JPH0365694A - Diagnosis of water quality in boiling water reactor plant - Google Patents

Diagnosis of water quality in boiling water reactor plant

Info

Publication number
JPH0365694A
JPH0365694A JP1199424A JP19942489A JPH0365694A JP H0365694 A JPH0365694 A JP H0365694A JP 1199424 A JP1199424 A JP 1199424A JP 19942489 A JP19942489 A JP 19942489A JP H0365694 A JPH0365694 A JP H0365694A
Authority
JP
Japan
Prior art keywords
water
conductivity
reactor
amount
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1199424A
Other languages
Japanese (ja)
Inventor
Yamato Asakura
朝倉 大和
Makoto Nagase
誠 長瀬
Shunsuke Uchida
俊介 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1199424A priority Critical patent/JPH0365694A/en
Publication of JPH0365694A publication Critical patent/JPH0365694A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To intend to supply high quality control informations by evaluating a mass balance of a cooling water flow rate and an electric conductivity, individually to each constituent component of a primary cooling system. CONSTITUTION:A mass balance change of an electric conductivity is calculated and analyzed using measured data of a cooling water flow rate and the conductivity at each measuring point in a primary cooling system of nuclear reactor. Each of an in-leak flow rate of a cooling water (sea water) at a condenser 1, an ion removal rate at a condensate demineralizer 2, a generation rate of impurity ions in a reactor at a nuclear reactor 3, a cooling water in-leak flow rate at a cooler 4 of a reactor water purification system and an ion removal rate at a filter demineralizer 5 for the reactor water purification are simultaneously calculated and analyzed. Measured water quality data are converted and displayed as physical quantities which correlates an extent of a malfunction which is occurring at each constituent component directly to the malfunction itself. In this way, nuclear reactor operators or the like, can easily understand a cause of the malfunction and an extent of the malfunction, much precisely and concretely, and therefore a reliability improvement and the like of an operation management can be well intended.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、沸騰水型原子力プラントにおける水質変動か
らプラントの運転状態や構成機器の不具合を早期検知す
るための水質診断方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a water quality diagnosis method for early detection of plant operating conditions or malfunctions of component equipment based on water quality fluctuations in a boiling water nuclear power plant.

〔従来の技術〕[Conventional technology]

現在の水質管理は、測定された水質データを運転ガイド
ラインとして設定された管理規準値と比較することによ
り、異常の有無が診断される。
In current water quality management, the presence or absence of abnormalities is diagnosed by comparing measured water quality data with management standard values set as operational guidelines.

水質をより総合的に診断する方法として、原子炉一次冷
却系の各測定位置における水質変化の傾向の組合せ、あ
るいは、水質データ間の相関を分析することにより、異
常の有無とその原因が診断される。具体的には、特開昭
59−60293号公報記載のように、原子炉一次系の
各サンプリング位置における水中のイオン濃度の増減パ
ターンを異常事象毎の標準パターンと比較して、生じつ
つある異常を診断する方法が開示されている。
As a more comprehensive method for diagnosing water quality, the presence or absence of anomalies and their causes can be diagnosed by combining trends in water quality changes at each measurement position in the reactor primary cooling system or by analyzing correlations between water quality data. Ru. Specifically, as described in Japanese Unexamined Patent Publication No. 59-60293, the increase/decrease pattern of the ion concentration in water at each sampling position of the reactor primary system is compared with the standard pattern for each abnormal event to determine the abnormality that is occurring. A method for diagnosing is disclosed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、測定された水質変化は、構成機器に生じつつあ
る不具合の事象と直接的に関係した物理量でなく、それ
に付随した間接的な情報であるため、不具合の内容を直
接的かつ定量的に把握するのに適していない。
However, the measured water quality change is not a physical quantity directly related to the malfunction occurring in the component equipment, but is indirect information attached to it, so the details of the malfunction can be grasped directly and quantitatively. not suitable for

本発明の目的は、原子炉一次冷却系の水質データを、−
水冷却系内のマスバランスという観点で評価・解析し、
一次冷却系を構成する各機器に特有な不具合事象と直接
的に関係した物理量に変換・表示することにより、原子
炉運転員や水質管理者に、不具合の内容を直接的に表示
する、より質の高い管理情報を迅速に提供することにあ
る。
The purpose of the present invention is to collect water quality data of the reactor primary cooling system by -
Evaluate and analyze from the perspective of mass balance within the water cooling system,
By converting and displaying physical quantities directly related to malfunction events specific to each device that makes up the primary cooling system, reactor operators and water quality managers can directly display the details of the malfunction and improve quality control. The goal is to quickly provide high quality management information.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、原子炉、復水器、復水脱塩器、炉水浄化用
冷却器、濾過脱塩器から構成される原子炉一次冷却系に
おける。冷却水流量と導電率のマスバランスを、個々の
一次冷却系構成機器毎に評価し、マスバランスの変化量
を、構成機器に生じつつある不具合事象に直接対応する
物理量に変換し、表示することにより達成される。すな
わち、(1)復水器各室の上流および、下流側における
冷却水量と導電率の測定値から復水器各室における導電
率マスバランスの変化量を演算し、演算された変化量を
復水器冷却水のインリーク流量に変換し、表示、 (2)復水脱塩器各塔の上流および、下流側における冷
却水量と導電率の測定値から復水脱塩器各塔における導
電率マスバランスの変化量を演算し演算された変化量を
復水脱塩器のイオン除去率に変換し、表示 (3)原子炉への給水流量と給水導電率および、炉水イ
ンベントリ−と炉水導電率および炉水浄化装置の処理流
量と処理水導電率の測定値から炉内における導電率マス
バランスの変化量を演算し、演算された変化量を炉内で
の導電率増加量に変換し、表示、 (4)炉水浄化装置冷却器の上流および、下流側におけ
る処理水量と導電率の測定値から炉水浄化装置冷却器に
おける導電率マスバランスの変化量を演算し、演算され
た変化量を炉水浄化装置冷却器冷却水のインリーク流量
に変換し、表示。
The above object is for a nuclear reactor primary cooling system consisting of a nuclear reactor, a condenser, a condensate demineralizer, a reactor water purification cooler, and a filtration demineralizer. Evaluate the mass balance of cooling water flow rate and conductivity for each component of the primary cooling system, convert the amount of change in mass balance into a physical quantity that directly corresponds to a malfunction occurring in the component, and display it. This is achieved by That is, (1) the amount of change in the conductivity mass balance in each condenser chamber is calculated from the measured values of the cooling water amount and conductivity at the upstream and downstream sides of each condenser chamber, and the calculated amount of change is restored. (2) Conductivity mass in each condensate demineralizer tower based on the measured values of cooling water amount and conductivity at the upstream and downstream sides of each condensate demineralizer tower. Calculate the amount of change in the balance, convert the calculated amount of change into the ion removal rate of the condensate demineralizer, and display (3) Water supply flow rate and feed water conductivity to the reactor, reactor water inventory and reactor water conductivity The amount of change in the conductivity mass balance in the furnace is calculated from the measured values of the rate, the processing flow rate of the reactor water purification system, and the treated water conductivity, and the calculated amount of change is converted to the amount of increase in conductivity in the furnace. (4) Calculate the amount of change in the conductivity mass balance in the reactor water purification device cooler from the measured values of the amount of treated water and conductivity at the upstream and downstream sides of the reactor water purification device cooler, and display the calculated amount of change. Converts and displays the in-leak flow rate of cooling water in the reactor water purification system cooler.

(5)炉水浄化装置濾過脱塩器各塔の上流および下流側
における冷却水量と導電率の測定値から、炉水浄化装置
濾過説塩器冬場における導電率マスバランスの変化量を
演算し、演算された変化量を炉水浄化装置濾過脱塩器の
イオン除去率に変換し、表示、 される・。
(5) Reactor water purification system filtration demineralizer Calculate the amount of change in the conductivity mass balance in winter from the measured values of the amount of cooling water and conductivity at the upstream and downstream sides of each tower, The calculated amount of change is converted into the ion removal rate of the reactor water purification equipment filtration demineralizer and displayed.

〔作用〕[Effect]

原子炉一次冷却系は、基本的に閉ループを形成しており
、閉ループ内の構成機器が正常であれば、導電率等の水
質データも数学的なマスバランスが保持される。しかし
、構成機器の不具合が生じると、各機成機器に特有な原
因で、マスバランスが変化(アンバランスが生じる)す
るため、その変化量から、逆に、不具合が発生した機成
機器と、不具合な事象と直接関係した物理量を、同時に
演算・解析である。具体的には、原子炉一次冷却系の各
測定位置における冷却水流量と導電率の測定データを用
いて、導電率のマスバランス変化を演算・解析すること
により、■復水器では冷却水(国内では海水)のインリ
ーク流量、■復水脱塩器ではイオン除去率、■原子炉で
は炉内での不純物イオン発生速度、■炉水浄化系冷却器
では冷却水のインリーク流量、■炉水浄化用濾過脱塩器
ではイオン除去率を、それぞれ同時に演算・解析する。
The reactor primary cooling system basically forms a closed loop, and if the components in the closed loop are normal, water quality data such as electrical conductivity maintains mathematical mass balance. However, when a malfunction occurs in a component, the mass balance changes (imbalance occurs) due to causes specific to each component. Simultaneously calculate and analyze physical quantities directly related to the defective event. Specifically, by calculating and analyzing mass balance changes in conductivity using the measured data of cooling water flow rate and conductivity at each measurement position in the reactor primary cooling system, ■ In-leak flow rate of seawater (in Japan), ■ Ion removal rate in condensate desalination equipment, ■ Impurity ion generation rate within the reactor in nuclear reactors, ■ In-leak flow rate of cooling water in reactor water purification system coolers, ■ Reactor water purification In the filtration demineralizer, the ion removal rate is calculated and analyzed at the same time.

測定された水質データが、各構成機器に生じつつある不
具合の程度を不具合事象と直接関連付けた物理量に変換
・表示されるため、原子炉運転員や水質管理者が水質変
動原因と不具合の程度をより的確かつ具体的に把握する
ことが容易となり、運転管理の信頼性向上と省力化を同
時に達成できる。
The measured water quality data is converted and displayed into a physical quantity that directly correlates the degree of malfunction occurring in each component to the malfunction event, allowing reactor operators and water quality managers to identify the cause of water quality fluctuations and the degree of malfunction. It becomes easier to understand more accurately and specifically, and it is possible to simultaneously improve the reliability of operation management and save labor.

〔実施例〕〔Example〕

以下本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図に診断対象となる、原子炉一次系の構成機器とそ
のフローの一例を示す。原子炉で発生し、タービンを出
た蒸気は、復水器で冷却水により再凝縮(復水)され、
復水器下部に集められる。復水器下部は、それぞれ独立
した複数の氷室(ホットウェル)から成り、各水質に集
められた復水は一本に合流し、復水ポンプに供給される
。復水ポンプ出口の水は、再び複数の流れに分岐され、
復水脱塩器各塔に供給され、復水中の不純物が除去され
る。復水説塩器冬場出口の水は一本に合流し、給水ポン
プ、給水ヒータを経て原子炉内に供給される。炉水の一
部は、原子炉浄化装置に供給され、冷却器で即却された
後、ポンプで複数の濾過脱塩器に供給され、炉水中の不
純物が除去される。濾過脱塩器出口の水は一本に合流し
、給水ラインに供給される。
Figure 1 shows an example of the components of the reactor primary system to be diagnosed and their flow. The steam generated in the nuclear reactor and exiting the turbine is recondensed (condensed) using cooling water in the condenser.
Collected at the bottom of the condenser. The lower part of the condenser consists of multiple independent ice chambers (hot wells), and the condensate collected for each water quality joins into one tube and is supplied to the condensate pump. The water at the condensate pump outlet is again branched into multiple streams,
The condensate is supplied to each column of the demineralizer, and impurities in the condensate are removed. Condensation theory The water at the winter outlet of the salt reactor joins into one pipe and is supplied into the reactor via a water pump and a water heater. A portion of the reactor water is supplied to the reactor purification system, where it is immediately quenched by a cooler, and then supplied by pumps to multiple filtration demineralizers to remove impurities in the reactor water. The water at the outlet of the filtration demineralizer merges into one line and is supplied to the water supply line.

上記一次冷却系の水質・構成機器管理は、通常、各構成
機器の上流および下流側に設置された導電率計による測
定データを、運転管理規準値と比較することにより実施
される。測定される導電率の値は、一次冷却水中の不純
物イオン量に関連することから、 ■ 一次冷却系以外からの不純物の混入がなく、■ 一
次冷却系内での不純物の発生量の変化がなく、 ■ 脱塩器、濾過脱塩器の性能の変化がなければ一次冷
却系内での導電率のマスバランスが維持され、各測定場
所で一定の導電率が測定される。
Water quality and component equipment management of the primary cooling system is usually performed by comparing measurement data from conductivity meters installed upstream and downstream of each component with operational control standard values. Since the measured conductivity value is related to the amount of impurity ions in the primary cooling water, ■ there is no contamination of impurities from sources other than the primary cooling system, and ■ there is no change in the amount of impurities generated within the primary cooling system. , ■ If there is no change in the performance of the demineralizer or filtration demineralizer, the mass balance of conductivity within the primary cooling system will be maintained, and a constant conductivity will be measured at each measurement location.

逆に、一次冷却系内での導電率のマスバランス変化を解
析することにより、上記■〜0に関連した不具合の発生
を同時に、かつ、定量的に弁別診断可能である。
On the other hand, by analyzing the mass balance change in electrical conductivity within the primary cooling system, it is possible to simultaneously and quantitatively diagnose the occurrence of defects related to the above (1) to 0.

すなわち、第1図において変数Xは導電率(μS/Ql
)、Vは一次系冷却水流量(t/h)。
That is, in Fig. 1, the variable X is the conductivity (μS/Ql
), V is the primary system cooling water flow rate (t/h).

Aは復水器ホットウェル各室の冷却水インベントリ−(
t) 、Bは炉水のインベントリ−(1)、Lは一次系
への冷却水のインリーク流量(t/h)とし、変数の添
え字は一次系での場所を示すものとすると、 海水リークがあった時の復水器ホットウェル各室の導電
率Xアの経時変化は、海水のインリーク流量をり、海水
導電率(5X10番μS/3)をに海とすると、次式で
表される。
A is the cooling water inventory for each room of the condenser hotwell (
t), B is the reactor water inventory (1), L is the in-leak flow rate of cooling water to the primary system (t/h), and the subscript of the variable indicates the location in the primary system. Seawater leak The change over time in the electrical conductivity XA of each chamber of the condenser hotwell when there is Ru.

d x n/ d t =((xトLn+ x 5−V
ll)x JVn+ Ln))/An”・(1)復水器
出口の代表導電率(復水ポンプ入り口)には、ホットウ
ェル各室導電率Xnの流量平均値として次式で表される
d x n/ d t = ((xtLn+ x 5-V
ll) x JVn+Ln))/An” (1) The representative conductivity at the condenser outlet (at the condensate pump inlet) is expressed by the following equation as the flow rate average value of the conductivity Xn in each hotwell chamber.

に=ΣX、(V、+Ln)/Σ(V、+Ln)   −
(2)復水脱塩器各塔出口導電率に□ は、脱塩器のイ
オン除去率をη1とすると、次式で表される。
= ΣX, (V, +Ln)/Σ(V, +Ln) −
(2) The electrical conductivity at the outlet of each column of the condensate demineralizer is expressed by the following equation, where η1 is the ion removal rate of the demineralizer.

に11’=XO+(1−ηn)・(に−に0)  ・・
・(3)ここで、 Xo:純水の導電率(0,055μ
S/am)復水脱塩器出口の代表導電率に。 は、各浴
出口導電率に。 の平均値として次式で表される。
11'=XO+(1-ηn)・(Ni-N0)...
・(3) Here, Xo: Electrical conductivity of pure water (0,055μ
S/am) to the representative conductivity at the outlet of the condensate demineralizer. is the conductivity of each bath outlet. The average value of is expressed by the following formula.

に、′=Σに、 ・Vn’ /ΣV n /    ・
・・(4)炉内でのイオン状不純物(腐食生成物、混入
物の分解生成物)の発生に伴う導電率増加量をPμS 
/ amとすると、炉水導電率の経時変化は次式で表さ
れる。
, ′=Σ, ・Vn′ /ΣV n / ・
...(4) PμS is the increase in conductivity due to the generation of ionic impurities (corrosion products, decomposition products of contaminants) in the furnace.
/ am, the change in reactor water conductivity over time is expressed by the following equation.

d xu/d t=(Vp(に’ −にo)十Vc(に
R’ −XO)+P−B−VC(XR−XO))/BR
−(5)原子炉浄化系冷却器出口(濾過説塩器入り口)
導電率にRは、冷却水のインリーク流量をLl、冷却水
の導電率(1500±500μS/cm)をに防とする
と次式で表される。
d xu/d t=(Vp(ni' -nio) 10Vc(niR' -XO)+P-B-VC(XR-XO))/BR
-(5) Reactor purification system cooler outlet (filtration theory salter inlet)
The electrical conductivity R is expressed by the following equation, where Ll is the in-leakage flow rate of the cooling water, and Ll is the electrical conductivity of the cooling water (1500±500 μS/cm).

XR′ =(にR”VC+に訪・ Lり/(VC+L1
)    ・・・(6)原子炉浄化系濾過脱塩器の各塔
出口導電率XR”’n’は、濾過脱塩器のイオン除去率
をη。−0とすると、次式で表される。
XR′ = (to R” VC+ to Lri/(VC+L1
)...(6) The electrical conductivity XR"'n' at each tower outlet of the reactor purification system filtration demineralizer is expressed by the following formula, assuming that the ion removal rate of the filtration demineralizer is η.-0. .

XR−n’=にO+(XR’−にo)(1−ηc−n)
  ”(7)原子炉浄化系濾過脱塩器出口の代表導電率
にRは、各浴出口導電率にR−0の平均値として、次式
で表される。
XR-n'= O+ (XR'- o) (1-ηc-n)
(7) The representative conductivity R at the outlet of the filtration demineralizer in the reactor purification system is expressed by the following equation as the average value of R-0 for each bath outlet conductivity.

にR1=Σにn−n  ” Vc−n/ΣVc−−−(
8)上記(1)〜(8)式に基づき、一次冷却系構成機
器に不具合が発生したときの導電率測定値のマスバラン
ス変化を演算・解析することにより、下記に示す様に、
不具合事象と直接関連する物理量に変換できる。
to R1=Σn−n” Vc−n/ΣVc---(
8) Based on the above equations (1) to (8), by calculating and analyzing the mass balance change of the conductivity measurement value when a failure occurs in the primary cooling system component equipment, as shown below,
It can be converted into a physical quantity directly related to the malfunction event.

■ 復水器冷却海水インリーク量への変換(1)式より
復水器各室の導電率に。は、にn=(Xn(o) −m
/ k) ・e−”+m/ k   −(9)ただし、
m=(x訃Ln+xs・Vn)/Ank=(V、+Ln
)/An にn(o) : t = Oにおける復水器ホットウェ
ル各室の導電率 (9)式を海水インリーク流量り、につぃて解くと、 Ln=(Xn”Vn  (Xn(0)”Vn  Xs”
Vn”e−””/^1xs−V−)/ xi(1e−”
”/^’)   ・(10)となり、1=0および、t
 (h)経過後のホトウェル導電率にn(o)および、
に。より復水器冷却海水インリーク量Lnを算出するこ
とができる。
■ Conversion to condenser cooling seawater in-leak amount From equation (1), the conductivity of each chamber of the condenser is determined. is n=(Xn(o) −m
/ k) ・e-”+m/k-(9) However,
m=(x訃Ln+xs・Vn)/Ank=(V,+Ln
)/An to n(o): Electrical conductivity of each chamber of the condenser hotwell at t = O. Solving equation (9) for the seawater in-leak flow rate, Ln=(Xn”Vn (Xn(0 )”Vn Xs”
Vn”e-””/^1xs-V-)/xi(1e-”
”/^') ・(10), 1=0 and t
(h) n(o) and the photowell conductivity after elapsed time;
To. Thus, the condenser cooling seawater in-leak amount Ln can be calculated.

■ 原子炉浄化系冷却水インリーク量への変換(6)式
を原子炉浄化系冷却器での冷却水のインリーク流量り防
について解くと、 IJ=Vc(xR−XR)/に防       −(1
1)となり、冷却器出口導電率にRと炉水導電率XRの
差からインリーク流量を算出できる。
■ Conversion to reactor purification system cooling water in-leak amount When equation (6) is solved for cooling water in-leak flow prevention in the reactor purification system cooler, IJ = Vc (xR - XR) / prevention - (1
1), and the in-leak flow rate can be calculated from the difference between the cooler outlet conductivity R and the reactor water conductivity XR.

■ 脱塩器イオン除去性能への変数 (3)式より、復水脱塩器出口のイオン除去率η、は、 η、=1−(X、−XO)/(X−にo)   −(1
2)となり、各浴出口、入り口の導電率に1  にの差
から算出できる。
■ Variables to demineralizer ion removal performance From equation (3), the ion removal rate η at the condensate demineralizer outlet is: η, = 1-(X, -XO)/(X-to o) -( 1
2), which can be calculated from the difference in conductivity of 1 at each bath outlet and inlet.

同様に、(7)式より、JJK子炉浄化系濾過脱塩器各
塔冬場オン除去率ηC−ゎは、 ηc−n”: 1−(xn−0−go)/(xR’ −
go) …(13)となり、各浴出口、入り口の導電率
にR−0にR′の差から算出できる。
Similarly, from equation (7), the winter ON removal rate ηC-ゎ of each tower of the JJK child furnace purification system filtration demineralizer is: ηc-n'': 1-(xn-0-go)/(xR'-
go) ...(13), which can be calculated from the difference between R-0 and R' in the conductivity at each bath outlet and inlet.

■ 炉内でのイオン状不純物発生量への変換(5)より
、炉水の導電率にRは にn=(xR(o)  Q/m) ・e1t+Q/m 
  −(14)ここで、Q=(Cx’ −KO) ・V
z+XR−Vc十P−BR)/BR m=Vc/BR にR(0) : t = Oにおける炉水導電率となる
。(14)式を、炉内での導電率増加量Pについて解く
と。
■ Conversion to the amount of ionic impurities generated in the reactor From (5), the electrical conductivity of the reactor water is n = (xR (o) Q/m) ・e1t + Q/m
-(14) Here, Q=(Cx' -KO) ・V
m=Vc/BR and R(0): reactor water conductivity at t=O. Solving equation (14) for the amount of conductivity increase P in the furnace.

P =(Vc/ BR) ・(XR−XR(0) ・e
−(”/BR)・’)/(1−e″″(vc/au)、
t)−((x’ −xo) ・Vt十XR’ ・VC/
 BR=(15) となり、1=0およびt (h)経過時の炉水導電率に
R(0)およびXRより炉内での導電率増加量を算出す
ることができる。
P = (Vc/BR) ・(XR-XR(0) ・e
-("/BR)・')/(1-e""(vc/au),
t) - ((x' - xo) ・VtxR' ・VC/
BR=(15), and from 1=0 and the reactor water conductivity at the time of t (h), R(0) and XR, it is possible to calculate the amount of increase in electrical conductivity in the reactor.

上記マスバランス評価結果に基づく水質診断フローを第
2図に示す、第2図において、破線枠で表示した日報・
月報作成のためのデータ編集機能は、実機においてすで
に使用されている。
Figure 2 shows the water quality diagnosis flow based on the above mass balance evaluation results.
The data editing function for creating monthly reports is already in use in the actual machine.

今回のマスバランス評価によって新たに付加される機能
を二重枠で表示した。すなわち■ 導電率センサーの信
頼性(マスバランス評価に基づく導電率の計算値を実測
値と比較)■ 脱塩器の脱塩性能の経時変化 ■ 復水器、原子炉浄化系冷却器での冷却水のインリー
ク流量 ■ 炉内構造材の腐食、炉内に混入した不純物の熱およ
び放射線分解によって生成されるイオン状不純物の発生
量 をそれぞれ、連続的に定量評価することが可能である。
New functions added as a result of this mass balance evaluation are displayed in double frames. In other words, ■ Reliability of the conductivity sensor (comparing the calculated value of conductivity based on mass balance evaluation with the measured value) ■ Changes in desalination performance of the desalter over time ■ Cooling in the condenser and reactor purification system cooler In-leak flow rate of water ■ It is possible to continuously quantitatively evaluate the amount of ionic impurities generated by corrosion of structural materials inside the reactor, heat of impurities mixed in the reactor, and radiolysis.

特に、■の評価機能は、特定の水質センサーによる直接
測定が困難(炉内のイオン発生量を給水系からの持ち込
み、炉内での濃縮・除去を考慮して弁別測定要)な物理
量で、マスバランス評価によって実現可能である。
In particular, the evaluation function (■) is a physical quantity that is difficult to measure directly using a specific water quality sensor (the amount of ions generated in the furnace must be measured in consideration of the amount brought in from the water supply system and the concentration and removal within the furnace). This can be achieved through mass balance evaluation.

第3図は、第1図において、100万kwクラスの電気
出口の沸騰水型原子力発電プラントを想定し一次冷却系
の水質データを模擬的に作成して、導電率データのマス
バランス変化を、上記(10)〜(15)式に基づいて
演算・解析した診断結果の表示画面例を示したものであ
る。
Figure 3 shows that in Figure 1, water quality data for the primary cooling system is simulated assuming a boiling water nuclear power plant with a 1 million kW class electric outlet, and changes in mass balance of conductivity data are calculated. This figure shows an example of a screen displaying the diagnosis results calculated and analyzed based on the above equations (10) to (15).

診断結果は、−水冷却系のフローに従って、■ 6室あ
る復水器各室における冷却水のインリーク流量 ■ 復水器出口の代表導電率計の信頼性(復水器各室導
電率の実測値から出口の代表導電率を算出(計算値)し
、実測値と比較)■ 10塔(内1塔は予備)ある復水
脱塩器の脱塩性能(イオンの除去率) ■ 給水の代表導電率計の信頼性 (復水脱塩器各塔出口導電率の実測値から給水の代表導
電率を算出(計算値)し、実測値と比較) ■ 2系列ある原子炉浄化装置濾過脱塩器(FDの脱塩
性能(イオンの除去率) ■ 炉内での導電率増加量(イオン発生量)■ 原子炉
浄化系冷却器における冷却水のインリーク流量 の各項目を同時に1画面上に表示する。
The diagnosis results are: - According to the flow of the water cooling system, ■ In-leak flow rate of cooling water in each of the six condenser chambers ■ Reliability of the representative conductivity meter at the condenser outlet (actual measurement of conductivity in each condenser chamber) Calculate the representative conductivity at the outlet from the value (calculated value) and compare it with the measured value) ■ Desalination performance (ion removal rate) of a condensate demineralizer with 10 towers (one tower is a standby) ■ Representative conductivity of feed water Reliability of the conductivity meter (calculate the representative conductivity of the feed water from the actual measured value of the conductivity at the outlet of each column of the condensate demineralizer (calculated value) and compare it with the actual measured value) ■ Reactor purification system filtration desalination with two series (Desalination performance of FD (ion removal rate) ■ Amount of conductivity increase in the reactor (amount of ions generated) ■ In-leak flow rate of cooling water in the reactor purification system cooler All items are displayed simultaneously on one screen do.

(変形例) 導電率のマスバランス変化に基づく診断では。(Modified example) In diagnosis based on mass balance changes in conductivity.

導電率測定データの変動(計測、読み取り誤差に起因)
を真の水質変動として取り扱ってしまい、誤診断の原因
となる。その対策として、■ 第3図に表示した評価値
にしきい値を設定し、それを越えた場合のみを真の水質
変動と判断する。
Variations in conductivity measurement data (due to measurement and reading errors)
is treated as a true water quality change, leading to misdiagnosis. As a countermeasure, ■ Set a threshold value for the evaluation value shown in Figure 3, and judge only when it exceeds the threshold value as a true water quality change.

■ 第3図に表示した評価値が継続的に増加または減少
傾向を示した場合を真の水質変動と判断する。
■ If the evaluation values shown in Figure 3 show a continuous increase or decrease trend, it is determined that there is a true water quality change.

■ のと■を組み合わせて判断する。■ Make a judgment by combining the and ■.

方法が考えられる。There are possible ways.

例えば、対策■の具体例として、上記復水器での冷却海
水インリーク流量の診断例においてa)復水導電率が0
.01μS / am増加すると、海水リーク流量の評
価値は0.21/h  となる、b)導電率センサーの
計測、読み取り誤差に起因した測定変動が±0.02μ
S/Qlである、ことから真の海水リークと判断する時
のしきい値を0.51/h  と設定することにより、
測定変動に起因した誤診断を低減できる。
For example, as a specific example of Countermeasure (2), in the example of diagnosing the cooling seawater in-leak flow rate in the condenser, a) the condensate conductivity is 0.
.. If the rate increases by 0.01μS/am, the seawater leakage flow rate evaluation value becomes 0.21/h.b) Measurement variation due to conductivity sensor measurement and reading error is ±0.02μ.
S/Ql, so by setting the threshold for determining a true seawater leak as 0.51/h,
Misdiagnosis caused by measurement fluctuations can be reduced.

対策■の具体例として、炉内での導電率増加量が前回診
断時に比べて増加した場合、第4図に示すように、継続
的な増加回数を評価結果の下部にパーチャートで表示さ
せることにより、測定変動に起因するランダムな増加を
除外して、誤診断を低減できる。
As a specific example of countermeasure (■), if the amount of conductivity increase in the furnace has increased compared to the time of the previous diagnosis, the number of continuous increases should be displayed in a par chart at the bottom of the evaluation results, as shown in Figure 4. This makes it possible to exclude random increases caused by measurement fluctuations and reduce misdiagnosis.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、測定された水質デー°夕が、各構成機
器に生じつつある不具合の程度を不具合事象と直接関連
付けた物理量に変換・表示されるため、原子炉運転員や
水質管理者が水質変動原因と不具合の程度をより的確か
つ具体的に把握することが容易となり、運転管理の信頼
性向上と省力化を同時に達成できる。
According to the present invention, measured water quality data is converted and displayed into a physical quantity that directly correlates the degree of malfunction occurring in each component with the malfunction event, so that reactor operators and water quality managers can It becomes easier to more accurately and specifically understand the causes of water quality fluctuations and the extent of problems, and it is possible to simultaneously improve the reliability of operation management and save labor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用する原子炉一次冷却系のフローと
構成機器の一例を示す図、第2図は本発明を適用した水
質診断結果の表示例を示す図、第3図は本発明における
水質診断のフローと実現される診断機能を示す図、第4
図は本発明を適用した水質診断結果の別の表示例を示す
図である。
Figure 1 is a diagram showing an example of the flow and component equipment of a reactor primary cooling system to which the present invention is applied, Figure 2 is a diagram showing an example of display of water quality diagnosis results to which the present invention is applied, and Figure 3 is a diagram showing an example of the present invention. Figure 4 shows the flow of water quality diagnosis and the diagnostic function realized in
The figure is a diagram showing another display example of water quality diagnosis results to which the present invention is applied.

Claims (1)

【特許請求の範囲】 1、原子炉、復水器、復水脱塩器、炉水浄化用冷却器、
濾過脱塩器から構成される原子炉一次冷却系における、
冷却水流量と導電率のマスバランスを、個々の一次冷却
系構成機器毎に評価し、マスバランスの変化量を、構成
機器に生じつつある不具合事象に直接対応する物理量に
変換し、表示することを特徴とする沸騰水型原子力プラ
ントの水質診断方法。2、復水器各室の上流および、下
流側における冷却水量と導電率の測定値から復水器各室
における導電率マスバランスの変化量を演算し、演算さ
れた変化量を復水器冷却水のインリーク流量に変換し、
表示することを特徴とする沸騰水型原子力プラントの水
質診断方法。 3、復水脱塩器各塔の上流および、下流側における冷却
水量と導電率の測定値から復水脱塩器各塔における導電
率マスバランスの変化量を演算し、演算された変化量を
復水脱塩器のイオン除去率に変換し、表示することを特
徴とする沸騰水型原子力プラントの水質診断方法。 4、原子炉への給水流量と給水導電率および、炉水イン
ベントリーと炉水導電率および炉水浄化装置の処理流量
と処理水導電率の測定値から炉内における導電率マスバ
ランスの変化量を演算し、演算された変化量を炉内での
導電率増加量に変換し、表示することを特徴とする沸騰
水型原子力プラントの水質診断方法。 5、炉水浄化装置冷却器の上流および、下流側における
処理水量と導電率の測定値から炉水浄化装置冷却器にお
ける導電率マスバランスの変化量を演算し、演算された
変化量を炉水浄化装置冷却器冷却水のインリーク流量に
変換し、表示することを特徴とする沸騰水型原子力プラ
ントの水質診断方法。 6、炉水浄化装置濾過脱塩器各塔の上流および、下流側
における冷却水量と導電率の測定値から、炉水浄化装置
濾過脱塩器各塔にお刑る導電率マスバランスの変化量を
演算し、演算された変化量を炉水浄化装置濾過脱塩器の
イオン除去率に変換し、表示することを特徴とする沸騰
水型原子力プラントの水質診断方法。 7、上記第2項から第6項に関する診断結果を同一画面
上に表示することを特徴とする沸騰水型原子力プラント
の水質診断方法。 8、導電率マスバランスの変化量から演算された、上記
第1項から第7項における変換量が、継続して増加また
は、減少することを検知して、真の不具合と判定するこ
とを特徴とする沸騰水型原子力プラントの水質診断方法
。 9、上記第1項から第2項における変換量にしきい値を
設定し、導電率マスバランスの変化量から演算された変
換量が、しきい値を越えたことを検知して、真の不具合
と判定することが特徴とする沸騰水型原子力プラントの
水質診断方法。
[Claims] 1. Nuclear reactor, condenser, condensate demineralizer, reactor water purification cooler,
In the reactor primary cooling system consisting of a filtration demineralizer,
Evaluate the mass balance of cooling water flow rate and conductivity for each component of the primary cooling system, convert the amount of change in mass balance into a physical quantity that directly corresponds to a malfunction occurring in the component, and display it. A water quality diagnosis method for a boiling water nuclear power plant characterized by: 2. Calculate the amount of change in the conductivity mass balance in each condenser room from the measured values of the cooling water amount and conductivity at the upstream and downstream sides of each condenser room, and use the calculated amount of change for condenser cooling. Converts to in-leak flow rate of water,
A method for diagnosing water quality in a boiling water nuclear power plant, characterized by displaying the following: 3. Calculate the amount of change in the conductivity mass balance in each condensate demineralizer tower from the measured values of the cooling water amount and conductivity at the upstream and downstream sides of each condensate demineralizer tower, and calculate the calculated amount of change. A method for diagnosing water quality in a boiling water nuclear power plant, which is characterized by converting and displaying the ion removal rate of a condensate demineralizer. 4. Calculate the amount of change in the conductivity mass balance within the reactor from the measured values of the water supply flow rate and feed water conductivity to the reactor, the reactor water inventory, the reactor water conductivity, and the treated flow rate and treated water conductivity of the reactor water purification system. A method for diagnosing water quality in a boiling water nuclear power plant, which comprises calculating, converting the calculated amount of change into an amount of increase in conductivity within the reactor, and displaying the amount. 5. Calculate the amount of change in the conductivity mass balance in the reactor water purification device cooler from the measured values of the amount of treated water and conductivity at the upstream and downstream sides of the reactor water purification device cooler, and use the calculated amount of change as the A method for diagnosing water quality in a boiling water nuclear power plant, characterized by converting it into an in-leak flow rate of cooling water in a purifier cooler and displaying it. 6. From the measured values of the amount of cooling water and conductivity at the upstream and downstream sides of each tower of the filtration demineralizer in the reactor water purification equipment, determine the amount of change in the mass balance of conductivity in each tower of the filtration demineralizer in the reactor water purification equipment. A method for diagnosing water quality in a boiling water nuclear power plant, characterized in that the calculated amount of change is converted into an ion removal rate of a filtration demineralizer of a reactor water purification device and displayed. 7. A method for diagnosing water quality in a boiling water nuclear power plant, characterized in that the diagnostic results related to items 2 to 6 above are displayed on the same screen. 8. It is characterized by detecting that the conversion amount in the first to seventh terms, calculated from the change amount of the conductivity mass balance, continues to increase or decrease, and determining it as a true malfunction. Water quality diagnosis method for boiling water nuclear power plants. 9. A threshold value is set for the conversion amount in the above-mentioned 1st to 2nd terms, and it is detected that the conversion amount calculated from the amount of change in the conductivity mass balance exceeds the threshold value, and a true malfunction is detected. A water quality diagnosis method for a boiling water nuclear power plant characterized by determining that.
JP1199424A 1989-08-02 1989-08-02 Diagnosis of water quality in boiling water reactor plant Pending JPH0365694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1199424A JPH0365694A (en) 1989-08-02 1989-08-02 Diagnosis of water quality in boiling water reactor plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1199424A JPH0365694A (en) 1989-08-02 1989-08-02 Diagnosis of water quality in boiling water reactor plant

Publications (1)

Publication Number Publication Date
JPH0365694A true JPH0365694A (en) 1991-03-20

Family

ID=16407582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1199424A Pending JPH0365694A (en) 1989-08-02 1989-08-02 Diagnosis of water quality in boiling water reactor plant

Country Status (1)

Country Link
JP (1) JPH0365694A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190933A (en) * 2007-02-02 2008-08-21 Japan Atom Power Co Ltd:The Method for evaluating concentration of ion impurity in secondary coolant at pwr-type nuclear power plant and method for operating secondary cooling system at pwr-type nuclear power plant using such evaluation system
CN109473187A (en) * 2018-10-31 2019-03-15 西安交通大学 LAYER FLUID stirs and make muddy process and heat-transfer character experimental system visualizing and method under ocean condition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190933A (en) * 2007-02-02 2008-08-21 Japan Atom Power Co Ltd:The Method for evaluating concentration of ion impurity in secondary coolant at pwr-type nuclear power plant and method for operating secondary cooling system at pwr-type nuclear power plant using such evaluation system
CN109473187A (en) * 2018-10-31 2019-03-15 西安交通大学 LAYER FLUID stirs and make muddy process and heat-transfer character experimental system visualizing and method under ocean condition

Similar Documents

Publication Publication Date Title
CN111033253B (en) Water quality diagnosis system, power station, and water quality diagnosis method
CN109186813A (en) A kind of temperature sensor self-checking unit and method
EP0351833A2 (en) Plant fault diagnosis system
EP0496333B1 (en) Nuclear plant diagnosis apparatus and method
JPH06501539A (en) Method for monitoring condenser operation by measuring selected pipes
JPH04217786A (en) Method and device for controlling condenser for power plant
CN113757093B (en) Flash steam compressor unit fault diagnosis method
CN111898794B (en) Abnormal monitoring method for thermal efficiency of large coal-fired boiler
JP2005345046A (en) Degradation diagnosis system of heat source instrument
JPH0365694A (en) Diagnosis of water quality in boiling water reactor plant
JP3188289B2 (en) Seawater leak diagnostic equipment for plants
CN106486175B (en) Nuclear power plant's foul drainage system sodium ion Indexes Abnormality diagnostic device and method
JP2533665B2 (en) Abnormality diagnosis method for nuclear power plant and nuclear power plant
CN113552178B (en) Automatic continuous measurement method for steam-water sampling hydrogen conductivity
CN111727352A (en) Method for evaluating fouling of heat exchanger
JP3481785B2 (en) Primary water leak detector for nuclear facilities
JP6980034B2 (en) Device life evaluation method
JPH06288853A (en) Process instrumentation rack
JPS624526B2 (en)
JP2971213B2 (en) Abnormality detector for pH meter
JPH0299848A (en) Continuous analysis method and apparatus for ion component
CN206281835U (en) The on-line analysis of generator hydrogen quality and sampling system
Sultanov et al. Assessment of technical condition of condensers of TPP steam turbines according to the data of the power equipment parameters monitoring system
JPS5857008A (en) Diagnosis of anomaly of water feeding pump and driving turbine thereof
US5132075A (en) Method and apparatus for water chemistry diagnosis of atomic power plant