JPH0365848B2 - - Google Patents

Info

Publication number
JPH0365848B2
JPH0365848B2 JP22857384A JP22857384A JPH0365848B2 JP H0365848 B2 JPH0365848 B2 JP H0365848B2 JP 22857384 A JP22857384 A JP 22857384A JP 22857384 A JP22857384 A JP 22857384A JP H0365848 B2 JPH0365848 B2 JP H0365848B2
Authority
JP
Japan
Prior art keywords
diaphragm
substrate
pressure
thick
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22857384A
Other languages
Japanese (ja)
Other versions
JPS61107125A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP22857384A priority Critical patent/JPS61107125A/en
Publication of JPS61107125A publication Critical patent/JPS61107125A/en
Publication of JPH0365848B2 publication Critical patent/JPH0365848B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0073Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a semiconductive diaphragm

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は測定すべき圧力を受ける測定ダイアフ
ラムを有する圧力センサに関し、測定ダイアフラ
ムを過大圧から保護する機構を有する圧力センサ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a pressure sensor having a measuring diaphragm that receives a pressure to be measured, and more particularly to a pressure sensor having a mechanism for protecting the measuring diaphragm from excessive pressure.

<従来の技術> 第5図は従来例を示す構成断面図、第6図は第
5図におけるA−A断面図である。これらの図に
おいて、18は測定ダイアフラムで、中心の円板
状の厚肉部18aを囲むように、同心円上に複数
の環状の厚肉部18b,18cが片面に設けられ
ている。測定ダイアフラム18には、単結晶シリ
コン若しくはNi−SPANC等の導電性弾性材料又
はサフアイヤの如き絶縁性弾性材料が用いられ、
後者の場合には中央厚肉部18aに電極用として
導電膜を形成する。
<Prior Art> FIG. 5 is a sectional view showing a conventional example, and FIG. 6 is a sectional view taken along line AA in FIG. In these figures, reference numeral 18 denotes a measurement diaphragm, and a plurality of annular thick-walled parts 18b and 18c are provided on one side of the measuring diaphragm on a concentric circle so as to surround a central disk-shaped thick-walled part 18a. The measuring diaphragm 18 is made of a conductive elastic material such as single crystal silicon or Ni-SPANC, or an insulating elastic material such as saphire.
In the latter case, a conductive film is formed on the central thick portion 18a as an electrode.

19,20は、測定ダイアフラム18の両面に
対向して設けられたパイレツクスガラス、セラミ
ツクス等の絶縁性のボデイで、測定ダイアフラム
18の周縁厚肉部18dにおいて陽極接合等によ
つて固着されている。そして、片側のボデイ20
には圧力導入路20aが設けられ、測定ダイアフ
ラム18の片側に形成される測定室21に測定す
べき圧力Pが導きかれ、他方の側のボデイ19に
は大気解放用の孔30が設けられている。
Reference numerals 19 and 20 denote insulating bodies made of pyrex glass, ceramics, etc., which are provided opposite both sides of the measuring diaphragm 18, and are fixed to the thick peripheral portion 18d of the measuring diaphragm 18 by anodic bonding or the like. . And body 20 on one side
A pressure introduction path 20a is provided in the body 19, and a pressure P to be measured is introduced into a measurement chamber 21 formed on one side of the measurement diaphragm 18, and a hole 30 for venting to the atmosphere is provided in the body 19 on the other side. There is.

23,24は夫々ボデイ19,20の中央部
に、測定ダイアフラム18の厚肉部18aに対向
して設けられた電極で、金又はアルミニウムが用
いられる。
Reference numerals 23 and 24 are electrodes provided at the center of the bodies 19 and 20, respectively, facing the thick portion 18a of the measurement diaphragm 18, and are made of gold or aluminum.

25,26は測定ダイアフラム18の厚肉部1
8b,18cに対向してボデイ19上に設けられ
た環状のストツパーである。
25 and 26 are thick portions 1 of the measurement diaphragm 18
This is an annular stopper provided on the body 19 opposite to 8b and 18c.

このような装置において、測定室21に測定す
べき圧力Pが導入されると、測定ダイアフラム1
8は圧力を受け厚肉部18a,18b,18c及
び周縁厚肉部18dの薄肉部において歪み、測定
ダイアフラム18は圧力Pに応じて変位する。こ
れにより、中央厚肉部18aと電極23,24間
の間隙が変化し、この間の静電容量の変化から圧
力に応じた電気信号を得ることができる。
In such a device, when the pressure P to be measured is introduced into the measurement chamber 21, the measurement diaphragm 1
8 is subjected to pressure and is distorted in the thick portions 18a, 18b, 18c and the thin portion of the peripheral thick portion 18d, and the measuring diaphragm 18 is displaced in accordance with the pressure P. As a result, the gap between the central thick portion 18a and the electrodes 23 and 24 changes, and an electrical signal corresponding to the pressure can be obtained from the change in capacitance between the gaps.

一方、操作ミス等により過大圧が加わると測定
ダイアフラム18は、厚肉部18a,18b,1
8cがボデイ19に当るまで撓み、これに当つて
止まる。その後は測定ダイアフラム18の前記薄
肉部が過大圧を受けることになる。従つて、この
薄肉部の厚さ、幅とが実際に加わることのある最
大の適大圧に充分耐え得る寸法にする必要があ
る。
On the other hand, if excessive pressure is applied due to an operational error or the like, the measurement diaphragm 18 will
8c bends until it hits the body 19 and stops there. The thin-walled portion of the measuring diaphragm 18 will then be subjected to excessive pressure. Therefore, it is necessary that the thickness and width of this thin portion be dimensioned to be able to withstand the maximum appropriate pressure that may actually be applied.

<発明が解決しようとする問題点> ところで、このような構成の圧力センサにおい
て、測定すべき圧力が工業プロセス用である場
合、過大圧の最大値は300Kg/cm2に達するので、こ
のような過大圧に耐えられる寸法にしておく必要
がある。一方、測定ダイアフラム18の厚肉部1
8aと電極23,24間の間隙は、5ミクロン程
度と微小でそれ故に、厚肉部18a,18b,1
8cを精度よく、また簡単に製作するのは難しい
という問題点があつた。
<Problems to be Solved by the Invention> By the way, in a pressure sensor with such a configuration, when the pressure to be measured is for an industrial process, the maximum value of excessive pressure reaches 300Kg/cm 2 . It must be sized to withstand excessive pressure. On the other hand, the thick part 1 of the measurement diaphragm 18
The gap between the electrodes 8a and the electrodes 23 and 24 is minute, about 5 microns, and therefore the thick parts 18a, 18b, 1
There was a problem that it was difficult to manufacture 8c accurately and easily.

<問題点を解決するための手段> 本発明は上記従来技術の問題点に鑑みてなされ
たもので、片面の中心部に円状の厚肉部が形成さ
れ、その厚肉部を中心に順次大きくなるリング状
の厚肉部が複数箇所形成された測定ダイアフラム
と、このダイアフラムの両側に対向配置され、こ
のダイアフラムと共に室を形成するボデイと、前
記測定ダイアフラムの片側に測定圧力を導く手段
と、圧力による前記ダイアフラムの変位を電気信
号に変換する手段とからなる圧力センサにおい
て、前記ダイアフラムは弾性を有する単結晶基板
からなり、この基板の表面に基板を構成する原子
とは共有結合半径の異なる原子を有する単結晶膜
を形成し、共有結合半径の異なる2種の単結晶膜
がエピタキシヤル状に結合していることから生ず
る基板の変形を利用して前記ボデイとの間に外周
部が狭く中央部に向かつて順次大きくなる間〓を
形成したことを特徴とするものである。
<Means for Solving the Problems> The present invention has been made in view of the above-mentioned problems in the prior art. a measuring diaphragm in which a plurality of ring-shaped thick-walled portions that increase in size are formed; a body disposed oppositely on both sides of the diaphragm and forming a chamber together with the diaphragm; and means for guiding measurement pressure to one side of the measuring diaphragm; A pressure sensor comprising means for converting displacement of the diaphragm due to pressure into an electrical signal, wherein the diaphragm is made of an elastic single crystal substrate, and on the surface of the substrate there are atoms having a different covalent bond radius from the atoms constituting the substrate. By using the deformation of the substrate caused by the epitaxial bonding of two types of single crystal films with different covalent bond radii, the outer periphery is narrow and the center is narrow between the substrate and the body. It is characterized by the formation of a gap that gradually increases towards the end.

<実施例> はじめに本発明の基礎となる、単結晶基板に反
りを発生させる実験結果について説明する。
<Example> First, the results of an experiment in which a single crystal substrate is caused to warp, which is the basis of the present invention, will be explained.

第2図は実験に用いた試料イの外観を示す斜視
図である。図において、1は不純物としてアンチ
モン、リン等を1015cm-3程度混入したn形の矩形
状シリコン単結晶基板で、L=30mm、l=10mm、
t1=250μm程度に形成されている。2は単結晶基
板1の片側表面に形成したエピタキシヤル膜で、
エピタキシヤル成長過程で不純物としてボロンを
1919〜1020cm-3程度混入して成長させたシリコン
単結晶膜で、厚さt2=30μm程度に加工されてい
る。
FIG. 2 is a perspective view showing the appearance of sample A used in the experiment. In the figure, 1 is an n-type rectangular silicon single crystal substrate mixed with about 10 15 cm -3 of antimony, phosphorus, etc. as impurities, L = 30 mm, l = 10 mm,
It is formed to have a thickness of about t 1 =250 μm. 2 is an epitaxial film formed on one surface of the single crystal substrate 1;
Boron is added as an impurity during the epitaxial growth process.
It is a silicon single crystal film grown with a mixture of about 19 19 to 10 20 cm -3 and processed to a thickness t 2 = about 30 μm.

上記構成の試料において、シリコンの共有結合
半径は、1.17Å(オングストローム)であるのに
対しボロンの場合は0.88Åと小さく、従つてボロ
ンを含有する単結晶膜はボロンを含有しないもの
に比べ格子定数が小さい、従つてエピタキシヤル
膜はシリコン基板1に対して縮もうとする力が働
く、その結果試料イ全体がエピタキシヤル膜側に
凹面となる。
In the sample with the above configuration, the covalent bond radius of silicon is 1.17 Å (angstrom), while that of boron is smaller at 0.88 Å. The constant is small, so a force acts on the epitaxial film to cause it to shrink against the silicon substrate 1, and as a result, the entire sample 1 becomes concave toward the epitaxial film.

即ち、第7図に示す様に、基板1の共有結合半
径をaとし、この基板上に同じ共有結合半径bを
有する不純物を含む単結晶膜膜2をエピタキシヤ
ル成長させた場合は共有結合半径が同じなので変
形は生じない。
That is, as shown in FIG. 7, if the covalent bond radius of the substrate 1 is a, and a single crystal film 2 containing impurities having the same covalent bond radius b is epitaxially grown on this substrate, the covalent bond radius is are the same, so no deformation occurs.

これに対し第8図に示すように基板1の共有結
合半径がaであり、この基板の上に不純物として
共有結合半径の小さな異種原子を含む単結晶膜2
をエピタキシヤル成長させる場合は共有結合半径
がb-となりa>b-となる。その結果、エピタキ
シヤル成長させた側が縮むことになる。
On the other hand, as shown in FIG. 8, the covalent bond radius of the substrate 1 is a, and a single crystal film 2 containing foreign atoms with a small covalent bond radius as impurities is formed on this substrate.
When growing epitaxially, the covalent bond radius becomes b - and a>b - . As a result, the epitaxially grown side will shrink.

第3図は他の実験に用いた試料ロの外観を示す
斜視図である。図において、1は試料イと同様不
純物としてアンチモン、リン等を1015cm-3程度混
入したn形の矩形状シリコン単結晶基板で、L=
30mm、l=10mm、t1=250μm程度に形成されてい
る。3は単結晶基板1の片側表面に、エピタキシ
ヤル成長過程で不純物としてゲルマニウムを1919
〜1020cm-3程度混入して成長させたシリコン単結
晶膜で、厚さt3=30μm程度に加工されている。
FIG. 3 is a perspective view showing the appearance of sample B used in another experiment. In the figure, 1 is an n-type rectangular silicon single crystal substrate mixed with about 10 15 cm -3 of antimony, phosphorus, etc. as impurities, as in sample A, and L=
It is formed to have a diameter of about 30 mm, l=10 mm, and t 1 =250 μm. 3, germanium is added as an impurity to one surface of the single crystal substrate 1 during the epitaxial growth process .
It is a silicon single crystal film grown with a mixture of ~10 20 cm -3 and processed to a thickness t 3 = approximately 30 μm.

上記ロの試料においてはゲルマニウムの共有結
合半径が1.22Åと大きいので、ゲルマニウムを含
有するエピタキシヤル膜はシリコン基板1に対し
膨張しようとする結果、試料イの場合と逆方向に
曲りエピタキシヤル膜側が凸面となる。即ち、こ
の場合基板1の共有結合半径がaであり、この基
板の上に不純物として共有結合半径の大きな異種
原子を含む単結晶膜2をエピタキシヤル成長させ
る場合は共有結合半径がcとなり、a<cとな
る。その結果、エピタキシヤル成長させた側が伸
びることになる。
In sample B above, the covalent bond radius of germanium is as large as 1.22 Å, so the epitaxial film containing germanium tries to expand against the silicon substrate 1, and as a result, it bends in the opposite direction to that of sample A, and the epitaxial film side It becomes a convex surface. That is, in this case, the covalent bond radius of the substrate 1 is a, and when a single crystal film 2 containing a foreign atom with a large covalent bond radius as an impurity is epitaxially grown on this substrate, the covalent bond radius is c, and a <c. As a result, the epitaxially grown side will elongate.

第4図aは試料イの、第4図bは試料ロのエピ
タキシヤル膜に混入する不純物の濃度を各種(図
では3種類)変化させ、そのときのデータを元に
最小自乗法により求めた放物線回帰線をグラフ化
したもので、縦軸は反りの量を横軸は中心部から
の距離を示している。これらの図によれば、エピ
タキシヤル膜に混入する不純物の濃度やエピタキ
シヤル膜の厚さにより試料の反りの程度が変化す
ることがわかる。
Figure 4a shows sample A, and Figure 4b shows sample B. The concentration of impurities mixed in the epitaxial film was varied in various ways (three types in the figure), and the results were calculated using the least squares method based on the data at that time. This is a graph of a parabolic regression line, with the vertical axis showing the amount of warpage and the horizontal axis showing the distance from the center. According to these figures, it can be seen that the degree of warpage of the sample changes depending on the concentration of impurities mixed into the epitaxial film and the thickness of the epitaxial film.

第1図a〜dは本発明による測定ダイアフラム
の製造工程の一実施例を示す説明図である。
FIGS. 1a to 1d are explanatory diagrams showing one embodiment of the manufacturing process of a measuring diaphragm according to the present invention.

はじめに、aに断面図にて示すように、片面に
複数箇所厚肉部11,12,13,14が形成さ
れた測定ダイアフラムとなるn型シリコン基板4
0を用意する。なお、この基板40の厚肉部は精
密に加工された平行度を有するシリコン板をエツ
チングや超音波加工により形成したもので、厚肉
部11の部分は対向する電極(図示せず)との間
で静電容量を発生させる部分、12および13は
ダイアフラムに過大圧が加わつたときに破損を防
止する支持体、14はダイアフラムを支える支持
部である。この基板40の厚肉部のない側に
SiO2等の保護膜50を形成し、厚肉部11と1
2の間(ハ部)のSiO2を除去する。次にこの部
分にbに示す如く、シリコンに比較して共有結合
半径の大きい原子(例えばゲルマニウム)を不純
物として含む膜をエピタキシヤル成長させる。そ
の結果シリコン基板40はcに示す如く皿状に変
形する。
First, as shown in the cross-sectional view in a, an n-type silicon substrate 4 that will serve as a measurement diaphragm is formed on one side with thick portions 11, 12, 13, and 14 at a plurality of locations.
Prepare 0. Note that the thick portion of the substrate 40 is formed by etching or ultrasonic machining a precisely processed silicon plate with parallelism, and the thick portion 11 is in contact with an opposing electrode (not shown). The portions 12 and 13 that generate capacitance between the diaphragms are supports that prevent damage when excessive pressure is applied to the diaphragm, and 14 is a support that supports the diaphragm. On the side of this board 40 that does not have a thick part
A protective film 50 such as SiO 2 is formed, and the thick parts 11 and 1 are
2 (part C) is removed. Next, as shown in b, a film containing as an impurity an atom (for example, germanium) having a larger covalent bond radius than silicon is epitaxially grown on this portion. As a result, the silicon substrate 40 is deformed into a dish shape as shown in c.

次に全体のSiO2を除去し、再度aで示した方
法と同様の方法で厚肉部のない側にSiO2等の保
護膜を形成後、厚肉部13と14の間ニ部の
SiO2を除去し、この部分にシリコンに比較して
共有結合半径の小さな原子(例えばボロン)を拡
散させる。その結果、シリコン基板40はdに示
す如く支持部14が逆方向に変形し、厚肉部14
の面が電極と対向する厚肉部11の面と平行にな
るように変形させ、その後SiO2を除去する。そ
の結果、ダイアフラムを第5図に示すボデイ1
9,20で挾んだ状態でも厚肉部11と12,1
3の間隙h1>h2>h3が形成され、この間隙の差が
過大圧防止機能を果す。この間〓、即ち、反りの
大きさは単結晶基板1を構成する材料の共有結合
半径に対し、共有結合半径の異なる不純物を含む
単結晶をエピタキシヤル成長させる場合の、不純
物の濃度及び膜厚(エピタキシヤル成長させる時
間による)を制御することにより任意に増減可能
である。
Next, remove the entire SiO 2 and form a protective film such as SiO 2 on the side without the thick part using the same method as shown in a again, and then remove the two parts between the thick parts 13 and 14.
SiO 2 is removed, and atoms (for example, boron) with a smaller covalent bond radius than silicon are diffused into this part. As a result, the support portion 14 of the silicon substrate 40 is deformed in the opposite direction as shown in d, and the thick portion 14
is deformed so that the surface thereof is parallel to the surface of the thick portion 11 facing the electrode, and then SiO 2 is removed. As a result, the diaphragm was assembled into body 1 shown in FIG.
Even when sandwiched between 9 and 20, the thick parts 11 and 12, 1
A gap h 1 > h 2 > h 3 of 3 is formed, and this gap difference serves the function of preventing overpressure. During this time, the magnitude of warpage is determined by the impurity concentration and film thickness ( It can be increased or decreased as desired by controlling the epitaxial growth time (depending on the epitaxial growth time).

なお、本実施例においては基板1としてn形シ
リコンを用い、シリコン原子に対する共有結合半
径の異なる原子としてボロン及びゲルマニウムを
用いた例について示したが、基板に対してエピタ
キシヤル成長が可能で、かつ、共有結合半径が大
または小の材質であればそれらを組合せて用いる
ことも可能である。更に本実施例においては異種
原子を含む膜をエピタキシヤル成長により形成し
た例について説明したが、基板の材料に対して共
有結合半径が大または小の原子を拡散により形成
しても同様の効果を得ることができる。
In this example, n-type silicon was used as the substrate 1, and boron and germanium were used as atoms having different covalent bond radii with respect to the silicon atom. , it is also possible to use a combination of materials with a large or small covalent bond radius. Furthermore, in this example, an example was explained in which a film containing different types of atoms was formed by epitaxial growth, but the same effect can be obtained by forming atoms with a large or small covalent bond radius relative to the substrate material by diffusion. Obtainable.

<発明の効果> 以上、実施例とともに具体的に説明したように
本発明によれば、シリコン基板に共有結合半径の
異なる原子を形成し、このシリコン基板を撓ませ
ることにより対向する電極と僅かな間隙を形成す
るようにしたので、精度が高くしかも製作が簡単
な圧力センサを実現することができる。
<Effects of the Invention> As described above in detail with the embodiments, according to the present invention, atoms with different covalent bond radii are formed on a silicon substrate, and by bending this silicon substrate, a slight difference between the opposing electrode and the Since a gap is formed, it is possible to realize a pressure sensor that is highly accurate and easy to manufacture.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a〜dは本発明に係る圧力センサのダイ
アフラムの製作工程を示す説明図、第2図〜第4
図a,bは単結晶基板に反りを発生させる実験結
果を示す説明図、第5図は従来例を示す構成断面
図、第6図は第5図のA−A断面図、第7図〜第
9図は基板に共有結合半径の異なる不純物を含む
単結晶をエピタキシヤル成長させた場合の反りの
状態を示す図である 11,12,13,14…厚肉部、19,20
…ボデイ、40…ダイアフラム、52,53…単
結晶膜。
Figures 1 a to d are explanatory diagrams showing the manufacturing process of the diaphragm of the pressure sensor according to the present invention, and Figures 2 to 4
Figures a and b are explanatory diagrams showing the results of an experiment to generate warpage in a single crystal substrate, Figure 5 is a cross-sectional view of the configuration of a conventional example, Figure 6 is a cross-sectional view taken along line A-A in Figure 5, and Figures 7-- FIG. 9 is a diagram showing the state of warpage when single crystals containing impurities with different covalent bond radii are epitaxially grown on a substrate. 11, 12, 13, 14...thick part, 19, 20
...Body, 40...Diaphragm, 52, 53...Single crystal film.

Claims (1)

【特許請求の範囲】[Claims] 1 片面の中心部に円状の厚肉部が形成され、そ
の厚肉部を中心に順次大きくなるリング状の厚肉
部が複数箇所形成された測定ダイアフラムと、こ
のダイアフラムの両側に対向配置され、このダイ
アフラムと共に室を形成するボデイと、前記測定
ダイアフラムの片側に測定圧力を導く手段と、圧
力による前記測定ダイアフラムの変位を電気信号
に変換する手段とからなる圧力センサにおいて、
前記ダイアフラムは弾性を有する単結晶基板から
なり、この基板の表面に基板を構成する原子とは
結合半径の異なる原子を有する単結晶膜を形成
し、結合半径の異なる2種の単結晶膜がエピタキ
シヤル状に結合していることから生ずる基板の変
形を利用して前記ボデイとの間に外周部が狭く中
央部に向かつて順次大きくなる間〓を形成したこ
とを特徴とする圧力センサ。
1. A measuring diaphragm having a circular thick-walled part formed in the center of one side, and a plurality of ring-shaped thick-walled parts that gradually increase in size around the thickened part, and a measuring diaphragm that is arranged opposite to each other on both sides of this diaphragm. , a pressure sensor comprising a body forming a chamber together with the diaphragm, means for introducing measurement pressure to one side of the measurement diaphragm, and means for converting displacement of the measurement diaphragm due to pressure into an electrical signal,
The diaphragm is made of an elastic single-crystal substrate, and on the surface of this substrate, a single-crystal film having atoms with bond radii different from those of the atoms constituting the substrate is formed, and two types of single-crystal films with different bond radii are epitaxially formed. A pressure sensor characterized in that a gap is formed between the substrate and the body by utilizing the deformation of the substrate caused by being coupled in a shell shape.
JP22857384A 1984-10-30 1984-10-30 Pressure sensor Granted JPS61107125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22857384A JPS61107125A (en) 1984-10-30 1984-10-30 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22857384A JPS61107125A (en) 1984-10-30 1984-10-30 Pressure sensor

Publications (2)

Publication Number Publication Date
JPS61107125A JPS61107125A (en) 1986-05-26
JPH0365848B2 true JPH0365848B2 (en) 1991-10-15

Family

ID=16878478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22857384A Granted JPS61107125A (en) 1984-10-30 1984-10-30 Pressure sensor

Country Status (1)

Country Link
JP (1) JPS61107125A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410140A (en) * 1987-07-02 1989-01-13 Yokogawa Electric Corp Vibration type strain sensor
JP6515477B2 (en) * 2014-10-06 2019-05-22 大日本印刷株式会社 Mechanical quantity sensor and mechanical quantity measuring device

Also Published As

Publication number Publication date
JPS61107125A (en) 1986-05-26

Similar Documents

Publication Publication Date Title
US3753196A (en) Transducers employing integral protective coatings and supports
US4071838A (en) Solid state force transducer and method of making same
US4406992A (en) Semiconductor pressure transducer or other product employing layers of single crystal silicon
KR102071852B1 (en) Micromechanical structure and method for manufacturing the same
US4553436A (en) Silicon accelerometer
CA1311365C (en) Pressure transducer with stress isolation for hard mounting
US4456901A (en) Dielectrically isolated transducer employing single crystal strain gages
EP0059488B1 (en) Capacitive pressure sensor
US4236137A (en) Semiconductor transducers employing flexure frames
US4021766A (en) Solid state pressure transducer of the leaf spring type and batch method of making same
US4443293A (en) Method of fabricating transducer structure employing vertically walled diaphragms with quasi rectangular active areas
US4510671A (en) Dielectrically isolated transducer employing single crystal strain gages
US4050049A (en) Solid state force transducer, support and method of making same
US3819431A (en) Method of making transducers employing integral protective coatings and supports
DE69116532T2 (en) Microminiature differential pressure transducer and manufacturing process therefor
US4204185A (en) Integral transducer assemblies employing thin homogeneous diaphragms
US5656781A (en) Capacitive pressure transducer structure with a sealed vacuum chamber formed by two bonded silicon wafers
US4025942A (en) Low pressure transducers employing large silicon diaphragms having non-critical electrical properties
US4359498A (en) Transducer structure employing vertically walled diaphragms with quasi rectangular active areas
US5317922A (en) Capacitance transducer article and method of fabrication
US3848329A (en) Method for producing a semiconductor strain sensitive element of an electromechanical semiconductor transducer
JPH09318474A (en) Manufacture of sensor
JPH0365848B2 (en)
JPH0443226B2 (en)
JP2864700B2 (en) Semiconductor pressure sensor and method of manufacturing the same