JPH0366498B2 - - Google Patents

Info

Publication number
JPH0366498B2
JPH0366498B2 JP60080985A JP8098585A JPH0366498B2 JP H0366498 B2 JPH0366498 B2 JP H0366498B2 JP 60080985 A JP60080985 A JP 60080985A JP 8098585 A JP8098585 A JP 8098585A JP H0366498 B2 JPH0366498 B2 JP H0366498B2
Authority
JP
Japan
Prior art keywords
intake
port
cylinder chamber
swirl
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60080985A
Other languages
Japanese (ja)
Other versions
JPS61241419A (en
Inventor
Kenji Sakano
Masahiro Akeda
Tetsuo Ikejima
Kyoshi Hataura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP60080985A priority Critical patent/JPS61241419A/en
Publication of JPS61241419A publication Critical patent/JPS61241419A/en
Publication of JPH0366498B2 publication Critical patent/JPH0366498B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B2031/006Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air intake valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、内燃機関のダブル吸気ポート式吸気
装置に関し、吸気ポートの一方をピユアーヘリカ
ルポートに、また、他方をパーシヤリーヘリカル
ポートにして、ポート形状及び動弁機構を簡素化
するとともに、体積効率を高く維持し、同時にス
ワール特性を改善できるものを提供する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a double intake port type intake system for an internal combustion engine, in which one of the intake ports is a pure helical port and the other is a partially helical port. The present invention provides a device that can simplify the port shape and valve mechanism, maintain high volumetric efficiency, and improve swirl characteristics at the same time.

<従来技術> 内燃機関のダブル吸気ポート式吸気装置の基本
構造を述べると、例えば、第1図に示すように、
内燃機関Eの一つのシリンダ室1に対し2本の吸
気ポート2,3を動弁装置4のカム軸5の軸心S
と平行な方向Aに並列させてシリンダヘツド6に
形成し、両吸気ポート2,3の両ポート入口7,
8をシリンダヘツド6の同じ横側面10に開口す
るとともに、両ポート出口11,12をシリンダ
室端面14に開口して構成したものである。
<Prior Art> The basic structure of a double intake port type intake system for an internal combustion engine is described, for example, as shown in Fig. 1.
The two intake ports 2 and 3 for one cylinder chamber 1 of the internal combustion engine E are connected to the axis S of the camshaft 5 of the valve train 4.
are formed in the cylinder head 6 in parallel in the direction A parallel to the intake ports 2 and 3, and both port inlets 7,
8 are opened on the same side surface 10 of the cylinder head 6, and both port outlets 11 and 12 are opened on the end face 14 of the cylinder chamber.

一般に、ダブル吸気ポート式吸気装置は吸入空
気量を増大したい場合採用されるが、この形式の
従来技術としては、特公昭52−7485号公報に示す
ように、上記基本構造において、ダブル吸気ポー
トの一方をダイレクトポートに、また、他方をヘ
リカルポートに形成し、ダイレクトポートの出口
をシリンダ室中心よりもポート入口側とは直交す
る側に偏位させ、ヘリカルポートの出口をシリン
ダ室中心よりもポート入口側に偏位させ、ヘリカ
ルポートをクランク折曲り状に形成して、両ポー
ト長を略同距離に設定したものがある。
Generally, a double intake port type intake device is adopted when it is desired to increase the amount of intake air, but as shown in Japanese Patent Publication No. 52-7485, the conventional technology of this type is a double intake port type intake device with the above basic structure. One side is formed as a direct port and the other as a helical port, and the outlet of the direct port is deviated from the center of the cylinder chamber to the side perpendicular to the port inlet side, and the outlet of the helical port is formed as a port rather than the center of the cylinder chamber. There is one in which the helical port is deviated toward the inlet side, the helical port is formed in a crank-bent shape, and the lengths of both ports are set to be approximately the same distance.

<発明が解決しようとする問題点> しかしながら、上記従来技術では、カム軸の軸
心から各吸気ポートまでの距離が互いに大きく異
なるため、両吸気弁とロツカアームとの間に架橋
体を介装し、かつ架橋体の直進ガイド機構を設け
なければならず、動弁装置が複雑化し大形化す
る。
<Problems to be Solved by the Invention> However, in the above conventional technology, since the distances from the axis of the camshaft to each intake port are greatly different from each other, a bridge body is interposed between both intake valves and the rocker arm. , and a linear guide mechanism for the bridge body must be provided, making the valve train complicated and large.

また、ヘリカルポートがクランク状に大きく折
れ曲つているので、吸気抵抗が大きくなつて、ス
ワールが弱まるうえ、動的効果を小さくして体積
効率も低下せしめる。
Furthermore, since the helical port is bent in a crank shape, the intake resistance becomes large, which weakens the swirl, and also reduces the dynamic effect and lowers the volumetric efficiency.

しかも、ヘリカルポートは、形状が複雑で造り
にくい。さらに、ダブル吸気ポート方式では吸入
空気量を増大するためにその断面積を大きくとつ
ているので、吸気スピードは低下する。
Moreover, helical ports have a complicated shape and are difficult to manufacture. Furthermore, in the double intake port system, the cross-sectional area is increased in order to increase the amount of intake air, so the intake speed decreases.

このため、大排気量機関ではともかく、小さい
渦を伴つた比較的強いスワールが必要とされる小
排気量デイーゼル機関にダブル吸気ポートを適用
すると、吸気スピードの低下によりスワールが弱
くなり、適正なスワール特性が得られない。
For this reason, if a double intake port is applied to a small displacement diesel engine that requires a relatively strong swirl with a small vortex, the swirl will become weaker due to the reduction in intake speed, and the appropriate swirl will be reduced. Characteristics cannot be obtained.

本発明は、上記問題点を解決する事を技術的課
題とする。
The technical object of the present invention is to solve the above problems.

<問題点を解決するための手段> 上記課題を達成するための手段を、実施例に対
応する第1図乃至第9図を用いて以下に説明す
る。
<Means for Solving the Problems> Means for achieving the above-mentioned problems will be explained below using FIGS. 1 to 9, which correspond to embodiments.

即ち、シリンダ室1内で発生させようとする吸
気のスワールが両ポート出口11,12の並列部
分間15を流れる方向Bを基準にして、その風上
側に位置する吸気ポート2を吸気流のダイレクト
成分を殺すピユアーヘリカルポートの形状に形成
するとともに、その風下側に位置する吸気ポート
3を吸気流のダイレクト成分の一部を生かすパー
シヤリーヘリカルポートの形状に形成し、両ポー
ト出口11,12をシリンダ室中心Cよりもポー
ト入口7,8側に偏位する位置でカム軸軸心Sと
平行な方向に並べて位置させて構成したものであ
る。
That is, based on the direction B in which the intake air swirl to be generated in the cylinder chamber 1 flows between the parallel portions 15 of both port outlets 11 and 12, the intake port 2 located on the windward side is used as the direct direction of the intake air flow. The intake port 3 located on the leeward side is formed in the shape of a partial helical port that makes use of a part of the direct component of the intake flow, and both port exits 11, 12 are arranged side by side in a direction parallel to the camshaft axis S at positions offset from the cylinder chamber center C toward the port inlets 7 and 8.

<発明の効果> 本発明は、上記のように構成されている事から
次の効果を奏する。
<Effects of the Invention> The present invention has the following effects because it is configured as described above.

イ 吸気ポートをダブル方式にして、断面積を大
きくできるので、高速運転時でも吸気抵抗が極
端に大きくはならず、吸入空気量を増大でき
る。
(a) Since the intake port is of a double type and the cross-sectional area can be increased, the intake resistance does not become extremely large even during high-speed operation, and the amount of intake air can be increased.

ロ カム軸の軸心から各吸気ポート出口までの距
離が互いに等しくなるため、両吸気ポートの両
吸気弁をカム軸の吸気カムで直接駆動する場合
でもロツカアームを介して駆動する場合でも、
吸気カム又はロツカアームと吸気弁とを直接連
動させる事ができ、架橋体を介装しなくて済む
とともに、架橋体の直進ガイド機構も省略でき
るから、動弁装置を簡素化する事ができる。
(b) Since the distance from the axis of the camshaft to the outlet of each intake port is equal to each other, whether the intake valves of both intake ports are driven directly by the intake cam of the camshaft or via the rocker arm,
The intake cam or rocker arm and the intake valve can be directly interlocked, there is no need to interpose a bridge body, and a linear guide mechanism for the bridge body can also be omitted, so the valve operating system can be simplified.

ハ 風下側の吸気ポートは、パーシヤリーヘルカ
ルポートの形状になつていて吸気の一部が旋回
流となることから、ダイレクトポートよりも強
いスワールを起こすことができる。
C. The intake port on the leeward side has a partial helical port shape, and part of the intake air becomes a swirling flow, so it can generate a stronger swirl than a direct port.

しかも、両ポート出口がカム軸の軸心と平行
に並んでいて、両ポート入口に開口するヘツド
横側面から上記出口までの距離の一方が他方に
比べて極端に短くなることがないので、風上側
のピユアーヘリカルポートは風下側のパーシヤ
リーヘルカルポートとほぼ等しい長さになる。
この結果、吸気ポートを緩やかなわん曲状に形
成でき、吸気抵抗を小さくしてスワールを強く
することができる。
In addition, both port outlets are lined up parallel to the axis of the camshaft, and the distance from the side surface of the head that opens at both port inlets to the above outlet is not extremely short compared to the other, which prevents air flow. The upper helical port is approximately the same length as the partial helical port on the leeward side.
As a result, the intake port can be formed into a gently curved shape, reducing the intake resistance and increasing the swirl.

これにより、前述したように、一般のダブル
吸気ポートでは吸入空気量を増大できる反面、
吸気スピードが低下してスワールが弱まるため
にエンジンを小形化するには不利であるのに対
し、本発明のダブル吸気ポート式吸気装置で
は、小排気量エンジンの場合であつても強いス
ワールを得ることができるので燃料と空気との
混合性能を高めることができ、もつて空気利用
率を向上させることができる。
As a result, as mentioned above, although the amount of intake air can be increased with a general double intake port,
This is disadvantageous for downsizing the engine because the intake speed decreases and the swirl weakens, whereas the double intake port type intake system of the present invention provides a strong swirl even in the case of a small displacement engine. Therefore, the mixing performance of fuel and air can be improved, and the air utilization rate can be improved.

また、燃料と空気との混合性能が高くできる
ことから、排気ガスを浄化することができ、し
かも燃費を向上することができる。
Furthermore, since the mixing performance of fuel and air can be improved, exhaust gas can be purified and fuel efficiency can be improved.

ニ シリンダ室内のスワールの流れに接線方向で
接続されるようにした風下側の吸気ポートをパ
ーシヤリーヘルカルポートに形成するので、こ
のポートから吸入される吸気の一部はダイレク
ト成分となつてシリンダ内壁に沿つた接線方向
に吸気抵抗の少ない状態で勢いよく流れ込むこ
とになる。
D. The leeward side intake port is connected tangentially to the swirl flow in the cylinder chamber and is formed as a partial helical port, so a part of the intake air taken in from this port becomes a direct component and flows into the cylinder. Air flows forcefully in the tangential direction along the inner wall with little intake resistance.

この結果、上述のように強いスワールを得る
ものでありながら、しかも、ピユアーヘリカル
ポートに形成する場合に比べて体積効率を高く
できる。
As a result, while a strong swirl can be obtained as described above, the volumetric efficiency can be made higher than in the case of forming a pure helical port.

また、ピユアーヘリカルポートは、緩やかな
わん曲状に形成されるので体積効率を大きく維
持できる。
Furthermore, since the private helical port is formed in a gently curved shape, volumetric efficiency can be maintained at a high level.

これにより、両ヘリカルポートからの吸入空
気量を増大でき、しかも、上述のようにスワー
ルを強力にして空気利用率を向上できるので、
機関のトルク及び出力を高める事ができ、エン
ジンの高性能化を図る事ができる。
This allows you to increase the amount of intake air from both helical ports, and as mentioned above, make the swirl stronger and improve the air utilization rate.
The torque and output of the engine can be increased, and the performance of the engine can be improved.

ホ ピユアーヘリカルポートは、緩やかなわん曲
状に形成できるので、冒述従来例の場合よりも
はるかに簡単な形にでき、容易に造る事ができ
る。
Since the helical port can be formed into a gently curved shape, it can be made into a much simpler shape than the conventional example mentioned above, and can be manufactured easily.

<実施例> 以下、本発明の実施例を図面に基いて説明す
る。
<Example> Hereinafter, an example of the present invention will be described based on the drawings.

第1図はシリンダヘツド要部横断平面図、第2
図は縦型デイーゼルエンジンの要部縦断側面図、
第3図はシリンダヘツドの要部平面図であつて、
縦型デイーゼルエンジンEはシリンダブロツク1
6に所定間隔を隔てて複数のシリンダ室1を設
け、各シリンダ室1に上下動自在にピストン17
を内嵌する。
Figure 1 is a cross-sectional plan view of the main part of the cylinder head, Figure 2
The figure is a vertical side view of the main parts of a vertical diesel engine.
FIG. 3 is a plan view of the main part of the cylinder head,
Vertical diesel engine E has cylinder block 1
6 is provided with a plurality of cylinder chambers 1 at predetermined intervals, and a piston 17 is provided in each cylinder chamber 1 so as to be movable up and down.
Insert.

各シリンダ室1の前・後に吸気系及び排気系の
各動弁カム軸5,65を軸架し、動弁カム軸5を
進角装置18を介して吸気動弁装置4に、また、
動弁カム軸65を排気動弁装置60に各々連動す
る。
The valve drive camshafts 5 and 65 of the intake system and the exhaust system are mounted before and after each cylinder chamber 1, and the valve drive camshafts 5 are connected to the intake valve drive device 4 via the advance device 18, and
The valve train camshafts 65 are respectively linked to the exhaust valve train 60.

尚、符号19はシリンダブロツク16を左右に
貫く共通伝動軸で、進角装置18及び一方の吸気
ポート、例えば後述のパーシヤリーヘリカルポー
トに連なる短絡路20を開閉する吸気経路装置切
換弁21を駆動するものである。
Reference numeral 19 denotes a common transmission shaft passing through the cylinder block 16 from side to side, which controls an advance device 18 and an intake path device switching valve 21 that opens and closes a short-circuit path 20 connected to one of the intake ports, for example, a partially helical port to be described later. It is something that is driven.

シリンダブロツク16上にはシリンダヘツド6
を載置固定し、シリンダヘツド6の各シリンダ室
1に対応する部位に2本の吸気ポート2,3と排
気ポート22を配置し、シリンダ室1の中心Cに
ユニツトインジエクタ取付孔24を、さらに、当
該中心Cから排気ポート22寄りにグロープラグ
取付孔25を各々空ける。
The cylinder head 6 is mounted on the cylinder block 16.
are mounted and fixed, two intake ports 2 and 3 and an exhaust port 22 are arranged in the parts of the cylinder head 6 corresponding to each cylinder chamber 1, and a unit injector mounting hole 24 is arranged in the center C of the cylinder chamber 1. Further, glow plug mounting holes 25 are formed from the center C toward the exhaust port 22, respectively.

上記吸気ポート2,3は前記動弁カム軸5に平
行な方向Aに並列させてシリンダヘツド6に形成
され、その両ポート入口7,8をシリンダヘツド
6の同じ前側面10に開口するとともに、そのポ
ート出口11,12をシリンダ室中心Cよりもポ
ート入口7,8側に偏位する部位でカム軸心Sと
平行な方向に並べて位置させる。
The intake ports 2 and 3 are formed in the cylinder head 6 in parallel in the direction A parallel to the valve drive camshaft 5, and both port inlets 7 and 8 are opened on the same front side surface 10 of the cylinder head 6. The port outlets 11 and 12 are located side by side in a direction parallel to the cam axis S at a position that is offset from the cylinder chamber center C toward the port inlets 7 and 8.

そして、シリンダ室1内で発生させようとする
吸気のスワールが両ポート出口11,12の並列
部分間15を流れる方向Bを基準にして、その風
上側に位置する吸気ポート2をピユアーヘリカル
ポートに、また、風下側に位置する吸気ポート3
をパーシヤリーヘリカルポートに各々形成する。
Then, with reference to the direction B in which the intake swirl to be generated in the cylinder chamber 1 flows between the parallel portions 15 of both port outlets 11 and 12, the intake port 2 located on the windward side is connected to the pure helical port. In addition, the intake port 3 located on the leeward side
are respectively formed into partial helical ports.

上記ダブル吸気ポートのうち、風上側のピユア
ーヘリカルポート2は、第4図及び第5図に示す
ように、ポート出口11の周辺を円筒状に高く立
ち上げて、ポート入口7から流入した吸気を当該
ポート出口11でダイレクト成分を殺し、円筒内
壁11aに沿わせてシリンダ室1に略放射状に吹
き入れてスワールを発生させる(第8図参照)。
Of the above-mentioned double intake ports, the upwind pure helical port 2 has the periphery of the port outlet 11 raised high in a cylindrical shape as shown in FIGS. The direct component is killed at the port outlet 11, and the air is blown approximately radially into the cylinder chamber 1 along the cylindrical inner wall 11a to generate a swirl (see FIG. 8).

風下側のパーシヤリーヘリカルポート3は、第
6図及び第7図に示すように、ポート出口12の
一部12aを円筒状に立ち上げ、他の部分12b
をポートの入口8から出口12へ略上下方向に吹
き抜け可能に縦長に形成して、吸気の一部を当該
縦長部分12bからダイレクトにシリンダ室1に
流入せしめるとともに、残部吸気を円筒内壁12
aに沿わせてスワールを発生させる(第8図参
照)。
As shown in FIGS. 6 and 7, the partially helical port 3 on the leeward side has a portion 12a of the port outlet 12 raised up in a cylindrical shape, and the other portion 12b.
is formed vertically so as to be able to blow through from the inlet 8 to the outlet 12 of the port in a substantially vertical direction, so that part of the intake air flows directly into the cylinder chamber 1 from the longitudinally elongated portion 12b, and the remaining intake air flows through the cylindrical inner wall 12.
Swirl is generated along line a (see Figure 8).

一方、排気ポート22は、そのポート出口26
を共通にしてシリンダヘツド6の後側面27に開
口し、そのポート入口28,29を二つに分岐さ
せたうえでシリンダ室中心Cよりもポート出口2
6側に偏位させ、排気系の動弁カム軸心Sに平行
な方向に並べて位置させる。
On the other hand, the exhaust port 22 has its port outlet 26
are opened at the rear side 27 of the cylinder head 6, and the port inlets 28 and 29 are branched into two, and the port outlet 2 is opened from the center C of the cylinder chamber.
6 side, and position them side by side in a direction parallel to the valve train cam axis S of the exhaust system.

前記の吸気動弁装置4をタペツト30、プツシ
ユロツド31、ロツカアーム32より構成し、動
弁カム軸5の上方に位置するシリンダブロツク1
6及びシリンダヘツド6の対応箇所にプツシユロ
ツド嵌挿孔33を空ける。
The above-mentioned intake valve train 4 is composed of a tappet 30, a push rod 31, and a rocker arm 32, and the cylinder block 1 is located above the valve train camshaft 5.
6 and the cylinder head 6, a push rod insertion hole 33 is made at a corresponding location.

そして、これにプツシユロツド31を遊嵌し、
同じくプツシユロツド嵌挿孔33に上下動自在に
嵌挿したタペツト30を介して当該プツシヨロツ
ド31の下端34を進角装置18に接当せしめ
る。
Then, loosely fit the push rod 31 into this,
The lower end 34 of the push rod 31 is brought into contact with the advance device 18 via the tappet 30 which is similarly fitted into the push rod insertion hole 33 so as to be vertically movable.

尚、排気系の動弁装置60も同様に構成する。 Note that the valve train 60 of the exhaust system is also configured in the same manner.

また、シリンダヘツド6の上壁35の前方及び
後方に各々複数のブラケツト36を介して2本の
ロツカアーム軸37,38を軸架し、前方のロツ
カアーム軸37に二股状の吸気用ロツカアーム3
2を、また、後方のロツカアーム軸38に二股状
の排気用ロツカアーム39を各シリンダ室1毎に
揺動自在に枢支する。
In addition, two rocker arm shafts 37 and 38 are mounted on the front and rear sides of the upper wall 35 of the cylinder head 6 via a plurality of brackets 36, respectively, and a bifurcated intake rocker arm 3 is attached to the front rocker arm shaft 37.
2, and a bifurcated exhaust rocker arm 39 is swingably supported on the rear rocker arm shaft 38 for each cylinder chamber 1.

そして、低速時には油圧によつて従動アーム3
2bが主動アーム32aから外れて、ピユアーヘ
リカルポートを休止するように構成される。
At low speeds, the driven arm 3 is controlled by hydraulic pressure.
2b is configured to disengage from the driving arm 32a and rest the private helical port.

前・後のロツカアーム軸37,38の中間に
は、各シリンダ室1毎に2本の吸気弁40,41
及び2本の排気弁43,45が上下動自在に配置
され、吸気弁40,41の下端46を吸気ポート
出口11,12に臨ませ、その上端47を上記吸
気用ロツカアーム32の二つの出力端48,66
に接当させる。
Two intake valves 40, 41 are provided for each cylinder chamber 1 between the front and rear rocker arm shafts 37, 38.
and two exhaust valves 43 and 45 are arranged to be able to move up and down, with lower ends 46 of the intake valves 40 and 41 facing the intake port outlets 11 and 12, and upper ends 47 of the intake valves 40 and 41 facing the two output ends of the intake rocker arm 32. 48,66
make it come into contact with

このとき、ピユアーヘリカルポート2に臨む吸
気弁40には出力端66が、また、パーシヤリー
ヘリカルポート3に臨む吸気弁41には出力端4
8が各々接当する。
At this time, the intake valve 40 facing the private helical port 2 has the output end 66, and the intake valve 41 facing the partial helical port 3 has the output end 4.
8 are in contact with each other.

そして、排気弁43,45の下端50を排気ポ
ート入口28,29に臨ませ、その上端51を上
記排気用ロツカアーム39の二つの出力端52,
53に接当させる。
The lower ends 50 of the exhaust valves 43, 45 face the exhaust port inlets 28, 29, and the upper ends 51 of the exhaust valves 43, 45 face the two output ends 52 of the exhaust rocker arm 39,
53.

尚、吸気用ロツカアーム32はクラツチ機構6
2を介して主動アーム32aと従動アーム32b
が係合し、主動アーム32aには出力端48が、
また、従動アーム32bには出力端66が形成さ
れる。
In addition, the intake rocker arm 32 is connected to the clutch mechanism 6.
2, the driving arm 32a and the driven arm 32b
is engaged, and the output end 48 is connected to the main drive arm 32a.
Further, an output end 66 is formed on the driven arm 32b.

そして、低速時には油圧装置によつて従動アー
ム32bが主動アーム32aから外れて、主動ア
ーム32aがパーシヤリーヘリカルポート3に臨
む吸気弁41を片弁作動せしめる。
At low speeds, the driven arm 32b is disengaged from the driving arm 32a by the hydraulic system, and the driving arm 32a causes the intake valve 41 facing the partially helical port 3 to operate in one direction.

従つて、ピユアーヘリカルポートは休止され、
吸気はパーシヤリーヘリカルポートに集中するの
で、スワールを強くできる。
Therefore, the private helical port is suspended and
Since the intake air is concentrated in the partial helical port, the swirl can be made stronger.

符号54はユニツトインジエクタ嵌挿孔24に
嵌入されるユニツトインジエクタで吸・排気ポー
トの略中央に配置され、また、符号55はグロー
プラグ嵌挿孔25に嵌入されるグロープラグで排
気ポート22寄りに配置される。
Reference numeral 54 denotes a unit injector that is fitted into the unit injector insertion hole 24 and is located approximately in the center of the intake/exhaust ports. Reference numeral 55 represents a glow plug that is inserted into the glow plug insertion hole 25 and is located at the exhaust port 22. placed close to each other.

符号56は、吸・排気弁を閉弁付勢する閉弁バ
ネである。
Reference numeral 56 denotes a valve closing spring that biases the intake/exhaust valves to close.

前記吸気系のプツシユロツド31の上端31a
を吸気用ロツカアーム32の入力端63に接当
し、動弁カム軸5の回転により2本の吸気弁4
0,41を開・閉可能に駆動する。
Upper end 31a of the push rod 31 of the intake system
is in contact with the input end 63 of the intake rocker arm 32, and the two intake valves 4 are rotated by the rotation of the valve drive camshaft 5.
0 and 41 are driven to open and close.

この場合、吸気系のロツカアーム軸37と動弁
カム軸5と吸気ポート2,3の二つの出口11,
12とは共に平行に並ぶので、二股状の吸気用ロ
ツカアーム32の腕の長さを等しくでき、ロツカ
アーム32による二つの吸気弁40,41の押圧
力を均等にできる。
In this case, the rocker arm shaft 37 of the intake system, the valve train camshaft 5, the two outlets 11 of the intake ports 2 and 3,
12 are arranged parallel to each other, the lengths of the arms of the bifurcated intake rocker arm 32 can be made equal, and the pressing force of the rocker arm 32 on the two intake valves 40, 41 can be made equal.

尚、このことは排気系についても同じである。 Note that this also applies to the exhaust system.

そこで、本ダブル吸気ポートの機能を、第9図
を用いて説明すると、ピユアーヘリカルポート2
ではシリンダ室1の中心Cからシリンダ壁にかけ
て略均一な強度のスワールを発生させることがで
きる一方、パーシヤリーヘリカルポートではダイ
レクト成分が一部生きていることから、当該ポー
トに近いシリンダ壁付近、即ち、離心率の値が負
の大きな数値をとる部位に近づくにつれ、スワー
ル強度を大きくできることが判る。
Therefore, the function of this double intake port will be explained using Fig. 9.
In this case, it is possible to generate a swirl with a substantially uniform strength from the center C of the cylinder chamber 1 to the cylinder wall, while in the partially helical port, since a part of the direct component remains, the swirl near the cylinder wall near the port, That is, it can be seen that the swirl strength can be increased as the eccentricity value approaches a region where the value takes a large negative value.

従つて、この両ヘリカルポートが示す機能が相
乗的に作用してシリンダ内に強力なスワールを起
こすことができる。
Therefore, the functions exhibited by both helical ports act synergistically to generate a strong swirl within the cylinder.

尚、本発明は、二つの吸気ポート出口を動弁カ
ム軸心に平行に設定して動弁機構を簡単にできる
ので、単気筒はもとより、内燃機関の気筒数が多
くなるにつれて、この簡略化の効果はより大きく
なる。
In addition, the present invention can simplify the valve mechanism by setting the two intake port outlets parallel to the valve drive cam axis, so this simplification can be applied not only to single-cylinder engines but also as the number of cylinders in an internal combustion engine increases. The effect will be greater.

また、本発明では、吸気系はダブル方式を前提
とするが、排気系は1本或いは複数本のいずれに
しても差支えない。
Furthermore, although the present invention assumes a double intake system, the exhaust system may have one or more exhaust systems.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図はシリン
ダヘツドの要部横断平面図、第2図は縦型デイー
ゼルエンジンの要部縦断側面図、第3図はシリン
ダヘツドの要部平面図、第4図はピユアーヘリカ
ルポートの縦断正面図、第5図は第4図の−
線断面図、第6図はパーシヤリーヘリカルポート
の縦断正面図、第7図は第6図の−線断面
図、第8図はダブル吸気ポートの吸気の流れを示
す概略図、第9図は吸気ポート出口のシリンダ室
における離心率とスワール強度を示す関係図であ
る。 1……シリンダ室、2,3……吸気ポート、4
……動弁装置、5……4のカム軸、6……シリン
ダヘツド、7,8……吸気ポートの入口、10…
…6の横側面、11,12……吸気ポートの出
口、14……シリンダ室端面、15……11と1
2の並列部分間、E……内燃機関、S……5の軸
心、A……Sと平行な方向、B……スワールの方
向。
The drawings show an embodiment of the present invention; FIG. 1 is a cross-sectional plan view of the main part of a cylinder head, FIG. 2 is a longitudinal cross-sectional side view of the main part of a vertical diesel engine, and FIG. 3 is a plan view of the main part of the cylinder head. Figure 4 is a longitudinal sectional front view of the private helical port, and Figure 5 is the − of Figure 4.
6 is a vertical sectional front view of the partially helical port, FIG. 7 is a sectional view taken along the line - - of FIG. 6, FIG. 8 is a schematic diagram showing the intake flow of the double intake port, and FIG. 9 1 is a relationship diagram showing eccentricity and swirl strength in a cylinder chamber at an intake port outlet. 1... Cylinder chamber, 2, 3... Intake port, 4
... Valve gear, 5... Camshaft of 4, 6... Cylinder head, 7, 8... Inlet of intake port, 10...
...lateral side of 6, 11, 12...exit of intake port, 14...end face of cylinder chamber, 15...11 and 1
Between parallel parts of 2, E... internal combustion engine, S... axis of 5, A... direction parallel to S, B... direction of swirl.

Claims (1)

【特許請求の範囲】[Claims] 1 内燃機関Eの一つのシリンダ室1に対し2本
の吸気ポート2,3を動弁装置4のカム軸5の軸
心Sと平行な方向Aに並列させてシリンダヘツド
6に形成し、両吸気ポート2,3の両ポート入口
7,8をシリンダヘツド6の同じ横側面10に開
口するとともに、両ポート出口11,12をシリ
ンダ室端面14に開口して構成した内燃機関のダ
ブル吸気ポート式吸気装置において、シリンダ室
1内で発生させようとする吸気のスワールが両ポ
ート出口11,12の並列部分間15を流れる方
向Bを基準にして、その風上側に位置する吸気ポ
ート2を吸気流のダイレクト成分を殺すピユアー
ヘリカルポートの形状に形成するとともに、その
風下側に位置する吸気ポート3を吸気流のダイレ
クト成分の一部を生かすパーシヤリーヘリカルポ
ートの形状に形成し、両ポート出口11,12を
シリンダ室中心Cよりもポート入口7,8側に偏
位する位置でカム軸軸心Sと平行な方向に並べて
位置させて構成した事を特徴とする内燃機関のダ
ブル吸気ポート式吸気装置。
1 For one cylinder chamber 1 of the internal combustion engine E, two intake ports 2 and 3 are formed in the cylinder head 6 in parallel in the direction A parallel to the axis S of the camshaft 5 of the valve train 4, and both A double intake port type for an internal combustion engine, in which both port inlets 7, 8 of intake ports 2, 3 are opened on the same side surface 10 of the cylinder head 6, and both port outlets 11, 12 are opened on the cylinder chamber end face 14. In the intake system, with reference to the direction B in which the swirl of intake air to be generated in the cylinder chamber 1 flows between the parallel portions 15 of both port outlets 11 and 12, the intake port 2 located on the windward side is used as an intake air flow. At the same time, the intake port 3 located on the leeward side is formed in the shape of a partial helical port that makes use of a part of the direct component of the intake flow, and both port exits are 11 and 12 are arranged side by side in a direction parallel to the camshaft axis S at positions offset from the cylinder chamber center C toward the port entrances 7 and 8. Intake device.
JP60080985A 1985-04-16 1985-04-16 Double suction port type suction device for internal combustion engine Granted JPS61241419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60080985A JPS61241419A (en) 1985-04-16 1985-04-16 Double suction port type suction device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60080985A JPS61241419A (en) 1985-04-16 1985-04-16 Double suction port type suction device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS61241419A JPS61241419A (en) 1986-10-27
JPH0366498B2 true JPH0366498B2 (en) 1991-10-17

Family

ID=13733790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60080985A Granted JPS61241419A (en) 1985-04-16 1985-04-16 Double suction port type suction device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS61241419A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19534904B4 (en) * 1994-09-29 2008-07-17 Volkswagen Ag Cylinder head of an internal combustion engine
JP2891173B2 (en) * 1996-04-19 1999-05-17 トヨタ自動車株式会社 Intake device for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339527A (en) * 1976-09-24 1978-04-11 Yamatake Honeywell Co Ltd Combustion safty device
JPS58162722A (en) * 1982-03-23 1983-09-27 Toyota Motor Corp Intake apparatus for internal-combustion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142330U (en) * 1982-03-23 1983-09-26 トヨタ自動車株式会社 Internal combustion engine intake system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339527A (en) * 1976-09-24 1978-04-11 Yamatake Honeywell Co Ltd Combustion safty device
JPS58162722A (en) * 1982-03-23 1983-09-27 Toyota Motor Corp Intake apparatus for internal-combustion engine

Also Published As

Publication number Publication date
JPS61241419A (en) 1986-10-27

Similar Documents

Publication Publication Date Title
Kreuter et al. Strategies to improve SI-engine performance by means of variable intake lift, timing and duration
US5408958A (en) Cylinder head for an internal-combustion engine
JPH09112284A (en) Reciprocation-piston internal combusion engine
EP0413316A1 (en) Exhaust control valve system for parallel multi-cylinder two-cycle engine
JP3494284B2 (en) Intake port structure of 4-stroke cycle internal combustion engine
US5291868A (en) Single overhead cam multi-valve engine
JP4290147B2 (en) Internal combustion engine
JPH0366498B2 (en)
GB2215777A (en) Direct injection engine dual intake passages
JPS62159729A (en) Intake air port for internal combustion engine
JPH0723698B2 (en) Multi-valve engine intake system
US5359974A (en) Single overhead cam multi-valve engine
JP3318357B2 (en) Engine intake control device
JPH0368212B2 (en)
JPS61250340A (en) Double suction port type suction device for internal combustion engine
JP2737084B2 (en) 4 cycle engine
JP2584769Y2 (en) OHC internal combustion engine
JP3012039B2 (en) Engine intake control device
JPS61258921A (en) One-sided passage resting device of double suction passage for internal-combustion engine
JP3279600B2 (en) Engine intake control device
JPS63150404A (en) Valve system of v-type 4-cycle engine
JPH0159426B2 (en)
JPH03194125A (en) Dilution gas reducing device for rotary piston engine
JP2624947B2 (en) Outboard motor
JP3318367B2 (en) Engine intake control device