JPH0365835B2 - - Google Patents

Info

Publication number
JPH0365835B2
JPH0365835B2 JP9432584A JP9432584A JPH0365835B2 JP H0365835 B2 JPH0365835 B2 JP H0365835B2 JP 9432584 A JP9432584 A JP 9432584A JP 9432584 A JP9432584 A JP 9432584A JP H0365835 B2 JPH0365835 B2 JP H0365835B2
Authority
JP
Japan
Prior art keywords
parts
resin
weight
coating
paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9432584A
Other languages
Japanese (ja)
Other versions
JPS60238370A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9432584A priority Critical patent/JPS60238370A/en
Publication of JPS60238370A publication Critical patent/JPS60238370A/en
Publication of JPH0365835B2 publication Critical patent/JPH0365835B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は塗料組成物に関し、詳しくは高温短時
間の焼付で耐蝕性の優れた塗膜を形成することが
できる金属用途、特に金属缶用途に有用な塗料組
成物に関する。 これらの塗料組成物としては、塗装工程の合理
化の点から高温短時間の焼付条件で優れた塗膜を
形成するものが望まれており、特に金属缶に適用
する場合にはこの要求が厳しい。 金属缶用途のひとつを例にとると、従来、金属
缶としては、缶胴の接合方式により半田缶、接着
缶および溶接缶があるが、製缶のためめの設備ス
ペースが小さくてすむというコスト面の有利さお
よび缶の機械的強度が大きいという理由により、
溶接缶が次第に普及しつつある。しかしながら、
溶接缶の場合には缶胴素材の両切断端面を重ね合
せ(ラツプシーム)で溶接するために、切断端面
が塗装のまま缶内面に露出し、素材が電気メツキ
ブリキであれば溶接時の熱によつて錫がリフロー
し、また、テインフリースチールであれば溶接し
易いように削つてある金属表面から腐蝕が起り易
い。このため従来、この溶接部分を保護するため
に、補修塗料を塗装し保護皮膜を形成する方法が
採用されており、一般には塩化ビニル系共重合体
などの熱可塑性樹脂塗料、エポキシ−アミノ系、
エポキシ−フエノール系およびエポキシ−アクリ
ル系などの熱硬化性樹脂塗料が使用されている。 しかしながら、熱可塑性樹脂塗料は短時間で塗
膜を形成することが可能ではあるが、飲食品を内
容物とする場合には酸に対する耐性および殺菌の
ための高温レトルト処理に対応するだけの十分の
耐蝕性、耐内容物性の点で欠点がある。また、エ
ポキシ系の上記熱硬化性樹脂塗料は、200℃−5
分程度の長時間の焼付条件であれば耐蝕性に優れ
た塗膜が形成されるが、1分以下、特に30秒以下
の短時間焼付では240〜260℃程度の高温であつて
も十分硬化せず耐蝕性に優れた塗膜とはならな
い。さらに、上記塗料は素材が電気メツキブリキ
の場合に生ずる硫化黒変を防ぐことができないと
いう欠点もある。 本発明は上記したような現状に鑑み高温短時間
の焼付条件により、耐内容物性、耐レトルト性に
優れ、硫化黒変を生じない新規な塗料組成物を提
供するものである。すなわち本発明は、ビスフエ
ノール型エポキシ樹脂100重量部に対して高級脂
肪酸5ないし100重量部を反応せしめて得られる、
少なくとも上記ビスフエノール型エポキシ樹脂の
一部が変性されてなるエポキシエステル樹脂組成
物100重量部、レゾール型フエノール樹脂5〜100
重量部およびアミノ樹脂5〜100重量部を有機溶
剤に溶解せしめてなることを特徴とする塗料組成
物である。 本発明において用いるエポキシエステル樹脂組
成物は、ビスフエノールA型エポキシ樹脂、水添
ビスフエノールA型エポキシ樹脂、ビスフエノー
ルF型エポキシ樹脂なに代表されるビスフエノー
ル型エポキシ樹脂を飽和もしくは不飽和高級脂肪
酸により少なくとも一部の樹脂をエステル化によ
り変性したものである。上記高級脂肪酸として
は、例えば、リノール酸、リノレン酸、脱水ひま
し油脂肪酸、大豆油脂肪酸,やし油脂肪酸、桐油
脂肪酸、ゴマ油脂肪酸、アマニ油脂肪酸、ハイジ
エン(綜研化学株式会社商品名)などの不飽和高
級脂肪酸が好ましい。特にヨウ素価を測定した場
合、その価が80ないし190、より好ましくは130な
いし190の範囲にある高級脂肪酸単体もしくは混
合物が用いられる。 高級脂肪酸の使用量はビスフエノール型エポキ
シ樹脂100重量部に対して高級脂肪酸5ないし100
重量部、好ましくは300ないし70重量部であつて、
高級脂肪酸の使用量が100重量部より多くなると
塗膜の内容物に対するフレーバ適性が低下するの
で好ましくなく、逆に5重量部より少ないと硫化
黒変が生じやすい。高級脂肪酸によるビスフエノ
ール型エポキシ樹脂の変性は、好ましくは有機溶
剤中で反応温度200〜230℃、反応時間1〜3時間
で行うことができる。 本発明におけるレゾール型フエノール樹脂はフ
エノール類とホルマリンを水酸化ナトリウム、水
酸化マグネシウム、水酸化リチウム、アンモニア
等のアルカリ触媒の存在下で反応させたものであ
る。フエノール類としては石炭酸、p−クレゾー
ル、o−クレゾール、m−クレゾール、ビスフエ
ノールA、p−tertブチルフエノール、p−フエ
ニルフエノール、キシレノール等フエノール類の
一種もしくは二種以上を用いることができる。好
ましくはアンモニアを触媒としたアンモニアレゾ
ールが用いられる。 アミノ樹脂は尿素、メラミン、トリアジン化合
物またはそれらの混合物とホルムアルデヒドを反
応させたもので炭素数1〜4の一価アルコールと
エーテル化させたものであつてもよい。 エポキシエステル樹脂組成物とレゾール型フエ
ノール樹脂の配合比率はエポキシエステル樹脂組
成物100重量部に対しレゾール型フエノール樹脂
が5重量部ないし100重量部、好ましくは5ない
し50重量部であつて、レゾール型フエノール樹脂
が5重量部より少ないと耐蝕性、耐内容物性、硫
化黒変性が低下し、逆に100重量部より多いと加
工性が低下する。 エポキシエステル樹脂組成物とアミノ樹脂の配
合比率はエポキシエステル樹脂組成物100重量部
に対しアミノ樹脂が5重量部ないし100重量部、
好ましくは5ないし50重量部であつて、アミノ樹
脂が5重量部より少ないと耐蝕性、耐内容物性低
下し、逆に100重量部より多いと加工性が低下す
る。 本発明の塗料組成物を特に補修塗料として用い
る場合、溶接段差および素材切断部バリ等の鋭利
な部分に対する被覆性を向上させると共に塗膜の
加工性を向上させるために、ポリオレフイン樹
脂、変性ポリオレフイン樹脂、ポリエステル樹
脂、ポリアミド樹脂、ポリアセタール樹脂、ポリ
カーボネート樹脂、アクリル樹脂、ABS樹脂、
スチレン−アクリロニトリル共重合体等の熱可塑
性樹脂の微粒子を分散体として塗料固形分の100
重量部に対して50重量部以下で配合することがで
きる。 本発明の最も重要な特徴は、ビスフエノール型
エポキシ樹脂を高級脂肪酸で変性したエポキシエ
ステル樹脂をレゾール型フエノール樹脂およびア
ミノ樹脂で硬化、架橋させることにある。エポキ
シエステル樹脂とアミノ樹脂との反応はエポキシ
エステル樹脂自己縮合およびエポキシエステル樹
脂とフエノール樹脂との反応より速く、フエノー
ル樹脂はフエノール樹脂自身の自己縮合がエポキ
シエステル樹脂およびアミノ樹脂との反応より速
いため、その結果エポキシエステル樹脂−アミノ
樹脂架橋網の目構造中にフエノール樹脂が島状に
浮き、これがエポキシエステル樹脂またはアミノ
樹脂と架橋した構造になつていることが推定され
る。上記反応特にエポキシエステル樹脂とアミノ
樹脂は極めて速いため短時間焼付が可能である。
更にフエノール樹脂が島状に浮き、架橋密度が高
いことより、耐蝕性が優れ、かつフエノール樹脂
およびエポキシエステル樹脂中の二重結合(不飽
和脂肪酸由来)が内容物から発生する硫化水素を
主体とするイオウ化合物と反応し、架橋密度の高
さからくる遮蔽効果との合わせて、下地の硫化黒
変の発生を防ぎ耐内容物性に優れる。 本発明の塗料組成物は240℃以上で60秒間、場
合によつては25秒間という高温、短時間で乾燥、
焼付することが可能であり、得られた塗膜は耐蝕
性に優れ硫化黒変の発生を防ぐため、特に魚貝類
を中心とした食缶用溶接缶補修塗料として有用で
あり、従来なかつた食缶を中心とした溶接缶の用
途を広げるものである。 本発明の塗料組成物には硬化促進のためリン
酸、リン酸エステル類、p−トルエンスルホン
酸、トリメリツト酸等の酸性物質、オクチル酸亜
鉛、ナフテン酸亜鉛等の塩類あるいはアルミニウ
ムアルコラート、アルキルチタネート等の有機金
属化合物を配合することができる。 本発明に係わる塗料組成物には他の慣用的添加
剤、例えば着色用染顔料、防錆顔料、充填剤、界
面活性物質、潤滑剤等を用いることができる。 本発明の塗料組成物を塗装する方法としては、
スプレー、ロールコート、ハケ塗り、流し塗り等
の公知の手段を用いることができる。 本発明の塗料組成物は溶接缶の補修塗料として
サイドシーム部の内外面の補修に有用であること
は勿論、その他に短時間焼付が必要な製品、例え
ば飲料缶蓋用コイルコート用塗料、建築材パネル
コーテイング用塗料としても有用である。なお勿
論170℃〜220℃、10分間〜20分間用焼付用塗料と
して食缶、飲料缶用としても応用可能である。以
下本発明を実施例にて具体的に説明する。例中
「部」、「%」とあるのは「重量部」、「重量%」を
示す。 エポキシエステル樹脂の製造 フラスコにビスフエノールA型エポキシ樹脂
AER667(旭化成工業株式会社製)100部、大豆油
脂肪酸40部、キシレン10部を仕込み撹拌しながら
220℃にて3時間保つた。酸価が10以下になつた
ところで反応を終了し、ソルベツソ100を100部、
およびソルベツソ150を100部加え冷却し、エポキ
シエステル樹脂(a)溶液を得た。 以下、上記と同操作により表1に示す原料と配
合量でエポキシエステル樹脂(b),(c)および(d)の溶
液を得た。
The present invention relates to a coating composition, and more particularly to a coating composition useful for metal applications, particularly metal can applications, which can form a coating film with excellent corrosion resistance by baking at high temperatures and short times. These coating compositions are desired to form excellent coating films under high temperature and short baking conditions in order to streamline the coating process, and this requirement is particularly severe when applied to metal cans. Taking one example of metal can applications, conventional metal cans include solder cans, adhesive cans, and welded cans, depending on the method of joining the can body, but the cost is low because the equipment space required for can manufacturing is small. Due to the surface advantage and the high mechanical strength of the can,
Welded cans are becoming increasingly popular. however,
In the case of welded cans, both cut ends of the can body material are welded overlapping (lap seam), so the cut ends are exposed to the inside of the can as painted, and if the material is electroplated tin, heat during welding Tin reflows when it is heated, and if it is a stain-free steel, corrosion is likely to occur from the metal surface that has been ground down to make it easier to weld. For this reason, in order to protect these welded parts, a method has traditionally been adopted in which a repair paint is applied to form a protective film.Generally, thermoplastic resin paints such as vinyl chloride copolymers, epoxy-amino paints,
Thermosetting resin coatings such as epoxy-phenolic and epoxy-acrylic are used. However, although it is possible to form a film in a short time with thermoplastic resin paints, in the case of food and beverages, they are not sufficiently resistant to acids and can be subjected to high-temperature retort treatment for sterilization. It has drawbacks in terms of corrosion resistance and content resistance. In addition, the above-mentioned epoxy-based thermosetting resin paint is
A coating film with excellent corrosion resistance will be formed if baked for a long time of about 1 minute, but if baked for a short time of 1 minute or less, especially 30 seconds or less, it will harden sufficiently even at high temperatures of about 240 to 260 degrees Celsius. Otherwise, a coating film with excellent corrosion resistance will not be obtained. Furthermore, the above-mentioned paint has the disadvantage that it cannot prevent sulfide blackening that occurs when the material is electroplated tin. In view of the above-mentioned current situation, the present invention provides a novel coating composition which has excellent content resistance and retort resistance and does not cause sulfide blackening, using baking conditions of high temperature and short time. That is, the present invention is obtained by reacting 5 to 100 parts by weight of a higher fatty acid with 100 parts by weight of a bisphenol type epoxy resin.
100 parts by weight of an epoxy ester resin composition obtained by partially modifying at least the above bisphenol type epoxy resin, 5 to 100 parts of a resol type phenol resin
This is a coating composition characterized by dissolving 5 to 100 parts by weight of an amino resin in an organic solvent. The epoxy ester resin composition used in the present invention is a bisphenol type epoxy resin represented by a bisphenol A type epoxy resin, a hydrogenated bisphenol A type epoxy resin, a bisphenol F type epoxy resin, and a saturated or unsaturated higher fatty acid. At least a portion of the resin is modified by esterification. Examples of the higher fatty acids include unsaturated fatty acids such as linoleic acid, linolenic acid, dehydrated castor oil fatty acid, soybean oil fatty acid, coconut oil fatty acid, tung oil fatty acid, sesame oil fatty acid, linseed oil fatty acid, and Hydiene (trade name of Soken Chemical Co., Ltd.). Higher fatty acids are preferred. In particular, when the iodine value is measured, higher fatty acids or mixtures having a value in the range of 80 to 190, more preferably 130 to 190 are used. The amount of higher fatty acids used is 5 to 100 parts by weight of higher fatty acids per 100 parts by weight of bisphenol type epoxy resin.
parts by weight, preferably from 300 to 70 parts by weight,
If the amount of higher fatty acid used is more than 100 parts by weight, the flavor suitability for the contents of the coating film will decrease, which is undesirable, while if it is less than 5 parts by weight, sulfide blackening is likely to occur. Modification of a bisphenol type epoxy resin with a higher fatty acid can be preferably carried out in an organic solvent at a reaction temperature of 200 to 230°C and a reaction time of 1 to 3 hours. The resol type phenolic resin in the present invention is obtained by reacting phenols and formalin in the presence of an alkali catalyst such as sodium hydroxide, magnesium hydroxide, lithium hydroxide, or ammonia. As the phenols, one or more phenols such as carbolic acid, p-cresol, o-cresol, m-cresol, bisphenol A, p-tert-butylphenol, p-phenylphenol, and xylenol can be used. Preferably, ammonia aresol using ammonia as a catalyst is used. The amino resin may be one obtained by reacting urea, melamine, a triazine compound, or a mixture thereof with formaldehyde, and etherified with a monohydric alcohol having 1 to 4 carbon atoms. The blending ratio of the epoxy ester resin composition and the resol type phenol resin is 5 to 100 parts by weight, preferably 5 to 50 parts by weight, of the resol type phenol resin to 100 parts by weight of the epoxy ester resin composition. If the amount of phenolic resin is less than 5 parts by weight, corrosion resistance, content resistance, and sulfide blackening will be reduced, and if it is more than 100 parts by weight, processability will be reduced. The blending ratio of the epoxy ester resin composition and the amino resin is 5 parts by weight to 100 parts by weight of the amino resin per 100 parts by weight of the epoxy ester resin composition.
Preferably, the amount is 5 to 50 parts by weight, and if the amino resin is less than 5 parts by weight, corrosion resistance and content resistance will be reduced, and if it is more than 100 parts by weight, processability will be reduced. When the coating composition of the present invention is used particularly as a repair coating, polyolefin resin, modified polyolefin resin, , polyester resin, polyamide resin, polyacetal resin, polycarbonate resin, acrylic resin, ABS resin,
Fine particles of thermoplastic resin such as styrene-acrylonitrile copolymer are used as a dispersion to reduce paint solid content to 100%.
It can be blended in an amount of 50 parts by weight or less. The most important feature of the present invention is that an epoxy ester resin obtained by modifying a bisphenol type epoxy resin with a higher fatty acid is cured and crosslinked with a resol type phenol resin and an amino resin. The reaction between epoxy ester resin and amino resin is faster than the self-condensation of epoxy ester resin and the reaction between epoxy ester resin and phenol resin, and the self-condensation of phenol resin itself is faster than the reaction with epoxy ester resin and amino resin. As a result, it is presumed that the phenol resin floats in the form of islands in the epoxy ester resin-amino resin crosslinked network structure, forming a structure crosslinked with the epoxy ester resin or amino resin. The above reaction is extremely fast, especially for epoxy ester resins and amino resins, so baking can be carried out in a short period of time.
Furthermore, the phenolic resin floats in the form of islands and has a high crosslinking density, so it has excellent corrosion resistance, and the double bonds (derived from unsaturated fatty acids) in the phenolic resin and epoxy ester resin mainly contain hydrogen sulfide generated from the contents. It reacts with sulfur compounds, and in combination with the shielding effect due to its high crosslinking density, it prevents the occurrence of sulfide blackening on the base and has excellent content resistance. The coating composition of the present invention dries at a high temperature of 240°C or higher for 60 seconds, in some cases for 25 seconds, and in a short time.
It can be baked, and the resulting coating film has excellent corrosion resistance and prevents the occurrence of blackening due to sulfide, making it useful as a repair paint for welded food cans, especially for fish and shellfish. This expands the uses of welded cans, mainly cans. The coating composition of the present invention contains acidic substances such as phosphoric acid, phosphoric acid esters, p-toluenesulfonic acid, and trimellitic acid, salts such as zinc octylate and zinc naphthenate, or aluminum alcoholates and alkyl titanates to accelerate curing. Organometallic compounds can be blended. Other conventional additives can be used in the coating compositions according to the invention, such as coloring dyes and pigments, rust-preventing pigments, fillers, surface-active substances, lubricants, etc. As a method for applying the coating composition of the present invention,
Known means such as spraying, roll coating, brush coating, flow coating, etc. can be used. The coating composition of the present invention is useful not only as a repair coating for welded cans, for repairing the inner and outer surfaces of side seams, but also for other products that require short baking times, such as coil coating coatings for beverage can lids, and architectural coatings. It is also useful as a paint for coating wood panels. Of course, it can also be applied to food cans and beverage cans as a baking paint for 10 to 20 minutes at 170°C to 220°C. The present invention will be specifically explained below with reference to Examples. In the examples, "parts" and "%" indicate "parts by weight" and "% by weight." Production of epoxy ester resin Bisphenol A type epoxy resin in flask
While stirring, add 100 parts of AER667 (manufactured by Asahi Kasei Corporation), 40 parts of soybean oil fatty acid, and 10 parts of xylene.
It was kept at 220°C for 3 hours. The reaction was terminated when the acid value became 10 or less, and 100 parts of Solbetsuso 100 was added.
and 100 parts of Solbetsuso 150 were added and cooled to obtain an epoxy ester resin (a) solution. Thereafter, solutions of epoxy ester resins (b), (c) and (d) were obtained using the raw materials and blending amounts shown in Table 1 by the same operations as above.

【表】 フエノール樹脂の製造 フラスコにp−クレゾール100部、ホルマリン
(30%水溶液)70部、水酸化ナトリウムの20%水
溶液2部を仕込み撹拌しながら100℃にて2時間
保つた。次いでキシレン70部、n−ブタノール70
部およびシクロヘキサノン70部を加えて冷却し、
塩酸で中和後、デカンテーシヨンにより水層部を
除去し、溶剤層を同量の水で2回洗浄し、次いで
リラツクスにより脱水し、フエノール樹脂(e)を溶
液を得た。 上記と同操作により表2に示す原料と配合量で
フエノール樹脂(f),(g),(h)および(j)の溶液を得
た。
[Table] Production of phenolic resin 100 parts of p-cresol, 70 parts of formalin (30% aqueous solution), and 2 parts of a 20% aqueous solution of sodium hydroxide were placed in a flask and kept at 100°C for 2 hours with stirring. Next, 70 parts of xylene, 70 parts of n-butanol
and 70 parts of cyclohexanone and cooled.
After neutralization with hydrochloric acid, the aqueous layer was removed by decantation, the solvent layer was washed twice with the same amount of water, and then dehydrated by relaxing to obtain a solution of the phenol resin (e). Solutions of phenolic resins (f), (g), (h) and (j) were obtained by the same operation as above using the raw materials and blending amounts shown in Table 2.

【表】 実施例 エポキシエステル樹脂、レゾール型フエノール
樹脂およびアミノ樹脂を表3に示す固型分比率で
混合し、硬化助剤としてリン酸を0.3部添加した
後、粘度を#4フオードカツプに220秒(25℃)
になるように、有機溶剤(ブチロセロソルブアセ
テート/エチルセロソルブアセテート/ソルベツ
ソ100/キシレン/イソプロピルアルコール=
20/20/20/20/20)にて調製して溶接缶補修塗
料とした。 実施例1ないし実施例4および比較例1ないし
比較例8で得られた塗料を1ケ月間常温で保存し
た後樹脂のグル化、分離の状態を観察した(塗料
安定性試験)。 次に、製缶機(スードロニクス社製)で溶接し
たブリキ1Kg丸缶のサイドシーム部の切片を切り
取り、その内面側に、これらの塗料をハケ塗りに
て平板部で15μの塗膜厚になるように塗装し、次
いでガスバーナーにて20秒間焼付た。焼付は20秒
後に板温が255℃に達すようにセツトした。塗布
した溶接部を3×7cmに切断して試験片とし、良
く磨砕した鮭水煮缶の内容物中に浸漬し再度製缶
後117℃にて90分レトルト処理し50℃で20日間保
存し腐蝕状態および硫化黒変の状態を評価した
(サケ缶リパツク試験)。 また同様の試験片を1%食塩水に浸漬し、117
℃にて90分レトルト処理し50℃で20日間保存し腐
蝕状態を評価した(体食塩水性試験)。 次に、塗布した溶接部を折り曲げて亀裂の発生
を観察した(加工性試験)。 実施例および比較例で得られた塗料の保存性お
よび塗膜試験の結果を表4に示す。実施例1ない
し実施例4で得られた塗料は硫化黒変が認められ
ず、耐蝕性、加工性にも優れた性質を有している
のに対して、比較例で見られた塗料は特に、硫化
黒変と耐蝕性および加工性とのバランスが悪く溶
接缶補修塗料として実用的でない。 実施例 5 実施例1で得られた塗料の固型分100部に対し
平均粒径10μのナイロン11の微粉末20部を高速撹
拌しながら添加し、溶接缶補修塗料を得た。 実施例 6 実施例1で得られた塗料の固型分100部に対し
平均粒径10μのナイロン11の微粉末40部を高速撹
拌しながら添加し、溶接缶補修塗料を得た。 実施例 7 実施例2で得られた塗料の固型分100部に対し
平均粒径10μのナイロン12の微粉末20部を高速撹
拌しながら添加し、溶接缶補修塗料を得た。 実施例 8 実施例2でられた塗料の固型分100部に対し平
均粒径10μのナイロン12の微粉末40部を高速撹拌
しながら添加し、溶接缶補修塗料を得た。 実施例 9 実施例2で得られた塗料の固型分100部に対し
平均粒径5μのカルボキシル基変性ポリプロピレ
ンの微粉末15部を高速撹拌しながら添加し、溶接
缶補修塗料を得た。 実施例5ないし実施例9で得られた溶接缶補修
塗料を実施例1と同様に塗装、焼付し塗膜性能を
調べた。結果を表5に示す。
[Table] Example Epoxy ester resin, resol type phenolic resin, and amino resin were mixed at the solid content ratio shown in Table 3, and after adding 0.3 parts of phosphoric acid as a curing aid, the viscosity was adjusted to #4 food cup for 220 seconds. (25℃)
Organic solvent (butyrocellosolve acetate/ethyl cellosolve acetate/Solbetsuso 100/xylene/isopropyl alcohol =
20/20/20/20/20) and used as a welding can repair paint. After the paints obtained in Examples 1 to 4 and Comparative Examples 1 to 8 were stored at room temperature for one month, the state of gluing and separation of the resin was observed (paint stability test). Next, cut out a section from the side seam of a 1 kg round tin can that was welded using a can making machine (manufactured by Sudronics), and apply these paints to the inner surface of the can with a brush to obtain a coating thickness of 15μ on the flat plate. Then, it was baked for 20 seconds using a gas burner. Baking was set so that the plate temperature reached 255°C after 20 seconds. The coated welded area was cut into 3 x 7 cm pieces to make test pieces, immersed in the contents of a well-ground salmon boiled can, re-made, retorted at 117°C for 90 minutes, and stored at 50°C for 20 days. The corrosion state and sulfide blackening state were evaluated (salmon can repacking test). In addition, a similar test piece was immersed in 1% saline solution, and 117
It was retorted at ℃ for 90 minutes and stored at 50℃ for 20 days to evaluate the corrosion state (body saline test). Next, the applied welded part was bent and the occurrence of cracks was observed (workability test). Table 4 shows the storage stability and coating film test results of the paints obtained in Examples and Comparative Examples. The paints obtained in Examples 1 to 4 showed no sulfide blackening and had excellent corrosion resistance and processability, whereas the paints obtained in Comparative Examples were particularly poor in corrosion resistance and processability. It is not practical as a welding can repair paint because of the poor balance between sulfide blackening, corrosion resistance, and workability. Example 5 20 parts of fine powder of nylon 11 having an average particle size of 10 μm was added to 100 parts of the solid content of the paint obtained in Example 1 while stirring at high speed to obtain a welding can repair paint. Example 6 40 parts of fine powder of nylon 11 having an average particle size of 10 μm was added to 100 parts of the solid content of the paint obtained in Example 1 while stirring at high speed to obtain a welding can repair paint. Example 7 20 parts of fine powder of nylon 12 having an average particle size of 10 μm was added to 100 parts of the solid content of the paint obtained in Example 2 while stirring at high speed to obtain a welding can repair paint. Example 8 40 parts of fine powder of nylon 12 having an average particle size of 10 μm was added to 100 parts of the solid content of the paint prepared in Example 2 while stirring at high speed to obtain a welding can repair paint. Example 9 15 parts of fine powder of carboxyl-modified polypropylene having an average particle size of 5 μm was added to 100 parts of the solid content of the paint obtained in Example 2 while stirring at high speed to obtain a welding can repair paint. The welded can repair paints obtained in Examples 5 to 9 were painted and baked in the same manner as in Example 1, and the film performance was examined. The results are shown in Table 5.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ビスフエノール型エポキシ樹脂100重量部に
対して高級脂肪酸5ないし100重量部を反応せし
めて得られる、少なくとも上記ビスフエノール型
エポキシ樹脂の一部が変性されてなるエポキシエ
ステル樹脂組成物100重量部、レゾール型フエノ
ール樹脂5〜100重量部およびアミノ樹脂5〜100
重量部を有機溶剤に溶解せしめてなることを特徴
とする塗料組成物。
1. 100 parts by weight of an epoxy ester resin composition obtained by reacting 5 to 100 parts by weight of a higher fatty acid with 100 parts by weight of a bisphenol-type epoxy resin, at least a part of which is modified from the bisphenol-type epoxy resin; 5 to 100 parts by weight of resol type phenolic resin and 5 to 100 parts by weight of amino resin
A coating composition characterized in that part by weight is dissolved in an organic solvent.
JP9432584A 1984-05-11 1984-05-11 Coating compound composition Granted JPS60238370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9432584A JPS60238370A (en) 1984-05-11 1984-05-11 Coating compound composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9432584A JPS60238370A (en) 1984-05-11 1984-05-11 Coating compound composition

Publications (2)

Publication Number Publication Date
JPS60238370A JPS60238370A (en) 1985-11-27
JPH0365835B2 true JPH0365835B2 (en) 1991-10-15

Family

ID=14107126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9432584A Granted JPS60238370A (en) 1984-05-11 1984-05-11 Coating compound composition

Country Status (1)

Country Link
JP (1) JPS60238370A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613667B2 (en) * 1986-05-22 1994-02-23 関西ペイント株式会社 Metal coating composition

Also Published As

Publication number Publication date
JPS60238370A (en) 1985-11-27

Similar Documents

Publication Publication Date Title
KR102143268B1 (en) Phosphatized polyesters and coating compositions containing the same
US4012270A (en) Method of improving the adhesion of propylene polymers to enamel coated metal surfaces
KR20040030434A (en) Coating composition and method of can inside coating
US3123582A (en) Liquid coating composition and metal
US4272416A (en) Film-forming resin for use in anti-corrosive and can-coating compositions
JPH0365835B2 (en)
US4011188A (en) Powdery coating composition
DE2505278B2 (en) Resin-coated sheet steel
JPH0378434B2 (en)
JPH03134077A (en) Polyolefin bonding coating material and use thereof
US2970204A (en) Electric welding method and composition
JP2702282B2 (en) Anticorrosion coating composition for metal substrates
JPH0613667B2 (en) Metal coating composition
JPH0292916A (en) Resin composition and coating compound composition for can
JPS6330070B2 (en)
JP4910371B2 (en) Polyolefin adhesive coating composition
JP2654796B2 (en) Paint composition
JPH064813B2 (en) Coating composition for cans
JPS62167374A (en) Coating compound composition
CA1068837A (en) Process for producing water-dilutable coating compositions
JPH064812B2 (en) Coating composition for cans
JPS6259637B2 (en)
JPS5819372A (en) Aluminum trihydrate modified zinc-rich coating agent
JPS6221829B2 (en)
US3404128A (en) Method for preparing a diphenolic acid amide phenol-aldehyde resin