with silane, a polyvinyl chloride sheath was extruded and coated in a separate step. The term "organosilane" herein refers to the general formula RR'SiY 2 (R is a monovalent olefinic unsaturated hydrocarbon group or hydrocarboxyl group, Y is a hydrolyzable organic group,
R' is a monovalent hydrocarbon group other than an aliphatic unsaturated hydrocarbon group or the same group as the group Y), and R is vinyl, allyl, butenyl, cyclohexenyl, cyclopentadienyl, cyclohexadiene. enyl, CH2 =C( CH3 )COO( CH2 ) 3- ,
CH2 =C( CH3 ) COOCH2CH2O ( CH2 ) 3- , CH2
=C( CH3 ) COOCH2CH2OCH2CH ( OH ) CH2O
(CH 2 ) 3 -, etc., and Y is any hydrolyzable organic group, such as an alkoxy group such as a methoxy group, an ethoxy group, a butoxy group, a formyloxy group,
Acyloxy group such as acetoxy group or propionoxy group, -ON=C( CH3 ) 2 , -ON=C
(CH 3 )C 2 H 5 , -ON=C(C 6 H 5 ) 2 oximo group, -NHC 2 H 5 such as aramino group, etc. Among these, the same group or different groups 2
I use it. R' is a monovalent hydrocarbon group other than an aliphatic hydrocarbon group, such as methyl, ethyl, propyl, tetrazyl, octadecyl, phenyl, benzyl, tolyl, or the same group as the group Y. Among these silanes, RSiY 3 type silanes are most preferred, and vinyltriethoxysilane and vinyltrimethoxysilane are particularly preferred. A free radical-generating compound is a compound that can generate free radicals in a polyolefin under the conditions of a grafting reaction and has a half-life at the reaction temperature of 6 minutes or less, preferably 1 minute or less. Organic peroxides or peresters such as benzoyl peroxide, dichlorobenzoyl peroxide, dicumyl peroxide, 2.5
-di(peroxybenzoate)hexyne-3,
1,3-bis(t-butylperoxyisopropyl)benzene, lauroyl peroxide, t-
Butyl peracetate, 2,5-dimethyl-2.
5-di(t-butylperoxy)hexyne-3,
Examples include 2,5-dimel-2,5-di(t-butylperoxy)hexane and t-butylperbenzoate. Also, azo compounds such as azobisisobutyronitrile and dimethylazodiisobutyrate can be used similarly. Silanol condensation catalysts are organometallic compounds such as dibutyltin dilaurate, stannous acetate, dibutyltin diacetate, dibutyltin octoate, lead naphthenate, zinc caprylate, cobalt naphthenate, tetrabutyl titanate, tetranonyl titanate. , lead stearate, zinc stearate, cadmium stearate, barium stearate, calcium stearate, etc. are used. As mentioned above, in the conventional method, a silanol condensation catalyst is added to silane-grafted polyethylene, the conductor is coated by extrusion, and the silane is cross-linked by passing it in water or hot water. Moreover, the thermal deformation rate of the insulator is high, so the vinyl chloride sheath must be coated by extrusion in a separate process. The present inventors discovered that in order to improve cable manufacturing efficiency, it is desirable to carry out extrusion coating on the conductor, cross-linking of the coating, and extrusion coating of the sheath in tandem in one step, but this is not possible with conventional technology. is as described above. In view of this situation, the inventor of the present invention has improved the silane crosslinking method as a result of various studies, and by using water or hot water shower, the heat deformation rate of the insulator has been improved, and the tandem extrusion of PVC sheath has been realized and the quality has been improved. It was possible to efficiently manufacture a crosslinked polyethylene cable with excellent properties. Hereinafter, the present invention will be explained with reference to the drawings. A conductor W is sent out from a delivery reel 1, passed through a caterpillar traction device 2, and an insulator is extruded and coated with a first extruder 3 that extrudes silane crosslinking and polyethylene. The compound used here is made by adding a silanol condensation catalyst to silane-grafted polyethylene.
Extrusion coating at ~250°C. The extrusion-coated cable core C is vigorously showered with water or a hot water shower 4 to effect water crosslinking, and then a vinyl chloride compound is extrusion-coated by a second extruder 5 and passed through a cooling water tank 6 before being applied to the cable core C. The crosslinked polyethylene cable is wound up by a winding machine 8 via a traction device (pulling machine) 7. At this time, it is preferable to remove water droplets on the surface of the internal cable core by wiping with a sponge or the like immediately before extruding the vinyl chloride sheath, since foaming will not occur in the vinyl chloride sheath. Next, embodiments of the present invention will be described. Polyethylene (density 0.920 melt flow rate
2.0g/10min) 100 parts by weight, 2 parts by weight of vinylmethoxysilane, 0.05 parts by weight of dicumyl peroxide
Parts by weight and 0.08 parts by weight of dibutyltin dilaurate were mixed and kneaded, and extruded and coated on a conductor with a nominal cross-sectional area of 200 ml to a thickness of 2.5 mm using a first extruder (bore diameter 115 mmφ, L/D = 25). After showering with warm water at ℃, the second extruder (diameter 150mmφ,
L/D=25) with a polyvinyl chloride sheath of 1.7
A cross-linked polyethylene cable was manufactured by extrusion coating to a thickness of mm. Comparative Example 1 A cross-linked polyethylene cable was produced in the same manner as in Example except that the cable was passed through a cooling water tank instead of a hot water shower. Comparative Example 2 A cross-linked polyethylene cable was produced in the same manner as in Comparative Example 1, except that the extrusion coating of cross-linked polyethylene and the extrusion coating of polyvinyl chloride were performed in separate steps. The results of a comparative test of the physical properties of the crosslinked polyethylene insulators of the crosslinked polyethylene cables obtained by the methods of the above Examples and Comparative Examples are as follows.

【表】 この比較試験結果から明らかなように本発明の
方法によるものは比較例のものより加熱変形率が
格段に優れているがこのことは冷温水シヤワーが
冷温水槽より格別優れた方法であり、特に冷水シ
ヤワーより温水シヤワーの方がポリエチレンに吸
水し易く、架橋反応を充分起し易くタンデム押出
の実現を可能ならしめたものである。
[Table] As is clear from the results of this comparative test, the heating deformation rate of the method of the present invention is much better than that of the comparative example. In particular, hot water showering is more likely to absorb water into polyethylene than cold water showering, and the crosslinking reaction is sufficiently likely to occur, making tandem extrusion possible.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施態様の概略説明図。 3……第1の押出機、4……水又は温水シヤワ
ー、5……第2の押出機、C……ケーブルコア。
The figure is a schematic explanatory diagram of an embodiment of the present invention. 3...First extruder, 4...Water or hot water shower, 5...Second extruder, C...Cable core.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリエチレンに有機シラン及び遊離ラジカル
生成化合物を反応させたシラングラフトポリエチ
レンにシラノール縮合触媒を加えて導体上に押出
被覆し、水又は温水シヤワーをかけてシラン架橋
反応を促進し、ポリ塩化ビニルシースを押出被覆
し、上記の導体上の押出被覆、該被覆の架橋及び
シースの押出被覆がタンデムに一工程でなされる
ことを特徴とする架橋ポリエチレンケーブルの製
造方法。
1 Add a silanol condensation catalyst to silane-grafted polyethylene, which is made by reacting organic silane and a free radical-generating compound with polyethylene, extrude it onto a conductor, apply water or hot water shower to promote the silane crosslinking reaction, and extrude a polyvinyl chloride sheath. 1. A method for manufacturing a crosslinked polyethylene cable, characterized in that extrusion coating on the conductor, crosslinking of the coating, and extrusion coating of the sheath are carried out in tandem in one step.
JP80384A 1984-01-09 1984-01-09 Production of crosslinked polyethylene cable Granted JPS60144333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP80384A JPS60144333A (en) 1984-01-09 1984-01-09 Production of crosslinked polyethylene cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP80384A JPS60144333A (en) 1984-01-09 1984-01-09 Production of crosslinked polyethylene cable

Publications (2)

Publication Number Publication Date
JPS60144333A JPS60144333A (en) 1985-07-30
JPH0367101B2 true JPH0367101B2 (en) 1991-10-21

Family

ID=11483841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP80384A Granted JPS60144333A (en) 1984-01-09 1984-01-09 Production of crosslinked polyethylene cable

Country Status (1)

Country Link
JP (1) JPS60144333A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4608802B2 (en) * 2001-04-26 2011-01-12 日立電線株式会社 Molded articles, electric wires and cables using silane-crosslinked polyolefin
US7326298B2 (en) 2004-10-20 2008-02-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Wire insulating line

Also Published As

Publication number Publication date
JPS60144333A (en) 1985-07-30

Similar Documents

Publication Publication Date Title
US4228255A (en) Method for producing crosslinked polyethylenes
US6284374B1 (en) Strippable semiconductive resin composition and wire and cable
CN1306668A (en) Electrical cable having semiconductive water-blocking layer
JP4399076B2 (en) Peelable semiconductive resin composition for external semiconductive layer of water-crosslinked polyethylene insulated power cable
US7435908B2 (en) Low voltage power cable with insulation layer comprising polyolefin having polar groups, hydrolysable silane groups, and including a silanol condensation catalyst
JPH0367101B2 (en)
US20030132017A1 (en) Method of manufacturing a cable sheath by extruding and cross-linking a composition based on silane-grafted polymer, and a cable including a sheath obtained by the method
JPH06136066A (en) Production of silane-grafted resin composition and production of molded article of silane-cross-linked resin composition
JPH11172057A (en) Semiconducting resin composition having good water-crosslinkability and power cable made by using it
JPS60139713A (en) Production of crosslinked polyethylene-insulated wire
JPS606045B2 (en) Method for manufacturing crosslinked polyolefin electric wire
JPS6247324B2 (en)
JPS6011968B2 (en) Crosslinking treatment method for ethylene/vinyl ester copolymer-vinyl chloride graft copolymer
JP4399078B2 (en) Peelable semiconductive water crosslinkable resin composition for external semiconductive layer of water cross-linked polyethylene insulated power cable
JPS6289757A (en) Semiconductive mixture
JPS5925110A (en) Method of producing crosslinked polyolefin wire
JPS60262829A (en) Production of heat-shrinkable polyolefin tube
JPH03134918A (en) Manufacture of cross linked polyethylene resin coated electric wire
JP2002170436A (en) Cross-linked polyethylene electric cable and its manufacturing method
JPS5990315A (en) Method of producing crosslinked polyethylene insulated wire
JP4448589B2 (en) Adhesive semiconductive water crosslinkable resin composition for internal semiconductive layer of water cross-linked polyethylene insulated power cable
JPS6093710A (en) Method of producing polyolefin rubber insulated wire
JPH046217B2 (en)
JPS6013247B2 (en) Method for manufacturing cross-linked polyethylene insulated power cable
JP3067352B2 (en) Rubber insulated wire and method of manufacturing the same