JPH0365949B2 - - Google Patents

Info

Publication number
JPH0365949B2
JPH0365949B2 JP58126392A JP12639283A JPH0365949B2 JP H0365949 B2 JPH0365949 B2 JP H0365949B2 JP 58126392 A JP58126392 A JP 58126392A JP 12639283 A JP12639283 A JP 12639283A JP H0365949 B2 JPH0365949 B2 JP H0365949B2
Authority
JP
Japan
Prior art keywords
reaction
oils
fats
diglyceride
transesterification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58126392A
Other languages
Japanese (ja)
Other versions
JPS6019495A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58126392A priority Critical patent/JPS6019495A/en
Priority to DE8484105522T priority patent/DE3468433D1/en
Priority to EP84105522A priority patent/EP0126416B1/en
Publication of JPS6019495A publication Critical patent/JPS6019495A/en
Priority to US06/898,513 priority patent/US4874699A/en
Publication of JPH0365949B2 publication Critical patent/JPH0365949B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fats And Perfumes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、リパーゼを用いる油脂類のエステル
交換反応方法に関するものである。詳しくは、リ
パーゼによる油脂類のエステル交換反応を加水分
解反応とエステル合成反応の2段階で行う反応方
法に関するものである。 油脂のエステル交換反応は、加工油脂の製造に
おいて水素添加とともに重要な技術である。 従来のエステル交換反応は、金属ナトリウム等
の無機触媒等の存在下で行われているが、このよ
うな化学的方法は交換する脂肪酸の結合部位に対
する位置選択性が低いという欠点がある。 一方、油脂等の加水分解酵素であるリパーゼ
(EC 3113)は加水分解反応だけでなく、エステ
ル合成反応をも触媒することが知られている
〔M.Iwai,Y.Tsujisaka,J.Fukumoto,J.Gen.
Appl.Microbiol.10,13,(1964)参照〕。リパー
ゼを用いる油脂のエステル交換反応は酵素の持つ
基質特異性、及び位置特異性等の高選択性に加え
て常温常圧で反応が進行するなどの利点を有する
ため省エネルギー、省資源の観点からも期待され
るものである。 一般に酵素反応は水溶液中で行うことが常識と
されているが、リパーゼによる油脂のエステル交
換反応の場計、水の比較的多い反応系では加水分
解反応が優先し、好ましい反応生成物を得ること
が困難である。そのため、従来公知のリパーゼに
よる油脂のエステル交換反応は極度に水分を低く
おさえた反応系で行われている。例えば、特開昭
55−71797号公報には反応系に存在する水分が基
質に対して0.18重量%以下の方法が記載されてい
る。また、特開昭52−104506号公報には少量の水
の存在下、或いは基質に対して0.2〜1重量%の
存在下で行う方法が記載されている。 しかしながら、上記の従来公知の方法のように
極度に水分の少ない反応系では酵素が十分に水和
されず、反応するための最適な構造を取れないた
め、酵素は完全に活性化されず、反応速度も非常
に遅い。また酵素組成物の調製にあたり、酵素組
成物の過剰な水分の除去のために複雑な乾燥操作
を要する。このため、乾燥による酵素の失活は免
がれず、乾燥時間及び含水率の調節等は極めて経
験的なものであり、安定した反応操作は望めな
い。さらに、酵素組成物の繰り返し使用におい
て、極めて水分の少ない系では酵素組成物中の水
分が徐々に減少することから酵素活性は漸次減衰
する。このため、反応前に極く微量の水分を再添
加する必要があるが、その量を調節することは極
めて困難である。 以上のように、リパーゼによる油脂のエステル
交換反応は無機触媒を用いる化学的な方法よりも
有利な点を持つている反面、多くの問題点を抱え
ており、工業的利用のためにはこれらの問題点を
技術的に解決する必要がある。 本発明の目的は、リパーゼによる油脂類のエス
テル交換反応の工業的利用を達成すべく、反応系
内のリパーゼを充分活性化し、工業化が可能な程
度にまで反応速度を高るとともに安定な反応を維
持するための反応操作の開発にある。 さらに、本発明の別の目的は、反応系内におけ
るリパーゼの不活性化を防止し、リパーゼの効果
的な再使用を可能にすることにより、該エステル
交換反応工程の経済性を高めることにある。 本発明者らは、かかる目的を達成すべく、リパ
ーゼによる油脂類のエステル交換反応に関し鋭意
研究を重ねた結果、リパーゼの有する機能を最大
限に発揮させることのできる反応操作方法を見い
出すことができた。 リパーゼに関しては、辻阪,岩井らの先駆的研
究〔例えば、(1)J.Gen.Appl.Microbiol.10,13,
(1964)、(2)Biochem.Biophys.Acta.489,415
(1977)、(3)ibid,575,156,(1979)、及び(4)
Agric.Biol.Chem.40,655,(1976)等参照〕によ
り、位置特異性、及び加水分解の逆反応であるエ
ステル合成反応の触媒として使用できることが実
証されている。その中で、エステル合成作用にお
けるグリセロールの位置特異性は加水分解におけ
る位置特異性と一致しており、グリセロールと脂
肪酸からのリパーゼによるグリセリド合成では反
応系中の水分含有が最終の合成率を支配している
ことを実験的に立証している。 本発明者らは、これらの事実をもとに反応工学
的に油脂類のエステル交換反応の解析を行つた結
果、油脂類のエステル交換反応速度rが基本的に
次式で表されることを見い出した。 r=k〔DG〕〔FA〕 ここで、kは総括反応速度定数、〔DG〕はジ
グリセリド濃度、〔FA〕は脂肪酸濃度である。ま
た、kは反応系内の水分に大きく依存する。 油脂のエステル交換反応速度に関しては、従
来、反応速度論的な研究報告は殆どなされていな
い。 本発明者らは、油脂類のエステル交換反応速度
に関する基礎的な研究・検討を、単純化された系
つまりトリラウリンとカプリン酸からなる系で行
つた。経時的な組成変化に対応する可能なすべて
の反応経路に基づく反応速度式によるコンピユー
ターを用いた解析の結果、トリグリセリドと脂肪
酸が直接脂肪酸基を交換し、新たなトリグリセリ
ドを生成する反応は生起し得ないと結論された。
一方、ジグリセリドと脂肪酸のエステル化によつ
て新たなトリグリセリドが生成する反応経路の仮
定、所謂ジグリセリドをエステル交換反応の中間
体とした仮定では実験値と計算値が非常によく一
致し、上記の基本的な反応速度式を導くことがで
きた。 即ち、本発明者らは、リパーゼによる油脂類の
エステル交換反応には水とジグリセリドと脂肪酸
が不可欠であるという知見に基づき、さらに、反
応系の水分を制御することにより、大幅な反応効
率の向上と生成物収率の向上を達成し、本発明を
完成した。 本発明の構成の要件は、ジグリセリドが油脂類
のエステル交換反応における中間体であるという
知見に基づき、従来、油脂類のエステル交換反応
において好ましくない副産物とされるジグリセリ
ドを積極的に反応に取り入れ、且つ人為的に反応
平衝を制御することを基本とするものである。 本発明のリパーゼによる油脂類のエステル交換
反応方法は、油脂類のエステル交換反応を2段の
反応で行うことを特徴とするものであり、第1段
反応はリパーゼによる油脂類の加水分解反応を主
とするものであり、第2段反応はリパーゼによる
グリセリドのエステル合成反応を主とするもので
ある。尚、上記した2段の反応は連続した操作で
行うことができる。また、反応収率を高めるた
め、多段槽型操作を採用することもできる。 本発明の方法は、第1段反応即ち加水分解反応
を主とする反応段階においては比較的多量の水分
を添加した系で反応を行うことが望ましい。即
ち、水分は油脂類1重量部に対し0.01重量部以
上、好ましくは0.02重量部以上添加するのが良
く、該範囲内の量の水分添加により、通常の酵素
反応が進行する温度である20〜50℃で混合撹拌す
ることにより1〜4時間で反応は平衝に達し、ジ
グリセリド含量が全グリセリドに対し15〜50重量
%の反応生成物が得られる。最適な量の水分は油
脂類1重量部に対し0.02〜0.10重量部であり、該
範囲内の量の水分を添加した系を用いることによ
り、ジグリセリド含有が全グリセリドに対し20〜
40重量%の反応生成物が得られる。 次に、第2段反応即ちエステル合成反応を主と
する反応段階では、エステル交換を目的とする脂
肪酸を第1反応の反応生成物に添加し、20〜50℃
の温度を保ちながら混合撹拌する。脂肪酸の添加
により系の反応は急速に加水分解反応からエステ
ル合成反応にシフトし、第1段反応で生成したジ
グリセリドはエステル合成反応によりエステル化
され、目的とするトリグリセリドが得られる。 本発明の方法で用いられるリパーゼとしては、
トリグリセリドの1,3−位置特異性を有するリ
パーゼが好ましく、これに該するリパーゼとし
て、リゾプスデレマー(Rhizopus delemar)、
リゾプスヤポニカス(Rhizopus japonicus)等
を挙げることができる。 本発明のさらに好ましい方法は、選択的なエス
テル交換反応を達成するために、上記第1段反応
即ち加水分解反応で生成するジグリセリド中に占
める1,2(2,3)−ジグリセリド割合が70重量
%以上、より好ましくは90重量%以上となるよう
に加水分解反応を行うものである。ジグリセリド
はしばしばアシル基転移反応がおこり得る不安定
な構造を有するため、加水分解反応温度を40℃以
下とすることが望ましく、反応時間も反応温度を
40℃とした場合10時間以内とすることが望まし
い。 本発明のさらに好ましい方法は、上記第2段反
応即ちエステル合成反応段階において反応系内の
水分を除去することを特徴とするものである。エ
ステル合成反応段階においては、脂肪酸を添加す
ることにより反応平衝のシフトがおこるが、さら
に反応系内の水分を除去することによりエステル
合成反応速度は徐々に減速される。 エステル合成反応段階における反応系内の水分
の除去は、乾燥した不活性ガスを反応系内に通気
し、さらに反応系外に排気することにより、反応
系内の水分を効果的に同伴除去することができ
る。該不活性ガスとしては、窒素ガス、アルゴン
ガス、ヘリウムガス等の爆発性がなく油脂類に対
し反応性の無いものであれば良い。反応系内への
通気は反応器内の液相部へのバブリングの他、気
相部への吹込みによる方法を用いることができ
る。 不活性ガスの通気による水分同伴除去におい
て、排気される混合ガスは冷媒により水の凝固点
以下に冷却された凝縮器を通過させることにより
混合ガスに含まれる水蒸気は氷となりトラツプさ
れ、不活性ガスと水蒸気は完全に分離される。分
離された不活性ガスはさらに反応系内に還流する
ことにより再利用することができる。 また、本発明の方法において、前記リパーゼの
使用量は基質となる油脂類に対し20〜10000U/
gが望ましく、より望ましくは100〜1000U/g
である。但し、酵素の活性単位(U)は、オリー
ブ油乳化液5mlと0.1Mリン酸塩緩衝液4mlに、
酵素を加え37℃で30分間反応したときに0.05N水
酸化ナトリウム水溶液0.06mlに相当する脂肪酸を
生成する毎に1活性単位(U)とした。以下に示
す実施例中の酵素の活性単位も同様である。さら
に、リパーゼの安定化、分散性を計る目的で担体
を共存させることが望ましい。該担体としては、
珪藻土、活性炭、石膏、ゼオライト等の無機物担
体、又はセルロース、キトサン、キチン等の有機
物担体等若しくは無機−有機複合担体等が用いら
れる。 本発明の方法の第2段反応(エステル合成反
応)段階における脂肪酸の添加量は油脂類1重量
部に対し0.4〜2.0重量部とすることが好ましい。
該脂肪酸としては炭素数2〜22の直鎖の飽和又は
不飽和の脂肪酸が利用でき、例えばパルミチン
酸、ステアリン酸、オレイン酸等を利用すること
ができる。また、上記脂肪酸は所定の量の全部を
一度に添加する他に、反応の進行に伴つて徐々に
添加する方法も用いることができる。添加脂肪酸
の中で例えば融点の高いステアリン酸、パルミチ
ン酸等を用いる場合、反応温度で不均一となるこ
とがあるが、そのような場合はリパーゼに対して
不活性な有機溶媒に脂肪酸を溶解し均一系として
反応を行うことができる。この種の有機溶媒とし
ては、n−ヘキサン、工業用ヘキサン、石油エー
テル等があり、脂肪酸1重量部に対し1〜10重量
部用いることができる。 本発明における反応温度は、第1段反応(加水
分解反応)段階、第2段反応(エステル合成反
応)段階ともに通常の酵素反応と同様に20〜70℃
で行うことができる。但し、第1段反応段階で
は、生成したジグリセリドのアシル基転移反応が
反応温度に依存するため、50℃以上で行うことは
適当ではなく、40℃以下で行うことが望ましい。 本発明の方法は、前述のように、油脂類のエス
テル交換反応を加水分解反応とエステル合成反応
の2段反応として構成しているため、微量の水分
を用いる反応系と比較し効率的な反応を行え、従
つて、従来、加水分解により生成する部分グリセ
リドを低くおさえるために反応速度を犠牲にしな
ければならなかつた1段の反応と比較すると飛躍
的な反応速度の向上と同時に最終生成物中のジグ
リセリド、モノグリセリド等の部分グリセリド含
有量を低減させることができ、画期的な反応操作
方法である。反応速度を大きくすることは反応器
の運転時間を短縮し効率的で生産性の高いプロセ
スを可能にするのみならず、酵素或いは酵素含有
組成物の反応器内での滞留時間を短縮できるため
反応器内で受ける撹拌に伴う応力や表面の物理的
変化等が原因となる酵素の失活或いは酵素含有組
成物の形状変化をより少なくすることができる利
点をも有する。また、本発明の方法では、従来の
酵素含有組成物の調製における乾燥操作に見られ
るような煩雑な手間が不用となるとともに無理な
乾燥による酵素の失活は完全に回避できること、
さらに、極く微量の水分を用いる従来の方法では
加水分解をおさえるため厳重な初発水分の調節が
必須であつたが、本発明の方法では基質となる油
脂類に対し3〜10重量%の範囲の水分量であれば
第2段反応のエステル合成反応段階での水分除去
操作により容易に水分を除去できるため、非常に
操作性の点で有効的である。 さらに、本発明の方法では、酵素含有組成物の
繰り返し使用に際しても厳重な水分分の制御を必
要とせず、2回目以降の反応においても反応系内
に水を添加することにより酵素は再び活性化さ
れ、常に高い酵素活性を維持できるため、安定し
た反応操作が可能である。しかも、本発明の方法
によれば、5回或いはそれ以上の酵素の再使用が
可能であり、工程の経済性を飛躍的に向上させる
ことができる。 次に実施例により、本発明をさらに具体的に説
明するが、本発明は、これらの実施例に限定され
るものではない。 実験例 1 キトサン(共和油脂工業(株)製、商品名フローナ
ツクN)8gを10%酢酸水溶液60g中に添加混合
し、キトサン酢酸塩ゲルを形成し、さらに、該ゲ
ルに水440g及びセライト32gを添加して均一混
合物とした後、これをアセトン2000g中に滴下混
合して、不溶物を遠心分解により回収し、さら
に、該不溶物をアセトン1000g中に添加混合した
後、濾別し、風乾罪、真空下で脱アセトン乾燥
し、キトサン酢酸塩−セライトからなる担体を得
た。次いで、リゾプスレデマー(Rhizopus
delemar)由来のリパーゼ(98000U/g)103mg
を水0.5gに溶解し、これを上記キトサン酢酸塩
−セライト担体2.0gに吸着させ、固定化酵素を
得た。 パーム軟部油38gとn−ヘキサン120gの混合
物に上記固定化酵素を添加し、これを閉鎖反応容
器内において、反応温度40℃で撹拌し加水分解反
応を行つた。経時的に反応混合物を分取し、イア
トロスカン(IATROSCAN)TH−10によるシ
ンクログラフイー法〔J.J.Szakasits etal.,Anal.
Chem.,45,351(1970)、M.Tanaka et al.,
Lipids15(10),872(1980)等参照〕により、1,
3−ジグリセリド、1,2(2,3)−ジグリセリ
ド、脂肪酸、トリグリセリド等の分析を行つた。
但し、シンクログラフイー法における展開溶媒
は、ベンゼン:クロロホルム:ギ酸=70:30:2
を用いた。これらの結果を第1図に示した。第1
図中、TGはトリグリセリド、1,2(2,3)−
DGは1,2(2,3)−ジグリセリド、1,3−
DGは1,3ジグリセリド、MGはモノグリセリ
ド、FFAは脂肪酸をそれぞれ示す。 本実験で用いたリゾプスデレマー由来のリパー
ゼは、1−位及び3−位を選択的に加水分解する
特異性を有する。従つて、第1図から明らかなよ
うに、反応初期は1,2(2,3)−ジグリセリド
のみが生成している。反応時間が長くなると1,
3−ジグリセリドの割合が多くなるが、これは、
該リパーゼによる影響ではなく、1,2(2,3)
−ジグリセリドが非酵素的アシル基転移反応によ
り1,3−ジグリセリドに変換したものと考えら
れる。このような転移反応に関しては、奥村らの
報告がある〔S.Okumura,M.Iwai,T.
Tsujisaka,Agric.Biol.Chem.,45,185(1981)
参照〕。このような非酵素的アシル基転移反応を
考慮しないとすれば、第1図に見るように、約3
時間程度で加水分解反応は平衝に達していること
がわかる。 反応時間をさらに長くすると、当然1,3−ジ
グリセリドの割合は増加してくる。また、反応温
度をさらに高くすると、当然非酵素的アシル基転
移反応速度が大となる。 加水分解反応を主とする第1段反応の次に脂肪
酸を添加してエステル合成反応を主とする第2段
反応を行う場合、1,3−ジグリセリドは、1,
3−位置特異性を有するリパーゼによる合成の基
質として望ましくない。従つて、1,3−ジグリ
セリドの生成割合の小さい段階で加水分解反応を
止め、次のエステル合成反応段階に入ることが望
ましい。このようなことから、加水分解反応がほ
ぼ平衝に達した時点、或いは平衝に達するすこし
前で脂肪酸を添加してエステル合成反応段階に入
ることがより望ましい。 実験例 2 本実験例では、加水分解反応段階における添加
水分量による反応平衝への影響について検討し
た。固定化酵素は添加水分量以外は実験例1と同
様に調製した。また、反応条件等も実験例1と同
様にして行つた。水分量(対基質重量)1.3%、
2.6%、5,3%及び10.5%の場合について、そ
れぞれ加水分解反応が平衝に達するのに要する時
間(hr)及び平衝状態での反応混合物中のジグリ
セリド含量(全グリセリドに対する重量%)を調
べ第1表に示した。第1表から明らかなように、
加水分解反応の平衝状態は初発水分量により決定
され、さらに水分量を増加させれば平衝状態にお
けるDG(ジグリセリド)含量がより増加してく
ることがわかる。
The present invention relates to a method for transesterification of oils and fats using lipase. Specifically, the present invention relates to a reaction method in which transesterification of oils and fats using lipase is carried out in two steps: a hydrolysis reaction and an ester synthesis reaction. Transesterification of oils and fats is an important technology along with hydrogenation in the production of processed oils and fats. Conventional transesterification reactions are carried out in the presence of inorganic catalysts such as sodium metal, but such chemical methods have the drawback of low regioselectivity for the binding site of the fatty acid to be exchanged. On the other hand, lipase (EC 3113), which is an enzyme that hydrolyzes fats and oils, is known to catalyze not only hydrolysis reactions but also ester synthesis reactions [M. Iwai, Y. Tsujisaka, J. Fukumoto, J. .Gen.
See Appl. Microbiol. 10 , 13, (1964)]. The transesterification reaction of fats and oils using lipase has the advantage of not only the substrate specificity of the enzyme and high selectivity such as positional specificity, but also the fact that the reaction proceeds at room temperature and pressure, so it is also useful from the viewpoint of energy and resource conservation. This is to be expected. It is generally accepted that enzymatic reactions are carried out in an aqueous solution, but in the case of transesterification of fats and oils using lipase, in a reaction system with a relatively large amount of water, the hydrolysis reaction takes precedence, and it is difficult to obtain a preferable reaction product. is difficult. Therefore, the transesterification reaction of fats and oils using conventionally known lipases is carried out in a reaction system with extremely low moisture content. For example, Tokukai Akira
No. 55-71797 describes a method in which the amount of water present in the reaction system is 0.18% by weight or less based on the substrate. Further, JP-A-52-104506 describes a method in which water is added in the presence of a small amount of water, or in the presence of 0.2 to 1% by weight based on the substrate. However, in a reaction system with extremely low water content, such as in the conventionally known method described above, the enzyme is not sufficiently hydrated and cannot take the optimal structure for reaction, so the enzyme is not fully activated and the reaction does not occur. The speed is also very slow. Further, in preparing the enzyme composition, a complicated drying operation is required to remove excess water from the enzyme composition. For this reason, deactivation of the enzyme due to drying is unavoidable, and adjustments to drying time and moisture content are highly empirical, and stable reaction operations cannot be expected. Further, in repeated use of an enzyme composition, in a system with extremely low water content, the water content in the enzyme composition gradually decreases, so that the enzyme activity gradually declines. For this reason, it is necessary to re-add a very small amount of water before the reaction, but it is extremely difficult to control the amount. As mentioned above, while the transesterification reaction of fats and oils using lipase has advantages over chemical methods using inorganic catalysts, it also has many problems, and these are difficult to achieve for industrial use. It is necessary to solve the problems technically. The purpose of the present invention is to fully activate the lipase in the reaction system, increase the reaction rate to the extent that industrialization is possible, and achieve a stable reaction in order to achieve industrial utilization of the transesterification reaction of oils and fats using lipase. The goal lies in the development of reaction operations to maintain this. Furthermore, another object of the present invention is to prevent inactivation of lipase within the reaction system and to enable effective reuse of lipase, thereby increasing the economic efficiency of the transesterification process. . In order to achieve this objective, the present inventors have conducted intensive research into the transesterification reaction of oils and fats using lipase, and as a result, have discovered a reaction operation method that can maximize the functions of lipase. Ta. Regarding lipase, the pioneering research of Tsujisaka, Iwai et al. [for example, (1) J.Gen.Appl.Microbiol. 10 , 13,
(1964), (2)Biochem.Biophys.Acta. 489 , 415
(1977), (3) ibid, 575 , 156, (1979), and (4)
Agric.Biol.Chem. 40 , 655, (1976), etc.], it has been demonstrated that it has regiospecificity and can be used as a catalyst for ester synthesis reaction, which is the reverse reaction of hydrolysis. Among them, the positional specificity of glycerol in ester synthesis is consistent with the positional specificity in hydrolysis, and in glyceride synthesis from glycerol and fatty acids by lipase, the water content in the reaction system controls the final synthesis rate. It has been experimentally proven that Based on these facts, the present inventors analyzed the transesterification reaction of oils and fats using reaction engineering, and as a result, they found that the transesterification reaction rate r of fats and oils is basically expressed by the following equation. I found it. r=k[DG][FA] Here, k is the overall reaction rate constant, [DG] is the diglyceride concentration, and [FA] is the fatty acid concentration. Further, k largely depends on the water content in the reaction system. Regarding the transesterification reaction rate of fats and oils, there have been few kinetic research reports to date. The present inventors conducted basic research and examination on the rate of transesterification of oils and fats using a simplified system, that is, a system consisting of trilaurin and capric acid. As a result of computer-based analysis using reaction rate equations based on all possible reaction paths that correspond to changes in composition over time, it was found that a reaction in which triglycerides and fatty acids directly exchange fatty acid groups and generate new triglycerides cannot occur. It was concluded that no.
On the other hand, assuming a reaction pathway in which a new triglyceride is generated by esterification of diglyceride and fatty acid, that is, assuming that diglyceride is an intermediate in the transesterification reaction, the experimental values and calculated values agree very well, and the above basic We were able to derive a reaction rate equation. That is, based on the knowledge that water, diglyceride, and fatty acids are essential for the transesterification reaction of oils and fats by lipase, the present inventors further improved the reaction efficiency by controlling the water content of the reaction system. The present invention was completed by achieving an improvement in product yield. The requirements for the configuration of the present invention are based on the knowledge that diglyceride is an intermediate in the transesterification reaction of oils and fats, and actively incorporates diglyceride, which has traditionally been an undesirable byproduct in the transesterification reaction of oils and fats, into the reaction. Moreover, it is based on artificially controlling the reaction equilibrium. The method for transesterification of fats and oils using lipase of the present invention is characterized in that the transesterification reaction of fats and oils is carried out in two stages, and the first stage reaction is a hydrolysis reaction of fats and oils using lipase. The second stage reaction is mainly a glyceride ester synthesis reaction using lipase. Incidentally, the two-stage reaction described above can be performed in a continuous operation. Moreover, in order to increase the reaction yield, a multi-stage tank type operation can also be adopted. In the method of the present invention, it is preferable to carry out the reaction in a system to which a relatively large amount of water is added in the first stage reaction, that is, the reaction stage mainly consisting of the hydrolysis reaction. In other words, water should be added in an amount of 0.01 part by weight or more, preferably 0.02 part by weight or more, per 1 part by weight of fats and oils, and by adding water in an amount within this range, the temperature at which normal enzymatic reactions proceed is 20 to 20. By mixing and stirring at 50 DEG C., the reaction reaches equilibrium in 1 to 4 hours, and a reaction product having a diglyceride content of 15 to 50% by weight based on the total glyceride is obtained. The optimal amount of water is 0.02 to 0.10 parts by weight per 1 part by weight of fats and oils, and by using a system containing water within this range, the diglyceride content will be 20 to 0.10 parts by weight relative to the total glyceride.
40% by weight of reaction product is obtained. Next, in the second stage reaction, that is, the reaction stage mainly consisting of ester synthesis reaction, the fatty acid for the purpose of transesterification is added to the reaction product of the first reaction, and
Mix and stir while maintaining the temperature. By adding the fatty acid, the reaction of the system rapidly shifts from the hydrolysis reaction to the ester synthesis reaction, and the diglyceride produced in the first stage reaction is esterified by the ester synthesis reaction to obtain the desired triglyceride. The lipase used in the method of the present invention includes:
Lipases having 1,3-position specificity for triglycerides are preferred, and suitable lipases include Rhizopus delemar, Rhizopus delemar,
Examples include Rhizopus japonicus. In a more preferred method of the present invention, in order to achieve selective transesterification, the proportion of 1,2(2,3)-diglyceride in the diglyceride produced in the first stage reaction, that is, the hydrolysis reaction is 70% by weight. % or more, more preferably 90% or more by weight. Diglycerides often have unstable structures that can undergo acyl group transfer reactions, so it is desirable to keep the hydrolysis reaction temperature below 40°C, and the reaction time should also be kept under the reaction temperature.
When the temperature is 40°C, it is desirable to do so within 10 hours. A more preferred method of the present invention is characterized in that water in the reaction system is removed in the second stage reaction, that is, the ester synthesis reaction stage. In the ester synthesis reaction stage, the addition of fatty acids causes a shift in the reaction equilibrium, but the ester synthesis reaction rate is gradually slowed down by further removing water in the reaction system. In order to remove moisture within the reaction system during the ester synthesis reaction step, dry inert gas is vented into the reaction system and then exhausted to the outside of the reaction system, thereby effectively entraining and removing the moisture within the reaction system. I can do it. The inert gas may be any gas such as nitrogen gas, argon gas, helium gas, etc., as long as it is non-explosive and non-reactive with oils and fats. Ventilation into the reaction system can be carried out by bubbling into the liquid phase in the reactor or by blowing into the gas phase. In the removal of entrained moisture by inert gas ventilation, the exhausted mixed gas is passed through a condenser cooled to below the freezing point of water by a refrigerant, and the water vapor contained in the mixed gas is trapped as ice and converted into inert gas. Water vapor is completely separated. The separated inert gas can be reused by further refluxing it into the reaction system. In addition, in the method of the present invention, the amount of lipase used is 20 to 10,000 U per fat or oil serving as a substrate.
g is desirable, more preferably 100 to 1000 U/g
It is. However, the activity unit (U) of the enzyme is 5 ml of olive oil emulsion and 4 ml of 0.1M phosphate buffer.
When the enzyme was added and the reaction was carried out at 37°C for 30 minutes, one activity unit (U) was defined as each fatty acid produced corresponding to 0.06 ml of a 0.05N aqueous sodium hydroxide solution. The same applies to the enzyme activity units in the Examples shown below. Furthermore, it is desirable to coexist a carrier for the purpose of stabilizing the lipase and measuring its dispersibility. As the carrier,
Inorganic carriers such as diatomaceous earth, activated carbon, gypsum, and zeolite, organic carriers such as cellulose, chitosan, and chitin, or inorganic-organic composite carriers are used. The amount of fatty acid added in the second reaction (ester synthesis reaction) step of the method of the present invention is preferably 0.4 to 2.0 parts by weight per 1 part by weight of fats and oils.
As the fatty acid, linear saturated or unsaturated fatty acids having 2 to 22 carbon atoms can be used, such as palmitic acid, stearic acid, oleic acid, etc. Furthermore, in addition to adding a predetermined amount of the fatty acid in its entirety at once, it is also possible to use a method in which it is added gradually as the reaction progresses. When using stearic acid, palmitic acid, etc., which have high melting points, as added fatty acids, the reaction temperature may become non-uniform. In such cases, dissolve the fatty acids in an organic solvent that is inactive to lipase. The reaction can be carried out in a homogeneous system. Examples of this type of organic solvent include n-hexane, industrial hexane, petroleum ether, etc., and can be used in an amount of 1 to 10 parts by weight per 1 part by weight of fatty acid. The reaction temperature in the present invention is 20 to 70°C in both the first stage reaction (hydrolysis reaction) and the second stage reaction (ester synthesis reaction), which is the same as in normal enzyme reactions.
It can be done with However, in the first reaction stage, since the acyl group transfer reaction of the produced diglyceride depends on the reaction temperature, it is not appropriate to carry out the reaction at a temperature of 50°C or higher, and it is desirable to carry out the reaction at a temperature of 40°C or lower. As mentioned above, in the method of the present invention, the transesterification reaction of oils and fats is configured as a two-step reaction of hydrolysis reaction and ester synthesis reaction, so the reaction is more efficient than a reaction system that uses a trace amount of water. Therefore, compared to the conventional one-stage reaction in which the reaction rate had to be sacrificed in order to keep the partial glyceride produced by hydrolysis low, the reaction rate is dramatically improved and at the same time the final product is This is an innovative reaction operation method that can reduce the content of partial glycerides such as diglycerides and monoglycerides. Increasing the reaction rate not only reduces reactor operation time and enables an efficient and highly productive process, but also reduces the residence time of the enzyme or enzyme-containing composition in the reactor, thereby increasing the reaction rate. It also has the advantage that deactivation of the enzyme or change in shape of the enzyme-containing composition caused by stress or physical changes on the surface caused by stirring in the container can be reduced. Further, the method of the present invention eliminates the need for the complicated labor involved in drying operations in the preparation of conventional enzyme-containing compositions, and completely avoids deactivation of enzymes due to excessive drying.
Furthermore, in conventional methods that use extremely small amounts of water, it was essential to strictly control the initial water content in order to suppress hydrolysis, but in the method of the present invention, the initial water content is in the range of 3 to 10% by weight based on the fats and oils that serve as the substrate. If the water content is , the water can be easily removed by the water removal operation in the ester synthesis reaction stage of the second stage reaction, which is very effective in terms of operability. Furthermore, the method of the present invention does not require strict control of water content even when the enzyme-containing composition is repeatedly used, and the enzyme can be reactivated by adding water to the reaction system in the second and subsequent reactions. This allows for stable reaction operation as it is possible to maintain high enzymatic activity at all times. Moreover, according to the method of the present invention, the enzyme can be reused five or more times, and the economic efficiency of the process can be dramatically improved. EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples. Experimental Example 1 8 g of chitosan (manufactured by Kyowa Yushi Kogyo Co., Ltd., trade name Fronac N) was added and mixed in 60 g of a 10% acetic acid aqueous solution to form a chitosan acetate gel, and then 440 g of water and 32 g of Celite were added to the gel. After adding the mixture to make a homogeneous mixture, this was mixed dropwise into 2000 g of acetone, and the insoluble matter was recovered by centrifugation.The insoluble matter was then added and mixed in 1000 g of acetone, filtered, and air-dried. The carrier was deacetonized and dried under vacuum to obtain a carrier consisting of chitosan acetate-celite. Next, Rhizopus redemer (Rhizopus
delemar) derived lipase (98000U/g) 103mg
was dissolved in 0.5 g of water and adsorbed onto 2.0 g of the above chitosan acetate-Celite carrier to obtain an immobilized enzyme. The immobilized enzyme was added to a mixture of 38 g of palm soft part oil and 120 g of n-hexane, and the mixture was stirred in a closed reaction vessel at a reaction temperature of 40°C to carry out a hydrolysis reaction. The reaction mixture was separated over time and subjected to synchrography using IATROSCAN TH-10 [JJSzakasits etal., Anal.
Chem., 45 , 351 (1970), M. Tanaka et al.,
Lipids 15 (10), 872 (1980), etc.], 1,
3-diglyceride, 1,2(2,3)-diglyceride, fatty acids, triglycerides, etc. were analyzed.
However, the developing solvent in the synchrography method is benzene: chloroform: formic acid = 70:30:2.
was used. These results are shown in FIG. 1st
In the figure, TG is triglyceride, 1,2(2,3)-
DG is 1,2(2,3)-diglyceride, 1,3-
DG represents 1,3 diglyceride, MG represents monoglyceride, and FFA represents fatty acid. The lipase derived from Rhizopus deremer used in this experiment has the specificity of selectively hydrolyzing the 1-position and the 3-position. Therefore, as is clear from FIG. 1, only 1,2(2,3)-diglyceride is produced at the initial stage of the reaction. When the reaction time becomes longer, 1,
The proportion of 3-diglyceride increases, but this
1,2 (2,3) rather than the effect of the lipase
It is considered that -diglyceride was converted to 1,3-diglyceride by a non-enzymatic acyl group transfer reaction. Regarding such a transfer reaction, there is a report by Okumura et al. [S. Okumura, M. Iwai, T.
Tsujisaka, Agric.Biol.Chem., 45 , 185 (1981)
reference〕. If such non-enzymatic acyl group transfer reaction is not considered, as shown in Figure 1, approximately 3
It can be seen that the hydrolysis reaction reaches equilibrium in about hours. Naturally, when the reaction time is further lengthened, the proportion of 1,3-diglyceride increases. Moreover, when the reaction temperature is further increased, the rate of non-enzymatic acyl group transfer reaction naturally increases. When a fatty acid is added after the first stage reaction mainly consisting of a hydrolysis reaction to perform a second stage reaction mainly consisting of an ester synthesis reaction, 1,3-diglyceride is converted into 1,3-diglyceride.
Undesirable as a substrate for synthesis by lipases with 3-regiospecificity. Therefore, it is desirable to stop the hydrolysis reaction at a stage when the production rate of 1,3-diglyceride is small and start the next ester synthesis reaction stage. For this reason, it is more desirable to add the fatty acid and enter the ester synthesis reaction stage at the time when the hydrolysis reaction almost reaches equilibrium, or slightly before reaching equilibrium. Experimental Example 2 In this experimental example, the influence of the amount of water added in the hydrolysis reaction stage on the reaction equilibrium was investigated. The immobilized enzyme was prepared in the same manner as in Experimental Example 1 except for the amount of water added. Further, the reaction conditions and the like were the same as in Experimental Example 1. Moisture content (based on substrate weight) 1.3%,
For the cases of 2.6%, 5, 3% and 10.5%, the time required for the hydrolysis reaction to reach equilibrium (hr) and the diglyceride content (% by weight relative to the total glyceride) in the reaction mixture at equilibrium are calculated, respectively. The results are shown in Table 1. As is clear from Table 1,
It can be seen that the equilibrium state of the hydrolysis reaction is determined by the initial water content, and as the water content is further increased, the DG (diglyceride) content in the equilibrium state increases further.

【表】 実施例 1 実験例1と同様の反応条件で、第1段反応(加
水分解反応)を3時間行つた。次に、ステアリン
酸(日本油脂製、NAA−180)57g及びn−ヘ
キサン165gを添加し、40℃で第2段反応(エス
テル合成反応)を行つた。反応混合物を経時的に
分取し、カラムクロマトグラフイーによりトリグ
リセリド画分を分取した(カラムクロマトグラフ
イーの条件;担体,フロリジル、展開溶媒,n−
ヘキサン:エチルエーテル=85:15)。分取した
トリグリセリド画分の固体脂含有率(SFC)を測
定した。SFC測定における調質条件は、油脂を完
全に液状にした後、0℃に30分間放置して固化
し、20℃で2時間放置した後、30℃及び20℃でそ
れぞれ1時間及び2時間放置することを7回繰り
返すことにより行つた。SFCの測定は常法(A.
O.C.S.Recomended Practice Cd 16−81 Solid
Fat Content)に従つて、プラクシスモデル
(PRAXIS MODEL)SFC−900を用いて行つた。
第2段反応(エステル合成反応)段階における反
応時間0,4,8,12,及び20時間目のトリグリ
セリド画分のSFCを第2図に示した。第2図から
明らかなように、反応時間8時間以降からはトリ
グリセリドの物性は殆ど変化していない。従つ
て、カカオバター代用脂の製造を行う場合、8時
間程度で反応を終了し、トリグリセリド画分を分
取し、溶剤分別等で中融点トリグリセリドを分取
すればよいことがわかる。 比較例 1 実験例1と同様のパーム軟部油とn−ヘキサン
の混合物に、固定化酵素の添加とともにステアリ
ン酸(日本油脂製、NAA−180)57g及びn−
ヘキサン165gを添加すること以外は、実験例1
と同様の反応条件でエステル交換反応を行つた。
反応混合物を経時的に分取し、実施例1と同様
に、カラムクロマトグラフイーによりトリグリセ
リド画分を分取しSFCを測定した。これらの結果
を第3図に示した。第3図から明らかなように、
実施例1の結果(第2図)に比較して経時的物性
(SFC)変化が非常に遅い。 実施例2、及び比較例2,3 第4図にフローシートで示した装置を用いて次
のようにして油脂のエステル交換反応を行つた。 パーム軟部油38gを、リゾプスデレマー由来の
リパーゼ(98000U/g)103mgを水2.0gに溶解
しこれを実験例1と同様の担体2.0gに吸着させ
て調製した固定化酵素、及びn−ヘキサン120g
とともに40℃で2時間閉鎖反応器A内で撹拌機1
aにより撹拌し、第1段反応(加水分解反応)を
行つた。 次に、撹拌を一時停止し、ステアリン酸(日本
油脂製、NAA−180)34.2gを添加し撹拌を再開
するとともに、反応器A内の液相部1に、不活性
ガスである窒素を窒素リザーバーDからポンプC
により乾燥剤充填層Bを通して乾燥させた乾燥窒
素を吹き込み、気液平衝関係が成立する気相部2
の水蒸気を含んだ同伴不活性ガスを反応系外に排
気することにより、反応系内の水分含量を徐々に
低下させた(第2段反応のエステル合成反応)。
この第2段の反応の際の不活性ガスの平均滞留時
間は3秒程度とした。n−ヘキサンを水蒸気を含
んだ同伴不活性ガスは、ドライアイスで−20℃程
度に冷却された表面凝縮器Fを通ることでn−ヘ
キサンは液化し、水蒸気は氷となり、気−液−固
の3相に分離され、液化したn−ヘキサンは反応
器Aに還流した。 反応終了後、撹拌を停止し、生成物を回収し
た。反応生成物は、ジエイ.ブラム(J.Blum)
らの方法〔Lipid,5,601,(1970)参照〕に従
つて、ヘキサメチルジシラザン(HMDS)、トリ
メチルクロロシラン(TMOS)(和光純薬製)を
用いてトリメチルシリル化し、昇温ガスクロマト
グラフイーにより分析した。その結果を第2表に
示した。 第2表に示した如く、本発明による方法(実施
例2)では、第1段反応の加水分解反応によりジ
グリセリドが24.6重量%生成しているが、第2段
反応のエステル交換反応及びエステル合成反応に
よりジグリセリドは徐々に減少し、8時間後は
11.5重量%にまで減少し、さらに12時間後は7.4
重量%まで減少した。一方、比較例として、実施
例2と同様の固定化酵素を使用し、最初からステ
アリン酸を添加した場合(比較例2)、及び最初
からステアリン酸を添加し且つ少量の水分(基質
に対して0.3重量%)を用いて反応を行つた場合
(比較例3)の結果を合わせて第2表に示したが、
比較例2の場合つまり最初からステアリン酸を添
加した所謂1段で完了させる反応の場合ではエス
テル交換は進行するもののその速度は遅く、一度
生成したジグリセリドは反応平衝に達するまで増
加の傾向を示し、再エステル化によるジグリセリ
ドの減少は認められなかつた。また、比較例3の
場合つまりジグリセリドの生成を極力おさえる目
的で非常に微量の水分を反応系内に添加した場
合、第2表から明らかなように、反応速度は非常
に遅く、本発明の反応方法と比較するとその反応
速度1/7以下であり、事実上工業プロセスとして
は成り立たないことがわかる。また、このように
ジグリセリドの生成を恐れるあまり反応時間を長
くとることで酵素活性の低下は著しく、反応終了
後回収した酵素剤を再び反応に使用するとは殆ど
不可能である。
[Table] Example 1 Under the same reaction conditions as in Experimental Example 1, the first stage reaction (hydrolysis reaction) was carried out for 3 hours. Next, 57 g of stearic acid (NAA-180, manufactured by NOF Corporation) and 165 g of n-hexane were added, and a second stage reaction (ester synthesis reaction) was carried out at 40°C. The reaction mixture was fractionated over time, and a triglyceride fraction was fractionated by column chromatography (column chromatography conditions: carrier, Florisil, developing solvent, n-
Hexane:ethyl ether = 85:15). The solid fat content (SFC) of the separated triglyceride fraction was measured. The refining conditions for SFC measurement are as follows: After completely liquefying the fat and oil, leave it at 0℃ for 30 minutes to solidify, leave it at 20℃ for 2 hours, and then leave it at 30℃ and 20℃ for 1 hour and 2 hours, respectively. This was done by repeating this seven times. SFC is measured using the conventional method (A.
OCSRecomended Practice Cd 16−81 Solid
Fat Content) was carried out using PRAXIS MODEL SFC-900.
FIG. 2 shows the SFC of the triglyceride fraction at reaction times of 0, 4, 8, 12, and 20 hours in the second stage reaction (ester synthesis reaction). As is clear from FIG. 2, the physical properties of the triglyceride hardly changed after the reaction time of 8 hours. Therefore, it can be seen that when producing a cocoa butter substitute, it is sufficient to complete the reaction in about 8 hours, separate the triglyceride fraction, and separate the medium melting point triglyceride by solvent fractionation or the like. Comparative Example 1 To the same mixture of palm soft part oil and n-hexane as in Experimental Example 1, 57 g of stearic acid (NAA-180, manufactured by NOF Corporation) and n-hexane were added along with the addition of immobilized enzyme.
Experimental example 1 except for adding 165g of hexane
The transesterification reaction was carried out under the same reaction conditions.
The reaction mixture was fractionated over time, and in the same manner as in Example 1, the triglyceride fraction was fractionated by column chromatography and the SFC was measured. These results are shown in FIG. As is clear from Figure 3,
Compared to the results of Example 1 (FIG. 2), the change in physical properties over time (SFC) is very slow. Example 2 and Comparative Examples 2 and 3 The transesterification reaction of fats and oils was carried out in the following manner using the apparatus shown in the flow sheet in FIG. An immobilized enzyme prepared by dissolving 38 g of palm soft part oil, 103 mg of lipase derived from Rhizopus delemer (98000 U/g) in 2.0 g of water, and adsorbing this onto 2.0 g of the same carrier as in Experimental Example 1, and 120 g of n-hexane.
Stirrer 1 in closed reactor A for 2 hours at 40 °C with
The first stage reaction (hydrolysis reaction) was carried out by stirring under a. Next, stirring was temporarily stopped, 34.2 g of stearic acid (NAA-180, manufactured by NOF Corporation) was added, and stirring was resumed. From reservoir D to pump C
Dry nitrogen is blown through the desiccant packed bed B to create a gas phase part 2 in which a gas-liquid equilibrium relationship is established.
The water content in the reaction system was gradually lowered by exhausting the entrained inert gas containing water vapor out of the reaction system (ester synthesis reaction of the second stage reaction).
The average residence time of the inert gas during this second stage reaction was about 3 seconds. The entrained inert gas containing n-hexane and water vapor passes through the surface condenser F cooled to around -20℃ with dry ice, where the n-hexane liquefies, the water vapor turns into ice, and the gas-liquid-solid transition occurs. The liquefied n-hexane was refluxed to reactor A. After the reaction was completed, stirring was stopped and the product was collected. The reaction product is J. Blum (J.Blum)
[Lipid, 5, 601, (1970)], trimethylsilylation was performed using hexamethyldisilazane (HMDS) and trimethylchlorosilane (TMOS) (manufactured by Wako Pure Chemical Industries, Ltd.), and the reaction was performed by temperature-programmed gas chromatography. analyzed. The results are shown in Table 2. As shown in Table 2, in the method according to the present invention (Example 2), 24.6% by weight of diglyceride was produced by the hydrolysis reaction in the first stage reaction, but the transesterification reaction and ester synthesis in the second stage reaction Due to the reaction, diglyceride gradually decreases, and after 8 hours,
It decreased to 11.5% by weight, and 7.4% after 12 hours.
% by weight. On the other hand, as a comparative example, the same immobilized enzyme as in Example 2 was used, and stearic acid was added from the beginning (Comparative Example 2), and stearic acid was added from the beginning and a small amount of water (relative to the substrate) was used. Table 2 shows the results of the reaction using 0.3% by weight (Comparative Example 3).
In the case of Comparative Example 2, that is, in the case of the so-called one-stage reaction in which stearic acid was added from the beginning, the transesterification progressed, but the rate was slow, and the diglyceride once produced showed a tendency to increase until the reaction equilibrium was reached. However, no decrease in diglyceride was observed due to re-esterification. In addition, in the case of Comparative Example 3, that is, when a very small amount of water was added to the reaction system for the purpose of suppressing the formation of diglyceride as much as possible, as is clear from Table 2, the reaction rate was very slow, and the reaction of the present invention was Compared to the method, the reaction rate is less than 1/7, which means that it is virtually impossible to use as an industrial process. Furthermore, if the reaction time is prolonged due to fear of the formation of diglyceride, the enzyme activity is significantly reduced, and it is almost impossible to reuse the enzyme agent recovered after the reaction is completed.

【表】【table】

【表】 実施例3及び比較例4 実施例2と同様の方法で第1段反応(加水分解
反応)段階及び第2段反応(エステル合成反応)
段階からなるエステル交換反応を行い、反応終了
後、固定化酵素を回収した。回収固定化酵素に、
原料油脂に対して5.0重量%に相当する水を吸着
させた。該固定化酵素を用いて、実施例2と同様
に加水分解反応段階及びエステル合成反応段階か
らなるエステル交換反応を繰り返し行つた。エス
テル合成反応段階の8時間目の反応混合物を、実
施例2と同様にトリメチルシリル化し、昇温ガス
クロマトグラフイーにより分析した。一方、比較
例4として、加水分解反応段階を行わず、最初か
ら脂肪酸を添加して反応を行つた場合について同
様の分析をつた。これらの分析の結果より、原料
油脂と反応混合物中のトリグリセリド中の炭素数
50のトリグリセリド(C50)と炭素数54のトリグ
リセリド(C54)の変化量の絶対値の和(|△
C50|+|△C54|)を計算し、第5図に、実施
例3に係る分析結果を折れ線1で、また比較例4
に係る分析結果を折れ線2でそれぞれ示した。ま
た、反応混合物中の全グリセリド中に占めるジグ
リセリド含量も第5図に、実施例3に係る分析結
果を折れ線3で、また比較例4に係る分析結果を
折れ線4でそれぞれ示した。 第5図から明らかなように、実施例3の場合
は、反応速度が非常に速やかであるが、比較例4
の場合は、繰り返し反応によつて反応速度が顕著
に低減している。
[Table] Example 3 and Comparative Example 4 First stage reaction (hydrolysis reaction) and second stage reaction (ester synthesis reaction) in the same manner as in Example 2
A transesterification reaction consisting of steps was performed, and after the reaction was completed, the immobilized enzyme was collected. To the recovered immobilized enzyme,
Water was adsorbed in an amount equivalent to 5.0% by weight based on the raw material oil. Using the immobilized enzyme, a transesterification reaction consisting of a hydrolysis reaction step and an ester synthesis reaction step was repeated in the same manner as in Example 2. The reaction mixture after 8 hours of the ester synthesis reaction step was trimethylsilylated in the same manner as in Example 2, and analyzed by temperature-rising gas chromatography. On the other hand, as Comparative Example 4, a similar analysis was conducted for a case where the hydrolysis reaction step was not performed and the reaction was performed by adding fatty acids from the beginning. From the results of these analyses, the number of carbon atoms in the triglycerides in the raw material fat and the reaction mixture was determined.
Sum of absolute values of changes in triglyceride with carbon number 50 (C50) and triglyceride with carbon number 54 (C54) (|△
C50 | + | △C54 |
The analysis results related to the above are shown by polygonal lines 2, respectively. Further, the diglyceride content in the total glycerides in the reaction mixture is also shown in FIG. 5, with the analysis results for Example 3 shown by line 3 and the analysis results for Comparative Example 4 shown by line 4. As is clear from FIG. 5, in the case of Example 3, the reaction rate was very rapid, but in the case of Comparative Example 4,
In the case of , the reaction rate is significantly reduced by repeated reactions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実験例1の加水分解反応における反応
混合物中の各成分の経時的変化を示すグラフ、第
2図は実施例1の第2段反応(エステル合成反
応)段階における反応混合物中のトリグリセリド
画分のSFCの経時的変化を示すグラフ、第3図は
比較例1のエステル交換反応における反応混合物
中のトリグリセリド画分のSFCの経時的変化を示
すグラフ、第4図は実施例2で用いた本発明の実
施に好適な装置のフローシート、第5図は実施例
3及び比較例4の繰り返し反応における、反応混
合物中のトリグリセリド成分の変化量の推移及び
反応混合物中の全グリセリド中に占めるジグリセ
リド含量の推移を示すグラフである。 A…反応器、B…乾燥剤充填層、C…ポンプ、
D…窒素リザーバー、E…窒素ボンベ、F…凝縮
器、1a…撹拌機、1…液相部、2…気相部。
Figure 1 is a graph showing changes over time in each component in the reaction mixture in the hydrolysis reaction of Experimental Example 1, and Figure 2 is a graph showing triglycerides in the reaction mixture in the second reaction (ester synthesis reaction) stage of Example 1. A graph showing changes over time in the SFC of the fractions. Figure 3 is a graph showing changes over time in the SFC of the triglyceride fraction in the reaction mixture in the transesterification reaction of Comparative Example 1. Figure 4 is a graph showing changes over time in the SFC of the triglyceride fraction used in Example 2. FIG. 5 is a flow sheet of an apparatus suitable for carrying out the present invention, and shows the change in the amount of triglyceride in the reaction mixture and the proportion of triglyceride in the total glyceride in the reaction mixture in the repeated reactions of Example 3 and Comparative Example 4. It is a graph showing changes in diglyceride content. A...reactor, B...desiccant packed bed, C...pump,
D... Nitrogen reservoir, E... Nitrogen cylinder, F... Condenser, 1a... Stirrer, 1... Liquid phase part, 2... Gas phase part.

Claims (1)

【特許請求の範囲】 1 油脂類の加水分解反応を主とする第1段反応
と、エステル合成反応を主とする第2段反応の連
続する2段の反応により構成されることを特徴と
するリパーゼによる油脂類のエステル交換反応方
法。 2 リパーゼが1,3−位置特異性を有するリパ
ーゼである、特許請求の範囲第1項記載のリパー
ゼによる油脂類のエステル交換反応方法。 3 第1段反応が全グリセリド中15〜50重量%の
ジグリセリドの得られる反応である、特許請求の
範囲第1又は2項記載のリパーゼによる油脂類の
エステル交換反応方法。 4 第1段反応が全グリセリド中20〜40重量%の
ジグリセリドの得られる反応である、特許請求の
範囲第1又は2項記載のリパーゼによる油脂類の
エステル交換反応方法。 5 第1段反応によつて得られるジグリセリドが
全ジグリセリド中70重量%以上の1,2(2,3)
−ジグリセリドを含有するジグリセリドである、
特許請求の範囲第1〜4項何れかに記載のリパー
ゼによる油脂類のエステル交換反応方法。 6 第1段反応によつて得られるジグリセリドが
全ジグリセリド中90重量%以上の1,2(2,3)
−ジグリセリドを含有するジグリセリドである、
特許請求の範囲第1〜4項何れかに記載のリパー
ゼによる油脂類のエステル交換反応方法。 7 第2段反応が脂肪酸を添加してエステル合成
反応を行う反応である、特許請求の範囲第1〜6
項何れかに記載のリパーゼによる油脂類のエステ
ル交換反応方法。 8 脂肪酸の添加量が油脂類1重量部に対し0.4
〜2.0重量部である、特許請求の範囲第7項記載
のリパーゼによる油脂類のエステル交換反応方
法。 9 第2段反応において、反応系内の水分除去を
行う、特許請求の範囲第1〜8項何れかに記載の
リパーゼによる油脂類のエステル交換反応方法。 10 乾燥した不活性ガスを継続的或いは断続的
に反応系内に通気し、さらに反応系外に排気して
反応系内の水分を同伴除去することにより、水分
除去を行う、特許請求の範囲第9項記載のリパー
ゼによる油脂類のエステル交換反応方法。 11 反応系外に排気されたガスを凝縮器を通過
させて水分を分離除去し、反応系内に還流させ
る、特許請求の範囲第10項記載のリパーゼによ
る油脂類のエステル交換反応方法。
[Scope of Claims] 1. It is characterized by being composed of two consecutive reactions: a first stage reaction mainly consisting of a hydrolysis reaction of oils and fats, and a second stage reaction mainly consisting of an ester synthesis reaction. Method for transesterification of oils and fats using lipase. 2. The method for transesterification of oils and fats using lipase according to claim 1, wherein the lipase is a lipase having 1,3-regiospecificity. 3. The method for transesterification of oils and fats using lipase according to claim 1 or 2, wherein the first stage reaction is a reaction that yields 15 to 50% by weight of diglyceride based on the total glyceride. 4. The method for transesterifying fats and oils using lipase according to claim 1 or 2, wherein the first stage reaction is a reaction that yields 20 to 40% by weight of diglycerides based on the total glycerides. 5 1,2 (2,3) in which the diglyceride obtained by the first stage reaction is 70% by weight or more of the total diglyceride
- is a diglyceride containing diglyceride,
A method for transesterifying fats and oils using a lipase according to any one of claims 1 to 4. 6 1,2 (2,3) in which the diglyceride obtained by the first stage reaction is 90% by weight or more of the total diglyceride
- is a diglyceride containing diglyceride,
A method for transesterifying fats and oils using a lipase according to any one of claims 1 to 4. 7 Claims 1 to 6, wherein the second stage reaction is a reaction in which a fatty acid is added to perform an ester synthesis reaction.
A method for transesterification of oils and fats using lipase according to any one of Items 1 to 3. 8 The amount of fatty acids added is 0.4 per part by weight of fats and oils.
A method for transesterifying fats and oils using lipase according to claim 7, wherein the amount is 2.0 parts by weight. 9. A method for transesterification of oils and fats using lipase according to any one of claims 1 to 8, wherein in the second stage reaction, water in the reaction system is removed. 10 Moisture removal is carried out by continuously or intermittently passing a dry inert gas into the reaction system and exhausting it outside the reaction system to remove the moisture within the reaction system. 9. A method for transesterification of oils and fats using lipase according to item 9. 11. The method for transesterification of oils and fats using lipase according to claim 10, wherein the gas exhausted outside the reaction system is passed through a condenser to separate and remove moisture, and then refluxed into the reaction system.
JP58126392A 1983-05-19 1983-07-12 Ester exchange reaction of oil or fat using lipase Granted JPS6019495A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58126392A JPS6019495A (en) 1983-07-12 1983-07-12 Ester exchange reaction of oil or fat using lipase
DE8484105522T DE3468433D1 (en) 1983-05-19 1984-05-15 Reaction method for transesterifying fats and oils
EP84105522A EP0126416B1 (en) 1983-05-19 1984-05-15 Reaction method for transesterifying fats and oils
US06/898,513 US4874699A (en) 1983-05-19 1986-08-21 Reaction method for transesterifying fats and oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58126392A JPS6019495A (en) 1983-07-12 1983-07-12 Ester exchange reaction of oil or fat using lipase

Publications (2)

Publication Number Publication Date
JPS6019495A JPS6019495A (en) 1985-01-31
JPH0365949B2 true JPH0365949B2 (en) 1991-10-15

Family

ID=14934000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58126392A Granted JPS6019495A (en) 1983-05-19 1983-07-12 Ester exchange reaction of oil or fat using lipase

Country Status (1)

Country Link
JP (1) JPS6019495A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258992A (en) * 1985-09-10 1987-03-14 Nisshin Oil Mills Ltd:The Method of synthesizing ester
JPS6387988A (en) * 1986-10-01 1988-04-19 Nisshin Oil Mills Ltd:The Oil and fat having excellent digestibility and absorbability
JP6645804B2 (en) * 2015-10-28 2020-02-14 花王株式会社 Manufacturing method of structural fats and oils

Also Published As

Publication number Publication date
JPS6019495A (en) 1985-01-31

Similar Documents

Publication Publication Date Title
Berger et al. Enzymatic esterification of glycerol II. Lipase-catalyzed synthesis of regioisomerically pure 1 (3)-rac-monoacylglycerols
Rozendaal et al. Interesterification of oils and fats
EP0126416B1 (en) Reaction method for transesterifying fats and oils
EP0064855B1 (en) Fat processing
US5219744A (en) Process for modifying fats and oils
Soumanou et al. Two-step enzymatic reaction for the synthesis of pure structured triacylglycerides
US4268527A (en) Method for producing cacao butter substitute
CA1210409A (en) Rearrangement process
Bloomer et al. Triglyceride Interesterification by Lipases: 2. Reaction parameters for the reduction of trisaturated impurities and diglycerides in batch reactions
US5935828A (en) Enzymatic production of monoglycerides containing omega-3 unsaturated fatty acids
JPH0439995B2 (en)
WO2021088319A1 (en) Method for synthesizing diglyceride
EP0257388A2 (en) Process for transesterifying fats
US5316927A (en) Production of monoglycerides by enzymatic transesterification
WO1990004033A1 (en) Production of monoglycerides by enzymatic transesterification
US4420560A (en) Method for modification of fats and oils
Chandler et al. Lipase-catalyzed synthesis of chiral triglycerides
JPH0365949B2 (en)
JP4335196B2 (en) Conjugated fatty acid-containing monoglyceride and method for producing the same
WO2020007334A1 (en) Tri-saturated fatty acid glyceride and usu-type triglyceride
AU5176693A (en) Enzymic triglyceride conversion
JP2002088392A (en) Method for ester interchange of oils or fats
JPS61254699A (en) Fat modifying method
JPS63198992A (en) Production of liquid oil
JP2711391B2 (en) Method for producing reformed oil

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees