JPH0365816B2 - - Google Patents

Info

Publication number
JPH0365816B2
JPH0365816B2 JP12161184A JP12161184A JPH0365816B2 JP H0365816 B2 JPH0365816 B2 JP H0365816B2 JP 12161184 A JP12161184 A JP 12161184A JP 12161184 A JP12161184 A JP 12161184A JP H0365816 B2 JPH0365816 B2 JP H0365816B2
Authority
JP
Japan
Prior art keywords
mol
polyester
catalyst
added
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12161184A
Other languages
Japanese (ja)
Other versions
JPS612731A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12161184A priority Critical patent/JPS612731A/en
Publication of JPS612731A publication Critical patent/JPS612731A/en
Publication of JPH0365816B2 publication Critical patent/JPH0365816B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 A 産業上の利用分野 本発明は優れた表面特性を有し、易滑性にすぐ
れたポリエステルの製造方法に関するものであ
る。 詳しくは、繊維、フイルム、その他の成形品に
成形する際に優れた成形加工性を有し、かつ成形
加工後の製品として優れた透明性、易滑性および
表面形態を有する高重合度ポリエステルを短時間
に生産性よく製造する方法に関するものである。 B 従来技術とその問題点 今日、工業的に使用されているポリエステル、
特にポリエチレンテレフタレートは高度な結晶
性、高軟化点を有し、強度、耐薬品性、耐熱性、
耐候性、電気絶縁性などの点で優れた性質を有し
ているため、繊維をはじめフイルム、成形品へと
産業上広く利用されている。 一般にポリエステルが各工業分野で用いられる
際、通常は溶融押出し、引取り、延伸、熱処理な
どの成形工程での操業性あるいは製織、染色、加
工糸加工あるいはフイルム用の場合においては、
磁性層の塗布や金属蒸着あるいは成形品とした場
合の切断、仕上げなどの二次加工工程での操業
性、さらには最終製品となつた場合の透明性、易
滑性および好ましい表面形態を持つことが必要と
されている。 従来より、透明性を向上させる目的あるいは易
滑性を向上させる目的でそれぞれ触媒や添加剤の
開発や改良がなされてきたが、両者を同時に満足
させることは困難であつた。 前記透明性と易滑性を改善する方法として、た
とえば特公昭34−5144号公報に見られるように、
ポリエステルの製造の第一の工程であるエステル
交換反応工程において、触媒としてアルカリ土類
金属化合物を使用し、引き続き行われる重縮合反
応工程で微細な粒子(以下内部粒子と呼ぶ)を析
出させる方法が知られている。 しかしながら、該方法によつてポリエステルを
製造すると、製造されたポリエステル中に粗大粒
子が生成したり、生成する内部粒子の数が一定に
ならず、成形工程や加工工程での操業性を著しく
損ねたり、製品の透明性を著しく低下させたりす
る欠点があつた。 一方、コンデンサの素子巻き用フイルムや各種
磁気テープ用フイルムの分野において、近年とみ
にフイルム厚みを薄くする傾向が顕著であり、そ
れに伴いポリエステルのベースフイルムそのもの
の厚みを薄くすることが必要となつてきた。 このような薄膜フイルムにおいては、より一層
原料ポリエステルの滑性を改善しないとテープの
巻き姿や巻き特性が極度に悪くなるという問題が
生じてきた。 前記問題点を改善するための方法として、たと
えば特開昭54−90397号公報に記載されているよ
うに、エステル化反応率が91〜99%となつた時点
でリン化合物を添加し、一定時間溶融保持後、リ
チウム化合物またはリチウム化合物とカルシウム
化合物を添加する方法や、特開昭54−113696号公
報に記載されているように粒子形成性物質を添加
する前にエチレングリコールを添加する方法が提
案されているが、改善効果としては、不十分であ
る。 すなわち、前者においてエステル化生成物であ
るビス−(β−ヒドロキシエチル)テレフタレー
トおよび/またはその低重合体とリン化合物との
溶融保持温度が低いこと、かつリン化合物その他
の添加剤を加えたときの温度変化に対して粗大粒
子が発生しやすいという欠点があり、また後者に
おいても粒子形成性物質とエチレングリコールを
実質的に同時に添加しないと発生する粒子量が不
足してしまうという欠点がある。この傾向はリン
化合物としてリン酸を用いた時にはとくに顕著と
なるなど改善効果としては不満足なものであつ
た。 前記欠点を解消する方法として、本発明者等が
先に提案した特開昭59−64626号公報などに記載
されているように、エステル化反応率が90%以上
になつた時点で濃度が1〜10モル/であるリン
酸のグリコール溶液を加え、270〜290℃で5分以
上撹拌混合し、次いで粒子形成性物質のグリコー
ル溶液を添加し、触媒を同時にあるいは重縮合直
前に添加し重縮合する方法がある。 しかし、この方法によつてもなお次のような問
題点が残されていた。すなわち、触媒を粒子形成
性物質と同時に添加した場合、形成粒子は微細で
透明性および滑り性も良好なポリエステルが製造
できるものの、重縮合触媒活性が弱く短時間に高
重合度ポリエステルを製造することができないと
いう生産性における問題が生じていた。 また、触媒を重縮合反応の開始直前に添加する
と重縮合触媒活性は充分で高重合度ポリエステル
は得られるが、その反面粗大粒子が生成するとい
う欠点が生じ好ましくない現象が生じたりする。 C 発明の目的 本発明は、かかる問題点のない易滑性ポリエス
テルの製造方法、すなわち、極めて短時間に高重
合度ポリエステルを製造でき、かつ製品とした時
すぐれた透明性、易滑性および表面形態を有する
ポリエステルを製造する方法を提供することを目
的とするものである。 D 発明の構成 本発明は、上記目的を達成するもので、その要
旨は次のとおりである。 テレフタル酸とエチレングリコールを主たる出
発原料としてエステル化反応及び重縮合反応によ
つてポリエステルを製造するに際し、エステル化
反応率が90%以上となつた時点で、生成したビス
−(β−ヒドロキシエチル)テレフタレートおよ
び/またはその低重合体(以下BHETと呼ぶ)
に濃度が1〜10モル/であるリン酸のエチレン
グリコール溶液をポリエステルを構成する酸成分
1モルに対しリン酸が0.001〜0.01モルとなる量
添加し、しかる後240〜290℃の温度で5分間以上
撹拌混合し、次いで、リチウム化合物、カルシウ
ム化合物および一次添加触媒のアンチモン化合物
を添加し、再び240〜290℃の温度で5分間以上撹
拌混合し、しかる後二次添加触媒のアンチモン化
合物を添加し、重縮合を完結させることを特徴と
する易滑性ポリエステルの製造方法である。 本発明におけるエステル化の方法としては、通
常BHETの存在するエステル化反応槽に、テレ
フタル酸(以下TPAと呼ぶ)とエチレングリコ
ール(以下EGと呼ぶ)とのスラリーを連続的に
供給してエステル化させるいわゆる直接エステル
化法が用いられる。 上記BHETには一部TPAの残基やEG基以外の
成分を含有していてもよい。また、BHETは公
知のいずれの方法によつて得られたものであつて
もよいが、前記方法で得られたものをそのまま使
用することが望ましい。 TPAとEGのスラリーにはむしろ一部に他の酸
成分、たとえばイソフタル酸、アジピン酸、セバ
シン酸、5−ナトリウムスルホイソフタル酸など
や他のグリコール成分、たとえばテトラメチレン
グリコール、ネオペンチルグリコール、1,4−
シクロヘキサンジメタノールなどが30モル%を超
えない程度含まれていてもよい。 このようにしてエステル化させ、エステル化反
応率が90%以上になつた時点(この時点で未反応
TPA粒子はなくなる)で濃度1〜10モル/で
あるリン酸のEG溶液を添加し、240〜290℃にて
5分間以上撹拌混合することが必要である。 リン酸とBHETとの撹拌混合温度は240℃以上
であれば高いほど生成する粒子の径が小さくなつ
て好ましいが、290℃を超えるとジエチレングリ
コール(以下DEGと呼ぶ)が増大して物性を損
ねるので好ましくないのである。 また、ポリエステルを重縮合する場合におい
て、添加物はEG溶液として通常添加されるが、
これは添加物の反応系内での分散混合をよくする
ためや、添加物の局部的反応などにより高融点ゲ
ル状物の生成を抑制するためである。 本発明において、リン酸の添加時期はエステル
化反応率が90%以上になつた時点でなければなら
ない。エステル化反応率が90%末満の時点でリン
酸を添加すると粗大粒子が発生して好ましくない
のである。リン酸の添加量はポリエステルを構成
する酸成分1モルに対し0.001〜0.01モルとする
ことが必要である。すなわち、リン酸の添加量が
酸成分1モルに対して0.001モルより少ない場合
には内部粒子の生成量が不足し、逆に0.01モルを
超える添加量では粗大粒子が発生したり、透明性
が著しく損われたりして好ましくない。 リン酸の添加方法は1〜10モル/、好ましく
は3〜7モル/濃度のEG溶液として添加する
ことが肝要である。添加するリン酸の濃度が1モ
ル/未満の場合には生成粒子量が少なくて目的
とする易滑性ポリエステルは得られないので好ま
しくない。一方、前記濃度が10モル/を超える
と生成ポリエステルが黄色に着色したり、粗大粒
子が発生したりしてやはり好ましくないのであ
る。 本発明において、リン酸のEG溶液添加後の撹
拌混合時間は5分間以上が必要である。すなわ
ち、5分間未満でリチウム化合物およびカルシウ
ム化合物を添加すると、粗大粒子が発生して不都
合を生じるのである。このように撹拌混合時間は
5分間以上であればよいが、DEGの生成を抑制
するため60分間以内とすることが好ましく、最適
には30分間以内である。 次いで、リチウム化合物、カルシウム化合物お
よびアンチモン化合物を添加し、さらに240〜290
℃の温度で5分間以上撹拌混合してエステル化生
成物と粒子形成性物質とを反応させ、しかる後重
縮合触媒を再度添加し、重縮合反応を完結させ
る。 本発明に用いられる前記リチウム化合物として
は、カルボン酸のリチウム塩、たとえば酢酸リチ
ウムなどの他塩化リチウム、炭酸リチウム、硫酸
リチウムなどが用いられるが、酢酸リチウムが好
適である。 また、リチウム化合物の添加量は前記リン酸の
添加量に対し通常0.5〜2.0倍当量添加するのが好
ましい。0.5倍当量未満の添加量では製造された
ポリエステル中に粗大粒子が生成して好ましくな
い。一方、2.0倍当量を超えて添加しても実質的
な効果は増大せず、コスト高になるだけであり、
不利である。 本発明に用いられるカルシウム化合物として
は、ステアリン酸カルシウム、安息香酸カルシウ
ム、酢酸カルシウム、炭酸カルシウム、塩化カル
シウムなどがあげられるが、酢酸カルシウムが好
ましい。 また、カルシウム化合物の添加量は前記リン酸
の添加量に対し、通常0.1〜1.0倍当量用いられ
る。0.1倍当量未満の添加量では実質上添加した
効果が現われず、一方1.0倍当量を超える量を添
加すると粗大粒子が発生し、ともに好ましくな
い。 本発明において用いられるアンチモン触媒とし
ては、三酸化アンチモン、酢酸アンチモン、アン
チモングリコラートなどがあげられるが、取り扱
いやすく安価な三酸化アンチモンが適当である。 本発明における粒子形成性物質であるリチウム
化合物、カルシウム化合物と一次添加重縮合触媒
は同時に添加することが好適である。前記触媒添
加時期が、リチウム化合物、カルシウム化合物添
加より遅れた場合、粒子の粗大化が起こりやすい
ため好ましくない、またアンチモン化合物を先に
添加した場合は粗大粒子が発しやすいため好まし
くないのである。 また、二次添加触媒の添加時期は、前記リチウ
ム化合物、カルシウム化合物および一次添加触媒
を添加した後240〜290℃で5分間以上経過後,好
ましくは10〜30分後に添加するのが好ましい。粒
子形成性物質および一次添加触媒添加後5分以内
に二次添加触媒を添加すると、エステル化生成物
と粒子形成物質との反応時間が十分でないため二
次添加触媒が粒子形成に寄与し、触媒添加を二段
階で行う意味がなくなるばかりか、粒子径が不均
一となつたりして好ましくなく、また30分以上経
過した後二次添加触媒を添加し重縮合反応を行う
と、ポリエステル中に副生成分であるDEGの量
が多くなり好ましくないばかりか、本発明の目的
である短時間に高重合度のポリエステルを製造で
きるというメリツトを損ねてしまい好ましくな
い。 本発明における一次添加触媒の添加量は、通常
ポリエステルを構成する酸成分1モルに対し、ア
ンチモン金属原子モルとして0.5×10-4〜4×
10-4モル添加される。0.5××10-4モル未満の添
加量であると、内部粒子形成時の粒子微細化効果
が少なかつたりして好ましくない。また、4×
10-4モル以上のアンチモン化合物を添加しても生
成する内部粒子の粒子径をいたずらに大きくする
だけで、活性化増強効果にはほとんど寄与しない
ばかりか、かえつて生成する内部粒子が不均一化
し好ましくなく、またポリエステルにアンチモン
触媒特有のくすみが生じるため色調が悪化し好ま
しくない。 二次触媒の添加量はポリエステルを構成する酸
成分に対し、1×10-4〜6×10-4モルが好まし
く、1×10-4モル以下では重縮合反応の触媒活性
を補うには不十分であり、6×10-4モル以上では
アンチモン触媒特有のくすみによる色調悪化が著
しくなり、また活性化効果も頭打ちとなる。さら
に、触媒添加量の特に好ましい範囲は、一次触媒
添加量(A)と二次触媒添加量(B)が下式を満足する範
囲である。 2/1<A/B<1/2 (ただし、A,Bはポリエステルを構成する酸
成分1モルに対する一次添加および二次添加した
アンチモン触媒のモル数である。) 前記式の範囲を外れると、一次添加触媒の粒子
形成能と二次添加触媒の生産性向上能とにアンバ
ランスが生じ、前記した種々の問題が生じて好ま
しくない場合がある。 E 発明の作用効果 次に本発明の作用効果を説明する。 発明の原理は次の通りである。すなわち、優れ
た透明性、易滑性および表面形態を有する易滑性
ポリエステルを内部粒子法で製造するに際し、リ
ン化合物として安価なリン酸をグリコール溶液と
して用いた場合、アンチモン触媒を粒子形成性物
質添加時とその後5分以上経過した後の一次と二
次の一回に分割して添加して重縮合を完結させる
ことにより微細な粒子を形成し、易滑性かつ透明
性にすぐれた高重合度のポリエステルを短時間に
生産性よく製造できるのである。 すなわち、エステル化生成物と粒子形成性物質
であるリチウム化合物、カルシウム化合物との反
応にアンチモン触媒を存在させることにより、ま
ず均一で微細な粒子を安定して形成させることが
できる。 しかしながら、前記アンチモン触媒な内部粒子
形成にかかわるため、一次添加において、触媒量
を増量しても重縮合触媒活性増強はほとんどみら
れない。ところが、前記したエステル化生成物と
粒子形成性物質との反応が終了した後、すなわち
触媒一次添加後5分以上経過した時点でアンチモ
ン触媒を二次添加すれば、かかる二次添加触媒が
重合活性に大きく寄与するのである。 この結果、重縮合反応時間は従来の1/2〜2/3程
度に短縮され、従来の内部粒子法の欠点であつた
生産性の低さを著しく改善できるということは大
きな経済的効果を与えるものである。 F 実施例 以下、実施例によつて本発明の方法をさらに詳
しく説明する。 例中、「部」は「重量部」を示す。また、各特
性値の測定法は次の方法によつた。透明な易滑性
ポリエステルとしては、溶液ヘーズが約20以上
で、溶融ポリマーの透明性がよく、粒大粒子を含
まないものが好ましい。 (1) ポリマーの極限粘度〔η〕 フエノールと四塩化エタンの等重量混合溶媒
を用いて20℃で測定した溶液粘度より求めた。 (2) 溶液ヘーズ ポリマー2.86gを精秤し、これにフエノール
−四塩化エタン等重量混合物20mlを加え加熱
後、透過長さ10mmの石英ガラス製セルに入れ、
スガ試験機(株)製直読ヘーズコンピユータで測定
した。 (3) 溶融ポリマー透明度 ポリマーの透明性は次のようにして評価し
た。 無水フタル酸/無水マレイン酸(モル比1/
1)とエチレングリコール/プロピレングリコ
ール(モル比1/1)との縮合物49重量%とス
チレンモノマー51重量%とからなる混合物に、
二酸化チタン微粉末を0.5,1,2,3,4,
5,10,15,20,25,30,35,40,45,50ppm
分散させ、ベンゾイルパーオキサイドを混合物
に対して1重量%添加し、40〜60℃で約4時間
反応させて固化させ、標準ポリマー組成物を得
る(二酸化チタン含量0ppmの標準ポリマー組
成物は透明性が非常に良好なものである)。 この標準ポリマー組成物と試料の溶融ポリマ
ーの透明度を目視によつて比較し、最も近い透
明度の標準ポリマー組成物の二酸化チタン含量
をもつて試料ポリマーの透明度とした。 (4) 粒子の大きさ 25〜3mgの試料を270℃に加熱した2枚のプ
レパラートの間にはさみ、溶融プレス後急冷す
る。これを200倍の位相差顕微鏡で目視観察し、
その大きさによつて以下の5ランクに分けた。 ランクA:1μ以上の粒子はない。 ランクB:3μ以上の粒子がない。 ランクC:5μ以上の粒子がない。 ランクD:10μ以上の粒子がない。 ランクE:10μ以上の粒子がある。 (ただし、ランクB以上が良好であるとした。) 参考例 1 BHETの存在するエステル化反応槽にTPAと
EGのスラリー(EG/TPAモル比==1.6)を連
続的に供給し、250℃、常圧下で反応させ、滞留
時間を6時間に調節して反応率95%のエステル化
生成物を連続的に得た。 実施例 1 参考例1で得たBHET(未反応TPA粒子はな
い)100部を重合槽に移送し、285℃に加熱し、酸
成分1モルに対しリン酸8×10-3モルをEGの5
モル/の溶液として添加し、10分間、285℃で
N2雰囲気下撹拌混合した。その後酢酸リチウム
および酢酸カルシウムをそれぞれ酸成分1モルに
対し80×10-4モル、24×10-4モルをそれぞれEG
の1モル/および0.5モル/溶液として添加
し、同時に三酸化アンチモンを酸成分1モルに対
し、2×10-4モル加え(以下触媒一次添加とい
う)さらに10分間撹拌混合した。しかる後、三酸
化アンチモンを酸成分1モルに対し2××10-4
ル添加(以下触媒二次添加という)して徐々に減
圧して最終的に0.1mmHgとなし、285℃で目標到
達粘度〔η〕=0.70となるまで重縮合させた。重
縮合反応時間は1時間40分で、溶液ヘーズ52.8
%、溶融ポリマーの透明度は8ppm、粒子の大き
さはAランクであつた。 実施例 2および3 触媒添加時期および触媒量を変更したほかは実
施例1と同様に反応させ、第1表記載の結果を得
た。 比較例 1および2 一次添加触媒量を変え、触媒を二次添加しなか
つた他は実施例1と同様に反応させ、第1表記載
の結果を得た。比較例1は重縮合時間が非常に長
くなり、生産性が非常に劣るものであつた。 比較例 3 触媒一次添加量を4×10-4モル/酸成分モル、
添加時期をリチウム化合物およびカルシウム化合
物を添加10分後とし、触媒二次添加を行わない他
は実施例1と同様に反応させ、第1表記載の結果
を得た。 比較例 4 触媒一次添加時期をリチウム化合物およびカル
シウム化合物添加以前とし、触媒二次添加時期を
前記粒子形成性物質の添加直後とした他は実施例
1と同様に反応させ、第1表記載の結果を得た。 比較例 5 触媒一次添加時期と触媒添加量を変化した他は
実施例1と同様に反応させ、第1表記載の結果を
得た。 【表】
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for producing polyester having excellent surface properties and excellent slipperiness. Specifically, we use high-polymerized polyester that has excellent moldability when molded into fibers, films, and other molded products, and has excellent transparency, slipperiness, and surface morphology as a product after molding. The present invention relates to a method for manufacturing with high productivity in a short period of time. B. Prior art and its problems Polyester, which is used industrially today,
In particular, polyethylene terephthalate has high crystallinity, high softening point, strength, chemical resistance, heat resistance,
Because it has excellent properties in terms of weather resistance and electrical insulation, it is widely used industrially for fibers, films, and molded products. Generally, when polyester is used in various industrial fields, it is usually difficult to operate in forming processes such as melt extrusion, drawing, stretching, and heat treatment, or in the case of weaving, dyeing, processed yarn processing, or film production.
Operability in secondary processing processes such as magnetic layer coating, metal vapor deposition, cutting and finishing when molded products are made, and transparency, slipperiness, and favorable surface morphology when the final product is made. is needed. Conventionally, catalysts and additives have been developed and improved for the purpose of improving transparency or improving slipperiness, but it has been difficult to satisfy both at the same time. As a method for improving the transparency and slipperiness, for example, as seen in Japanese Patent Publication No. 34-5144,
There is a method in which an alkaline earth metal compound is used as a catalyst in the transesterification reaction step, which is the first step in the production of polyester, and fine particles (hereinafter referred to as internal particles) are precipitated in the subsequent polycondensation reaction step. Are known. However, when polyester is produced by this method, coarse particles are generated in the produced polyester, and the number of internal particles produced is not constant, which significantly impairs operability in molding and processing steps. However, it had the disadvantage of significantly reducing the transparency of the product. On the other hand, in the field of films for winding capacitor elements and films for various magnetic tapes, there has been a noticeable trend in recent years to reduce the thickness of the films, and as a result, it has become necessary to reduce the thickness of the polyester base film itself. . In such thin films, a problem has arisen in that unless the lubricity of the raw material polyester is further improved, the tape winding appearance and winding characteristics will be extremely poor. As a method to improve the above problem, for example, as described in Japanese Patent Application Laid-open No. 54-90397, a phosphorus compound is added when the esterification reaction rate reaches 91 to 99%, and the reaction is continued for a certain period of time. A method of adding a lithium compound or a lithium compound and a calcium compound after melting and holding, and a method of adding ethylene glycol before adding a particle-forming substance as described in JP-A-54-113696 have been proposed. However, the improvement effect is insufficient. That is, in the former case, the esterification product bis-(β-hydroxyethyl) terephthalate and/or its low polymer and the phosphorus compound have a low melting retention temperature, and when the phosphorus compound and other additives are added, There is a drawback that coarse particles are likely to be generated due to temperature changes, and in the latter case, there is also a drawback that the amount of particles generated will be insufficient unless the particle-forming substance and ethylene glycol are added substantially simultaneously. This tendency was particularly noticeable when phosphoric acid was used as the phosphorus compound, and the improvement effect was unsatisfactory. As a method to solve the above drawback, as described in Japanese Patent Application Laid-Open No. 59-64626, which was previously proposed by the present inventors, when the esterification reaction rate reaches 90% or more, the concentration is reduced to 1. Add a glycol solution of phosphoric acid with a concentration of ~10 mol/ml, stir and mix at 270 to 290°C for 5 minutes or more, then add a glycol solution of a particle-forming substance, and add a catalyst at the same time or immediately before polycondensation to perform polycondensation. There is a way to do it. However, even with this method, the following problems still remain. In other words, when a catalyst is added at the same time as a particle-forming substance, a polyester with fine particles and good transparency and slipping properties can be produced, but the polycondensation catalyst activity is weak and it is difficult to produce a highly polymerized polyester in a short time. There was a problem with productivity as it was impossible to do so. Furthermore, if the catalyst is added just before the start of the polycondensation reaction, the polycondensation catalyst activity will be sufficient and a polyester with a high degree of polymerization can be obtained, but on the other hand, it will have the disadvantage of producing coarse particles, which may cause undesirable phenomena. C. Purpose of the Invention The present invention provides a method for producing easily slippery polyester without such problems, that is, a method for producing polyester with a high degree of polymerization in an extremely short period of time, and which has excellent transparency, slipperiness, and surface properties when made into a product. It is an object of the present invention to provide a method for producing polyester having a shape. D. Structure of the Invention The present invention achieves the above object, and the gist thereof is as follows. When producing polyester by esterification reaction and polycondensation reaction using terephthalic acid and ethylene glycol as the main starting materials, when the esterification reaction rate reaches 90% or more, the produced bis-(β-hydroxyethyl) Terephthalate and/or its low polymer (hereinafter referred to as BHET)
An ethylene glycol solution of phosphoric acid with a concentration of 1 to 10 mol/mole was added in an amount such that phosphoric acid was 0.001 to 0.01 mol per 1 mol of the acid component constituting the polyester, and then heated at a temperature of 240 to 290°C for 50 minutes. Stir and mix for at least 5 minutes, then add the lithium compound, calcium compound, and antimony compound as the primary addition catalyst, stir and mix again at a temperature of 240 to 290°C for 5 minutes or more, and then add the antimony compound as the secondary addition catalyst. This is a method for producing easily slippery polyester, which is characterized by completing the polycondensation. The esterification method in the present invention is usually carried out by continuously supplying a slurry of terephthalic acid (hereinafter referred to as TPA) and ethylene glycol (hereinafter referred to as EG) to an esterification reaction tank in which BHET is present. The so-called direct esterification method is used. The above BHET may partially contain components other than TPA residues and EG groups. Further, BHET may be obtained by any known method, but it is preferable to use the BHET obtained by the above method as is. Rather, the TPA and EG slurry contains other acid components, such as isophthalic acid, adipic acid, sebacic acid, 5-sodium sulfoisophthalate, etc., and other glycol components, such as tetramethylene glycol, neopentyl glycol, 1, 4-
Cyclohexane dimethanol or the like may be contained to an extent not exceeding 30 mol%. Esterification is carried out in this way, and when the esterification reaction rate reaches 90% or more (at this point, no unreacted
It is necessary to add an EG solution of phosphoric acid with a concentration of 1 to 10 mol/ml (no TPA particles will disappear) and stir and mix at 240 to 290°C for 5 minutes or more. The stirring and mixing temperature of phosphoric acid and BHET is preferably 240°C or higher, as the diameter of the particles produced will be smaller, but if it exceeds 290°C, diethylene glycol (hereinafter referred to as DEG) will increase and the physical properties will be impaired. This is not desirable. In addition, when polycondensing polyester, additives are usually added as an EG solution, but
This is to improve the dispersion and mixing of the additives within the reaction system, and to suppress the formation of high melting point gels due to local reactions of the additives. In the present invention, phosphoric acid must be added at a time when the esterification reaction rate reaches 90% or more. If phosphoric acid is added when the esterification reaction rate is less than 90%, coarse particles will be generated, which is undesirable. The amount of phosphoric acid added needs to be 0.001 to 0.01 mol per mol of the acid component constituting the polyester. In other words, if the amount of phosphoric acid added is less than 0.001 mole per mole of the acid component, the amount of internal particles generated will be insufficient, and conversely, if the amount added exceeds 0.01 mole, coarse particles will be generated or transparency will be reduced. It is not desirable as it may cause significant damage. It is important to add phosphoric acid in the form of an EG solution having a concentration of 1 to 10 mol/, preferably 3 to 7 mol/. If the concentration of phosphoric acid added is less than 1 mol/mol, it is not preferable because the amount of particles produced is so small that the desired slippery polyester cannot be obtained. On the other hand, if the concentration exceeds 10 mol/mol, the resulting polyester may be colored yellow or coarse particles may be generated, which is also undesirable. In the present invention, the stirring and mixing time after adding the phosphoric acid to the EG solution must be 5 minutes or more. That is, if the lithium compound and the calcium compound are added for less than 5 minutes, coarse particles will be generated, causing problems. As described above, the stirring and mixing time may be 5 minutes or more, but in order to suppress the generation of DEG, it is preferably 60 minutes or less, and optimally 30 minutes or less. Then add lithium compound, calcium compound and antimony compound and further add 240-290
The esterification product and the particle-forming substance are reacted by stirring and mixing at a temperature of 50°C for 5 minutes or more, and then the polycondensation catalyst is added again to complete the polycondensation reaction. As the lithium compound used in the present invention, lithium salts of carboxylic acids such as lithium acetate, lithium chloride, lithium carbonate, lithium sulfate, etc. can be used, and lithium acetate is preferred. Further, the amount of the lithium compound added is preferably 0.5 to 2.0 times the amount of the phosphoric acid added. If the amount added is less than 0.5 times equivalent, coarse particles will be formed in the produced polyester, which is not preferable. On the other hand, adding more than 2.0 times the equivalent does not substantially increase the effect and only increases the cost.
It is disadvantageous. Examples of the calcium compound used in the present invention include calcium stearate, calcium benzoate, calcium acetate, calcium carbonate, and calcium chloride, with calcium acetate being preferred. Further, the amount of the calcium compound added is usually 0.1 to 1.0 times the amount of the phosphoric acid added. If the amount added is less than 0.1 times equivalent, the effect of addition will not be exhibited substantially, while if it is added in an amount exceeding 1.0 times equivalent, coarse particles will be generated, both of which are undesirable. Examples of the antimony catalyst used in the present invention include antimony trioxide, antimony acetate, and antimony glycolate, but antimony trioxide is suitable because it is easy to handle and is inexpensive. It is preferable that the lithium compound and calcium compound, which are particle-forming substances in the present invention, and the primary addition polycondensation catalyst are added at the same time. If the catalyst is added later than the addition of the lithium compound or calcium compound, it is undesirable because particles tend to become coarse, and if the antimony compound is added first, coarse particles are likely to be generated, which is undesirable. Further, the timing of adding the secondary addition catalyst is preferably 5 minutes or more, preferably 10 to 30 minutes after the lithium compound, calcium compound and primary addition catalyst have been added at 240 to 290°C. If the secondary catalyst is added within 5 minutes after the addition of the particle-forming substance and the primary catalyst, the reaction time between the esterification product and the particle-forming substance will not be sufficient, so the secondary catalyst will contribute to particle formation, and the catalyst will Not only does it make no sense to carry out the addition in two stages, but it is also undesirable because the particle size becomes non-uniform, and if the secondary addition catalyst is added after 30 minutes or more and the polycondensation reaction is carried out, by-products will be added to the polyester. Not only is this undesirable because the amount of DEG, which is a generated component, increases, but it is also undesirable because it impairs the advantage of being able to produce polyester with a high degree of polymerization in a short period of time, which is the objective of the present invention. The amount of the primary catalyst added in the present invention is usually 0.5 x 10 -4 to 4 x mol of antimony metal atoms per mol of the acid component constituting the polyester.
10 -4 mol is added. If the amount added is less than 0.5×10 −4 mol, the effect of making the particles finer during the formation of internal particles will be small and undesirable. Also, 4×
Adding more than 10 -4 mol of an antimony compound only unnecessarily increases the particle size of the internal particles produced, which not only hardly contributes to the activation enhancement effect, but also makes the internal particles produced non-uniform. This is not preferable, and the polyester becomes dull, which is characteristic of antimony catalysts, resulting in poor color tone. The amount of secondary catalyst added is preferably 1 x 10 -4 to 6 x 10 -4 mol based on the acid component constituting the polyester, and if it is less than 1 x 10 -4 mol, it is insufficient to compensate for the catalytic activity of the polycondensation reaction. If the amount exceeds 6×10 -4 mol, the color tone will deteriorate significantly due to the dullness characteristic of antimony catalysts, and the activation effect will reach a plateau. Furthermore, a particularly preferable range of the amount of catalyst added is a range in which the amount of primary catalyst added (A) and the amount of secondary catalyst added (B) satisfy the following formula. 2/1<A/B<1/2 (However, A and B are the number of moles of the antimony catalyst added primarily and secondarily to 1 mole of the acid component constituting the polyester.) Outside the range of the above formula In some cases, an imbalance occurs between the particle forming ability of the primary added catalyst and the productivity improvement ability of the secondary added catalyst, resulting in the various problems described above, which may be undesirable. E Effects of the invention Next, the effects of the invention will be explained. The principle of the invention is as follows. In other words, when producing a slippery polyester with excellent transparency, slipperiness, and surface morphology by the internal particle method, when cheap phosphoric acid is used as a glycol solution as a phosphorus compound, the antimony catalyst is used as a particle-forming substance. Highly polymerized with excellent slipperiness and transparency by forming fine particles by completing polycondensation by adding the primary and secondary components at the time of addition and at least 5 minutes later. Polyester can be produced in a short period of time with high productivity. That is, by including an antimony catalyst in the reaction between the esterification product and the lithium compound or calcium compound that is a particle-forming substance, uniform and fine particles can be stably formed. However, since it is involved in the formation of internal particles of the antimony catalyst, even if the amount of catalyst is increased in the primary addition, hardly any enhancement of polycondensation catalyst activity is observed. However, if the antimony catalyst is secondarily added after the reaction between the esterified product and the particle-forming substance is completed, that is, at least 5 minutes have passed after the first addition of the catalyst, the second-added catalyst will have no polymerization activity. This greatly contributes to the As a result, the polycondensation reaction time is shortened to about 1/2 to 2/3 of the conventional method, and the low productivity, which was a drawback of the conventional internal particle method, can be significantly improved, which has a large economic effect. It is something. F. Examples Hereinafter, the method of the present invention will be explained in more detail with reference to Examples. In the examples, "parts" indicate "parts by weight." In addition, each characteristic value was measured by the following method. The transparent slippery polyester preferably has a solution haze of about 20 or more, has good transparency of the molten polymer, and does not contain large particles. (1) Intrinsic viscosity of polymer [η] It was determined from the solution viscosity measured at 20°C using a mixed solvent of equal weights of phenol and tetrachloroethane. (2) Solution haze Precisely weigh 2.86 g of polymer, add 20 ml of an equal weight mixture of phenol and tetrachloroethane to it, heat it, and then place it in a quartz glass cell with a transmission length of 10 mm.
It was measured using a direct reading haze computer manufactured by Suga Test Instruments Co., Ltd. (3) Melt polymer transparency Polymer transparency was evaluated as follows. Phthalic anhydride/maleic anhydride (molar ratio 1/
1) and a mixture consisting of 49% by weight of a condensate of ethylene glycol/propylene glycol (molar ratio 1/1) and 51% by weight of styrene monomer,
Titanium dioxide fine powder 0.5, 1, 2, 3, 4,
5, 10, 15, 20, 25, 30, 35, 40, 45, 50ppm
Disperse, add 1% by weight of benzoyl peroxide to the mixture, and solidify by reacting at 40 to 60°C for about 4 hours to obtain a standard polymer composition (a standard polymer composition with a titanium dioxide content of 0 ppm is transparent). is in very good condition). The transparency of this standard polymer composition and the sample molten polymer were visually compared, and the titanium dioxide content of the standard polymer composition with the closest transparency was taken as the transparency of the sample polymer. (4) Particle size A sample of 25 to 3 mg is sandwiched between two preparations heated to 270°C, melt-pressed, and then rapidly cooled. This was visually observed using a 200x phase contrast microscope.
They were divided into the following five ranks based on their size. Rank A: There are no particles larger than 1μ. Rank B: No particles larger than 3μ. Rank C: No particles larger than 5μ. Rank D: No particles larger than 10μ. Rank E: There are particles of 10μ or more. (However, rank B or higher is considered good.) Reference example 1 TPA and BHET are added to the esterification reaction tank.
A slurry of EG (EG/TPA molar ratio = = 1.6) was continuously supplied and reacted at 250°C under normal pressure, and the residence time was adjusted to 6 hours to continuously produce an esterified product with a reaction rate of 95%. I got it. Example 1 100 parts of BHET obtained in Reference Example 1 (no unreacted TPA particles) was transferred to a polymerization tank, heated to 285°C, and 8 x 10 -3 mol of phosphoric acid was added to EG for 1 mol of acid component. 5
Added as a solution of mol/ml and incubated at 285 °C for 10 min.
Stir and mix under N2 atmosphere. After that, 80×10 -4 mol and 24×10 -4 mol of lithium acetate and calcium acetate were added to 1 mol of the acid component, respectively.
At the same time, 2 x 10 -4 mol of antimony trioxide was added per 1 mol of the acid component (hereinafter referred to as primary catalyst addition) and the mixture was stirred for 10 minutes. After that, 2 × × 10 -4 mol of antimony trioxide was added per 1 mol of the acid component (hereinafter referred to as secondary addition of catalyst), the pressure was gradually reduced to 0.1 mmHg, and the target viscosity was reached at 285°C. Polycondensation was carried out until [η]=0.70. The polycondensation reaction time was 1 hour and 40 minutes, and the solution haze was 52.8
%, the transparency of the molten polymer was 8 ppm, and the particle size was A rank. Examples 2 and 3 The reaction was carried out in the same manner as in Example 1, except that the timing of catalyst addition and the amount of catalyst were changed, and the results shown in Table 1 were obtained. Comparative Examples 1 and 2 The reaction was carried out in the same manner as in Example 1, except that the amount of catalyst added in the primary addition was changed and the catalyst was not added secondary, and the results shown in Table 1 were obtained. In Comparative Example 1, the polycondensation time was very long and the productivity was very poor. Comparative Example 3 The primary addition amount of catalyst was 4×10 -4 mol/mol of acid component,
The reaction was carried out in the same manner as in Example 1, except that the addition time was 10 minutes after the addition of the lithium compound and the calcium compound, and the secondary addition of the catalyst was not performed, and the results shown in Table 1 were obtained. Comparative Example 4 The reaction was carried out in the same manner as in Example 1, except that the first addition of the catalyst was before the addition of the lithium compound and the calcium compound, and the second addition of the catalyst was immediately after the addition of the particle-forming substance, and the results shown in Table 1 were obtained. I got it. Comparative Example 5 The reaction was carried out in the same manner as in Example 1, except that the timing of primary catalyst addition and the amount of catalyst added were changed, and the results shown in Table 1 were obtained. 【table】

Claims (1)

【特許請求の範囲】 1 テレフタル酸とエチレングリコールを主たる
出発原料として、エステル化反応および重縮合反
応によつてポリエステルを製造するに際し、エス
テル化反応率が90%以上となつた時点で、生成し
たビス−(β−ヒドロキシエチル)テレフタレー
トおよび/またはその低重合体に濃度が1〜10モ
ル/であるリン酸のエチレングリコール溶液
を、ポリエステルを構成する酸成分1モルに対
し、リン酸が0.001〜0.01モルとなる量添加し、
しかる後240〜290℃の温度で5分間以上撹拌混合
し、次いでリチウム化合物、カルシウム化合物、
および一次添加触媒のアンチモン化合物を添加
し、再び240〜290℃の温度で5分間以上撹拌し、
しかる後二次添加触媒のアンチモン化合物を添加
し、重縮合反応を完結させることを特徴とする易
滑性ポリエステルの製造方法。 2 一次添加触媒(A)と二次添加触媒(B)の添加量が
下記()〜()式を満足する特許請求の範囲
第1項記載の易滑性ポリエステルの製造方法。 0.5×10-4≦A≦4×10-4 () 1×10-4≦B≦6×10-4 () 1/2<A/B<2/1 () (ただし、A,Bはポリエステルを構成する酸
成分1モルに対する一次添加および二次添加した
アンチモン触媒のモル数である。)
[Scope of Claims] 1. When producing polyester by esterification reaction and polycondensation reaction using terephthalic acid and ethylene glycol as the main starting materials, the product produced when the esterification reaction rate reaches 90% or more. An ethylene glycol solution of phosphoric acid having a concentration of 1 to 10 mol/bis-(β-hydroxyethyl) terephthalate and/or its low polymer is added to 1 mol of the acid component constituting the polyester, at a concentration of 0.001 to 10 mol/mol of phosphoric acid. Add an amount of 0.01 mol,
After that, the mixture is stirred at a temperature of 240 to 290°C for 5 minutes or more, and then the lithium compound, calcium compound,
and an antimony compound as a primary addition catalyst, stirred again at a temperature of 240 to 290°C for 5 minutes or more,
A method for producing an easily slippery polyester, which comprises subsequently adding an antimony compound as a secondary addition catalyst to complete the polycondensation reaction. 2. The method for producing a slippery polyester according to claim 1, wherein the amounts of the primary addition catalyst (A) and the secondary addition catalyst (B) satisfy the following formulas () to (). 0.5×10 -4 ≦A≦4×10 -4 () 1×10 -4 ≦B≦6×10 -4 () 1/2<A/B<2/1 () (However, A and B are (This is the number of moles of the antimony catalyst added primarily and secondarily to 1 mole of the acid component constituting the polyester.)
JP12161184A 1984-06-13 1984-06-13 Manufacture of highly lubricant polyester Granted JPS612731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12161184A JPS612731A (en) 1984-06-13 1984-06-13 Manufacture of highly lubricant polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12161184A JPS612731A (en) 1984-06-13 1984-06-13 Manufacture of highly lubricant polyester

Publications (2)

Publication Number Publication Date
JPS612731A JPS612731A (en) 1986-01-08
JPH0365816B2 true JPH0365816B2 (en) 1991-10-15

Family

ID=14815536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12161184A Granted JPS612731A (en) 1984-06-13 1984-06-13 Manufacture of highly lubricant polyester

Country Status (1)

Country Link
JP (1) JPS612731A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023571A1 (en) 2010-08-18 2012-02-23 東洋紡績株式会社 Hydrolysis-resistant polyester film
JP2012041519A (en) * 2011-01-21 2012-03-01 Toyobo Co Ltd Hydrolysis-resistant polyester film
JP2012041520A (en) * 2011-01-21 2012-03-01 Toyobo Co Ltd Hydrolysis-resistant polyester film
JP2015180755A (en) * 2015-07-13 2015-10-15 東洋紡株式会社 Hydrolysis-resistance polyester film

Also Published As

Publication number Publication date
JPS612731A (en) 1986-01-08

Similar Documents

Publication Publication Date Title
US5744572A (en) Process for the acceleration of the polycondensation of polyester
WO1995000575A1 (en) Copolyester of cyclohexanedimethanol and process for producing such polyester
US5898060A (en) Copolyester for molding a bottle
JPH0365816B2 (en)
JP3108047B2 (en) Method for producing polyester resin
JPH0355490B2 (en)
JP2002030137A (en) Process for producing modified polyester
JPH06279579A (en) Production of polyester and molded polyester object
JPS6178828A (en) Production of hazeless polyester
JPS60250028A (en) Production of polyester
JP2679161B2 (en) Polyester production method
JPS59131621A (en) Preparation of polyester having easy slipperiness
JPS6011529A (en) Production of polyester
JPS5834492B2 (en) Polyester Noseizouhouhou
JPS60127349A (en) Easily slippery polyester composition
US3576790A (en) New catalyst systems for the production of polyesters
JPS6015421A (en) Production of polyester
JPS6333489B2 (en)
JPS62197417A (en) Production of polyester
JP2004035658A (en) Copolyester
JPS6035021A (en) Production of easily slidable polyester
JPS6197351A (en) Easy slipping polyester composition and production thereof
JPS5930855A (en) Polyester composition and its preparation
JPS59164325A (en) Production of polyester
JPH0455219B2 (en)