JPH0365490B2 - - Google Patents

Info

Publication number
JPH0365490B2
JPH0365490B2 JP57091938A JP9193882A JPH0365490B2 JP H0365490 B2 JPH0365490 B2 JP H0365490B2 JP 57091938 A JP57091938 A JP 57091938A JP 9193882 A JP9193882 A JP 9193882A JP H0365490 B2 JPH0365490 B2 JP H0365490B2
Authority
JP
Japan
Prior art keywords
enzyme
immobilized
nad
electrode
oxidase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57091938A
Other languages
Japanese (ja)
Other versions
JPS58208658A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57091938A priority Critical patent/JPS58208658A/en
Publication of JPS58208658A publication Critical patent/JPS58208658A/en
Publication of JPH0365490B2 publication Critical patent/JPH0365490B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 この発明はNADH酸化酵素またはNADPH酸
化酵素(以下「NAD(P)H酸化酵素」と記す)
を固定化した固定化酵素担体を用いて種々の生化
学物質の測定を行なうための、新規な定量装置に
関する。
[Detailed Description of the Invention] This invention relates to NADH oxidase or NADPH oxidase (hereinafter referred to as "NAD(P)H oxidase").
This invention relates to a novel quantitative device for measuring various biochemical substances using an immobilized enzyme carrier on which is immobilized.

生体内の種々の生化学物質の定量は、その生体
内の生化学的情報を得る手段として極めて重要で
ある。特に、臨床検査の分野においては、病態を
把握する上で、体液中の生化学物質を定量するこ
とは不可欠である。診断治療上重要な生体成物は
低分子成分から高分子成分に至るまで、複雑多岐
にわたつているので、特定成分のみを選択的に測
定するためには、高い基質特異性を有する酵素を
用いた酵素分析法が広く利用されている。
Quantification of various biochemical substances within a living body is extremely important as a means of obtaining biochemical information within that living body. Particularly in the field of clinical testing, it is essential to quantify biochemical substances in body fluids in order to understand pathological conditions. Biological components that are important for diagnosis and treatment are complex and diverse, ranging from low-molecular components to high-molecular components, so enzymes with high substrate specificity must be used to selectively measure specific components. Enzyme analysis methods are widely used.

酵素分析法において頻繁に測定対象となる物質
の1つに、補酵素NADおよびNADPの還元型で
あるNADHおよびNADPH(以下「NAD(P)
H」と記す)がある。これらは、その最大吸光波
長として340nmをもつことから、紫外部吸収測
定により、NAD(P)Hの増減を求め、それによ
つて基質あるいは酵素活性の定量を行なつてい
る。しかしながら、この方法においては、試料に
濁りあるいは紫外部のみならず可視部の吸収があ
る場合は定量が困難である。そのため、場合によ
つては、脱色や遠心分離あるいは除たんぱく等の
前処理が必要となる。
One of the substances frequently measured in enzyme analysis methods is NADH and NADPH (hereinafter referred to as "NAD(P)"), which are reduced forms of the coenzymes NAD and NADP.
(denoted as "H"). Since these have a maximum absorption wavelength of 340 nm, the increase or decrease in NAD(P)H is determined by ultraviolet absorption measurement, and the substrate or enzyme activity is determined thereby. However, in this method, it is difficult to quantify if the sample is cloudy or absorbs not only the ultraviolet region but also the visible region. Therefore, pretreatment such as decolorization, centrifugation, or protein removal may be necessary in some cases.

上述のような比色法の欠点を克服するために、
最近では固定化酵素を用いた酵素電極による電気
的測定装置が提案されている。しかしながら、現
在実用化されている酵素電極法は、比色法によつ
て定量可能であつた基質のすべてをカバーするも
のではなく、基質や反応生成物が電極活性物質と
なるような一部の酵素反応系でしか利用できなか
つた。そのために、現在の酵素電極法による測定
項目は、高々3ないし4種類程度にすぎず、この
発明が意図しているような補酵素NADあるいは
NADPを必要とする酵素反応系には全く利用さ
れていなかつた。
In order to overcome the drawbacks of the colorimetric method as mentioned above,
Recently, electrical measuring devices using enzyme electrodes using immobilized enzymes have been proposed. However, the enzyme electrode method that is currently in practical use does not cover all the substrates that can be quantified by colorimetric methods, and only some of the substrates and reaction products become electrode active substances. It could only be used in enzymatic reaction systems. For this reason, the current enzyme electrode method can only measure three or four types of measurement items, such as coenzyme NAD or
It has not been used at all in enzymatic reaction systems that require NADP.

そこで、本件発明者らは従来の上記の問題点を
克服して、NAD(P)H酸化酵素を固定化した酵
素固定化担体を用いてNAD(P)Hや他の基質を
迅速かつ正確に測定ないし定量する装置を提供せ
んとするものである。
Therefore, the present inventors overcame the above-mentioned conventional problems and used an enzyme-immobilized carrier on which NAD(P)H oxidase was immobilized to quickly and accurately produce NAD(P)H and other substrates. The purpose is to provide a device for measuring or quantifying.

この発明は、簡単に言うと、少なくともNAD
(P)H酸化酵素を固定化した酵素固定化担体と
NAD(P)Hを含む溶液を接触させ、その酵素反
応に伴う酸素の減少を電極で測定することによ
り、化学量論的にNAD(P)Hの定量を行なうよ
うにした定量装置である。
This invention, in short, at least NAD
(P)H oxidase immobilized enzyme immobilization carrier;
This is a quantitative device that stoichiometrically quantifies NAD(P)H by contacting a solution containing NAD(P)H and measuring the decrease in oxygen due to the enzymatic reaction using an electrode.

この発明の他の実施例では、補酵素NAD(P)
を必要とする酵素反応によつてNAD(P)Hを生
成させるかあるいは、1つまたは複数の酵素反応
を共役させることによつてNAD(P)Hを生成
し、生成されたNAD(P)Hを電極を用いて測定
することにより、NAD(P)H酸化酵素以外の酵
素反応に関与する生化学物質を測定ないし定量す
ることができる。
In another embodiment of this invention, the coenzyme NAD(P)
NAD(P)H is produced by an enzymatic reaction requiring By measuring H using an electrode, biochemical substances involved in enzymatic reactions other than NAD(P)H oxidase can be measured or quantified.

以下には、添付図面とともに、この発明の原理
的な説明およびいくつかの実施例について詳細に
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Below, the principles and some embodiments of the present invention will be described in detail with reference to the accompanying drawings.

この発明に使用するNAD(P)H酸化酵素は、
NAD(P)Hに酸素を供与してNAD(P)を生成
する酵素であり、次の2種類が知られている。1
つは、次式(1)に示すような反応を呈する酵素であ
つて、福井作蔵氏によつてLactobacillus
plantarum No.11に見い出されている(アグリカ
ルチヤ・バイオロジカル・ケミストリ第25巻第11
号第870ないし878貢:1961年)。
The NAD(P)H oxidase used in this invention is
It is an enzyme that donates oxygen to NAD(P)H to produce NAD(P), and the following two types are known. 1
One is an enzyme that exhibits the reaction shown in the following formula (1), and was developed by Mr. Sakuzo Fukui in Lactobacillus
plantarum No. 11 (Agricultural Biological Chemistry Vol. 25, No. 11)
No. 870 to 878 Tribute: 1961).

2NAD(P)H+2H++O2NAD(P)H酸化酵素 ―――――――――――――――→ 2NAD(P)+2H2O …(1) 他の1つはRudi Reinards氏らによつて、
Acholeplasma Iaidlawaiiに存在が知られている
ものである。これは、次式(2)に示すように、酵素
を与えてその結果NAD(P)と過酸化水素H2O2
を生成するものである(ユアラピアン・ジヤーナ
ル・バイオケミストリ第120巻第329ないし337
貢:1981年)。
2NAD(P)H+2H + +O 2 NAD(P)H oxidase――――――――――――――→ 2NAD(P)+2H 2 O …(1) The other one is by Mr. Rudi Reinards By et al.
It is known to exist in Acholeplasma Iaidlawaii. This gives the enzyme and results in NAD (P) and hydrogen peroxide H 2 O 2 as shown in the following equation (2).
(European Journal of Biochemistry, Vol. 120, No. 329-337)
Mitsugu: 1981).

NAD(P)H+H2O+O2NAD(P)H酸化酵素 ―――――――――――――――→ NAD(P)+H2O2 …(2) この発明は、上記のNAD(P)H酸化酵素を、
たとえば酵素電極として電極に装着するための固
定化酵素膜、または試料流路に導入するための固
定化酵素カラムもしくは固定化酵素チユーブ(コ
イル)などに固定化する。固定化酵素膜として
は、アセチルセルロースやニトロセルロースなど
のセルロース誘導体のような多孔性高分子薄膜が
一般的に用いられるが、この発明に用いられる固
定化酵素膜としてはこれらの材料に限定されるも
のではない。なお、膜厚は100μm以下特に20μm
以下が好ましい。他方、固定化酵素カラムの場合
には、酵素を固定化する担体としてガラスビーズ
またはカラムゲルに用いられる多糖類の粒子のセ
ルロース誘導体もしくは高分子微粒子が利用でき
る。固定化酵素チユーブ(コイル)の場合には、
担体としては、ナイロンが一般的に用いられ得る
が、これに限定されないことはもちろんである。
そして、NAD(P)H酸化酵素の固定化は、公知
のいかなる方法すなわち化学的方法(共有結合法
や架橋結合法など)あるいは物理的方法(包括法
や吸着法など)によつても行なうことができる。
NAD(P)H+H 2 O+O 2 NAD(P)H oxidase――――――――――――――→ NAD(P)+H 2 O 2 …(2) This invention relates to the above-mentioned NAD (P)H oxidase,
For example, it is immobilized on an immobilized enzyme membrane to be attached to an electrode as an enzyme electrode, or an immobilized enzyme column or an immobilized enzyme tube (coil) to be introduced into a sample flow path. As an immobilized enzyme membrane, a porous polymer thin film such as a cellulose derivative such as acetylcellulose or nitrocellulose is generally used, but the immobilized enzyme membrane used in this invention is limited to these materials. It's not a thing. The film thickness is 100μm or less, especially 20μm.
The following are preferred. On the other hand, in the case of an immobilized enzyme column, glass beads or cellulose derivatives of polysaccharide particles used in column gels or polymer fine particles can be used as carriers for immobilizing enzymes. In the case of immobilized enzyme tubes (coils),
As the carrier, nylon can generally be used, but it is needless to say that the carrier is not limited thereto.
The NAD(P)H oxidase may be immobilized by any known method, ie, chemical method (covalent bond method, cross-linking method, etc.) or physical method (entrapment method, adsorption method, etc.). I can do it.

この発明は前述の式(1)または(2)のNAD(P)H
酸化酵素の反応によつてNAD(P)Hを定量する
が、このNAD(P)Hは、さらに、次の酵素反応
により生成されたものも含む。
This invention relates to NAD(P)H of the above formula (1) or (2).
Although NAD(P)H is quantified by the reaction of oxidase, this NAD(P)H also includes those produced by the following enzymatic reaction.

(i) a(基質)+NAD(P)NAD(P)H酸化酵
素 ―――――――――――――――→ b(反応生成物)+NAD(P)H (ii) c(基質)+d(基質)共役させるべき酵
素 ――――――――――――→ e(基質)+f(反応生成物) e(基質)+NAD(P)NAD(P)H酸化酵素 ―――――――――――――――→ g(反応生成物)+NAD(P)H たとえばトリグリセリドの定量については、以
下の反応によつて生成されたNAD(P)Hを定量
することにより行なう。
(i) a (substrate) + NAD (P) NAD (P) H oxidase――――――――――――――→ b (reaction product) + NAD (P) H (ii) c ( Substrate) + d (substrate) enzyme to be conjugated――――――――――→ e (substrate) + f (reaction product) e (substrate) + NAD(P)NAD(P)H oxidase―― ――――――――――――→ g (reaction product) + NAD(P)H For example, to quantify triglyceride, quantify NAD(P)H produced by the following reaction. This is done by

トリグリセリド+H2Oリポプロテインリパーゼ ―――――――――――――――→ グリセロール+脂肪酸イオン グリセロール+NAD(P)グリセロール脱水素酵
素 ――――――――――――――――→ ジヒドロキシアセトン+NAD(P)H 以下には、酵素電極を用いた実施例を例に拳
げ、この発明をさらに詳しく説明する。
Triglyceride + H 2 O lipoprotein lipase――――――――――――――→ Glycerol + fatty acid ion Glycerol + NAD(P) glycerol dehydrogenase―――――――――――――― ---→ Dihydroxyacetone+NAD(P)H The present invention will be explained in more detail below using an example using an enzyme electrode.

第1図はこの発明に用いられ得る酵素電極の一
例を示す断面図解図であり、第2図は固定化酵素
膜の拡大断面図である。酵素電極1はハウジング
2を含み、このハウジング2内には、作用電極3
と関連の対照電極4が収納される。ハウジング2
の上端には、たとえば螺合によつて蓋5が取付け
られている。
FIG. 1 is an illustrative cross-sectional view showing an example of an enzyme electrode that can be used in the present invention, and FIG. 2 is an enlarged cross-sectional view of an immobilized enzyme membrane. The enzyme electrode 1 includes a housing 2 in which a working electrode 3 is disposed.
and an associated reference electrode 4 are housed therein. housing 2
A lid 5 is attached to the upper end, for example, by screwing.

作用電極3としは、電極活性物質としての酸素
の減少を測定する場合には、金、白金あるいはグ
ラシカーボンなどが用いられ、また対照電極4と
しては銀、鉛、塩化銀あるいは飽和カロメル電極
などが用いられ得る。作用電極3は円柱状のもの
であり、対照電極4はそれを取巻く環状のものと
して構成される。これら2つの電極3および4
は、所定の間隔を隔てて、たとえばエポキシ樹脂
のような樹脂層6によつてモールドされている。
作用電極3および4の端面はこの樹脂層6の下端
においてそこから露出するように形成される。作
用電極3および対照電極4からは、樹脂層6およ
び蓋5を通つてリード線が引出され、このリード
線は後述の電流検出器11に接続される。樹脂層
6の下端面は、Oリング7によつて装着された固
定化酵素膜8によつて覆われる。したがつて、固
定化酵素膜8と2つの電極3および4の端面とが
接触される。
The working electrode 3 is made of gold, platinum, glassy carbon, etc. when measuring the decrease in oxygen as an electrode active substance, and the reference electrode 4 is made of silver, lead, silver chloride, or a saturated calomel electrode. can be used. The working electrode 3 is cylindrical, and the reference electrode 4 is configured as a ring surrounding it. These two electrodes 3 and 4
are molded with resin layers 6, such as epoxy resin, at predetermined intervals.
The end faces of the working electrodes 3 and 4 are formed at the lower end of this resin layer 6 so as to be exposed therefrom. Lead wires are drawn out from the working electrode 3 and the reference electrode 4 through the resin layer 6 and the lid 5, and these lead wires are connected to a current detector 11, which will be described later. The lower end surface of the resin layer 6 is covered with an immobilized enzyme membrane 8 attached by an O-ring 7. Therefore, the immobilized enzyme membrane 8 and the end surfaces of the two electrodes 3 and 4 are brought into contact.

固定化酵素膜8は、たとえば、酸素透過性のテ
フロン(商品名)の膜81と、セルロースフイル
タにNAD(P)H酸化酵素を吸着固定した固定化
酵素膜82と、試料中の高分子物質を透過させな
いための多孔性膜としてのポリカーボネート膜8
3とを含む。
The immobilized enzyme membrane 8 includes, for example, an oxygen-permeable Teflon (trade name) membrane 81, an immobilized enzyme membrane 82 in which NAD(P)H oxidase is adsorbed and immobilized on a cellulose filter, and a polymer substance in the sample. Polycarbonate membrane 8 as a porous membrane to prevent the permeation of
3.

このような酵素電極1は、第3図のように反応
槽10に浸漬され、この酵素電極1は電流検出器
11に接続される。すなわち、電流検出器11に
よつて、リード線を通して、作用電極3および対
照電極4の間に、通常、−0.5Vないし−0.7V程度
の電圧が印加され、この印加電圧はポーラログラ
フイにおける安定範囲に設定される。そして、こ
れら作用電極3および対照電極4(第1図)の間
に流れる電流が、酵素反応によつて減少する酸素
量に応じて変化し、その電流変化が電流検出器1
1によつて検出される。電流検出器11は、記録
装置12に接続され、この記録装置12によつて
電流変化の微分値が、検量線として記録される。
なお、反応槽10中には、マグネツトスターラ
(図示せず)が入れられていて、そこに溜められ
た緩衝液が常に撹拌されている。
Such an enzyme electrode 1 is immersed in a reaction tank 10 as shown in FIG. 3, and this enzyme electrode 1 is connected to a current detector 11. That is, a voltage of about -0.5V to -0.7V is normally applied between the working electrode 3 and the reference electrode 4 through the lead wire by the current detector 11, and this applied voltage is within the stable range in polarography. is set to The current flowing between the working electrode 3 and the reference electrode 4 (FIG. 1) changes depending on the amount of oxygen reduced by the enzyme reaction, and the current change is detected by the current detector 1.
Detected by 1. The current detector 11 is connected to a recording device 12, and the recording device 12 records the differential value of the current change as a calibration curve.
Note that a magnetic stirrer (not shown) is placed in the reaction tank 10, and the buffer solution stored therein is constantly stirred.

実施例 1 固定化酵素膜8にNADH酸化酵素を固定化す
る。そして、0.1Mりん酸緩衝液(PH7.0)を反応
槽10に入れ、その後酵素電極1を、固定化酵素
膜8と緩衝液とが接するように、反応槽10中に
浸漬する。りん酸緩衝液はマグネツトスターラ
(図示せず)によつて常に撹拌されている。溶存
酸素(の濃度)が安定した時点で、種々の濃度既
知のNADH溶液を反応槽10中に加える。酵素
電極に固定化されたNADH酸化酵素とNADHと
の酵素反応の結果、前述の式(1)に従つて、反応槽
10中の酸素が減少し、この酸素の減少が電流検
出器11によつて検出されさらに記録装置12に
よつて記録される。この結果、第4図に示す検量
線が得られた。
Example 1 NADH oxidase is immobilized on the immobilized enzyme membrane 8. Then, 0.1M phosphate buffer (PH7.0) is put into the reaction tank 10, and then the enzyme electrode 1 is immersed in the reaction tank 10 so that the immobilized enzyme membrane 8 and the buffer are in contact with each other. The phosphate buffer is constantly stirred by a magnetic stirrer (not shown). When the dissolved oxygen (concentration) becomes stable, NADH solutions of various known concentrations are added to the reaction tank 10. As a result of the enzymatic reaction between NADH oxidase immobilized on the enzyme electrode and NADH, oxygen in the reaction tank 10 decreases according to the above equation (1), and this decrease in oxygen is detected by the current detector 11. is detected and further recorded by the recording device 12. As a result, a calibration curve shown in FIG. 4 was obtained.

次に、濃度未知のNADH含有試料を反応槽1
0中へ注入して同様の操作により、電流検出器1
1によつて検出された電流変化値から、上述のよ
うな検量線を参照して、この試料中のNADH濃
度を求めた。
Next, a sample containing NADH of unknown concentration was added to reaction tank 1.
Current detector 1 is injected into current detector 1 by the same operation.
The NADH concentration in this sample was determined from the current change value detected by 1 with reference to the above-mentioned calibration curve.

第5図はこの発明の他の実施例を示すフローダ
イアグラムである。この実施例は、特に、NAD
(P)H酸化酵素の反応と補酵素NAD(P)を必
要とする酵素反応またはその他の酵素反応とを共
役させてNAD(P)H酸化酵素の反応以外の酵素
反応に関与する生化学物質を定量するのに好適す
る実施例である。
FIG. 5 is a flow diagram showing another embodiment of the present invention. This example specifically applies to NAD
A biochemical substance that participates in enzymatic reactions other than the reaction of NAD(P)H oxidase by conjugating the reaction of (P)H oxidase with an enzyme reaction requiring the coenzyme NAD(P) or other enzyme reactions This is an example suitable for quantifying.

この第5図実施例において、酵素電極1は、第
1図および第2図で示したものと同様である。酵
素電極1の下端には流路13と連通するフローセ
ルが一体的に取付けられていて、それによつて流
路13を流れる溶液が酵素電極1の固定化酵素膜
9(第1図)に接触するようにされている。この
流路13の一方端には、緩衝液槽15が連結され
る。試料槽16が三方弁17によつて緩衝液流路
13に連結される。この流路13の下流側にはポ
ンプ18が設けられ、流路13の下流端には廃液
槽19が連結されている。したがつて、ポンプ1
8によつて緩衝液流路13が吸引され、三方弁1
7を介して、緩衝液槽15内の緩衝液と試料槽1
6内の試料溶液とが流路13を経て廃液槽19内
に流れ込む。試料13の酵素電極1の上流側に
は、固定化酵素カラム20が介挿されていて、こ
の固定化酵素カラム20には、たとえばガラスビ
ーズのような固定化担体によつて、周知の方法
で、NAD(P)H酸化酵素の酵素反応と共役させ
るべき反応を生ぜしめる酵素が固定化されてい
る。なお、酵素電極1は、電流検出器11に接続
され、そこから所定の電圧が与えられるととも
に、NAD(P)H酸化酵素の酵素反応に伴う電極
活性物質たとえば酸素の減少に応じた電流変化が
読取られる。この電流検出器11によつて読取ら
れた電流変化が、その微分値(検量線)として記
録装置12に記録される。
In this FIG. 5 embodiment, the enzyme electrode 1 is similar to that shown in FIGS. 1 and 2. A flow cell communicating with the channel 13 is integrally attached to the lower end of the enzyme electrode 1, so that the solution flowing through the channel 13 comes into contact with the immobilized enzyme membrane 9 (FIG. 1) of the enzyme electrode 1. It is like that. A buffer tank 15 is connected to one end of the flow path 13 . A sample tank 16 is connected to the buffer flow path 13 by a three-way valve 17. A pump 18 is provided on the downstream side of the flow path 13, and a waste liquid tank 19 is connected to the downstream end of the flow path 13. Therefore, pump 1
8 suctions the buffer flow path 13, and the three-way valve 1
7, the buffer solution in the buffer solution tank 15 and the sample tank 1
6 flows into the waste liquid tank 19 through the flow path 13. An immobilized enzyme column 20 is inserted into the sample 13 on the upstream side of the enzyme electrode 1, and an immobilized enzyme column 20 is coated with a well-known method using an immobilized carrier such as glass beads. , an enzyme that causes a reaction to be coupled to the enzymatic reaction of NAD(P)H oxidase is immobilized. The enzyme electrode 1 is connected to a current detector 11, from which a predetermined voltage is applied, and current changes in response to a decrease in electrode active substances, such as oxygen, accompanying the enzymatic reaction of NAD(P)H oxidase. be read. The current change read by the current detector 11 is recorded in the recording device 12 as its differential value (calibration curve).

実施例 2 (乳酸の定量) 酵素電極1の固定化酵素膜8(第2図)には、
NADH酸化酵素を固定化する。固定化酵素カラ
ム20の酵素担体には、乳酸脱水素酵素LDHが
周知の方法で固定化される。緩衝液槽15には、
NAD1mg/mを含む0.1Mりん酸緩衝液(PH
7.0)を30℃で貯えておく。これをポンプ18に
よつて緩衝液流路13に流し、固定化酵素カラム
20および酵素電極1の固定化酵素膜に接触する
ようにしておく。緩衝液流路13に三方弁17に
よつて乳酸を含む試料を試料槽16から注入す
る。注入された試料すなわち乳酸は、固定化酵素
カラム20においてLDHと反応を生じ、NADH
が生成される。このようにして生成された
NADHが流路13を流れ酵素電極1の固定化酵
素膜に接触する。
Example 2 (Quantification of lactic acid) The immobilized enzyme membrane 8 of the enzyme electrode 1 (Fig. 2) contains
Immobilize NADH oxidase. Lactate dehydrogenase LDH is immobilized on the enzyme carrier of the immobilized enzyme column 20 by a well-known method. In the buffer tank 15,
0.1M phosphate buffer (PH
7.0) at 30℃. This is flowed into the buffer channel 13 by the pump 18 so as to come into contact with the immobilized enzyme column 20 and the immobilized enzyme membrane of the enzyme electrode 1. A sample containing lactic acid is injected into the buffer channel 13 from the sample tank 16 via the three-way valve 17 . The injected sample, ie, lactic acid, reacts with LDH in the immobilized enzyme column 20, and NADH
is generated. generated in this way
NADH flows through the channel 13 and comes into contact with the immobilized enzyme membrane of the enzyme electrode 1.

試料として、種々の濃度既知の乳酸を含むもの
を用い、上述と同様の操作を繰返して、第6図の
検量線を得た。
Using samples containing lactic acid of various known concentrations, the same procedure as described above was repeated to obtain the calibration curve shown in FIG. 6.

次に、濃度未知の乳酸を含む試料を注入して、
同様の操作により、電流検出器11によつて検出
された電流変化値から、第6図のような検量線を
参照して、この試料中の乳酸濃度を求めた。
Next, a sample containing lactic acid of unknown concentration was injected,
Through the same operation, the lactic acid concentration in this sample was determined from the current change value detected by the current detector 11 with reference to a calibration curve as shown in FIG.

また、NAD(P)H酸化酵素の酵素反応によつ
て、試料中に含まれるNAD(P)Hをまたは生成
されたNAD(P)Hを測定するに際して、酵素電
極を用いないで、固定化酵素カラムと電極の組合
わせあるいは固定化酵素コイルないしチユーブと
電極の組合わせを用いることもできる。
In addition, when measuring NAD(P)H contained in a sample or NAD(P)H generated by the enzymatic reaction of NAD(P)H oxidase, immobilization can be performed without using an enzyme electrode. An enzyme column and electrode combination or an immobilized enzyme coil or tube and electrode combination can also be used.

なお、NAD(P)H酸化酵素の酵素反応と共役
させるべき酵素反応のための酵素とは、上述のよ
うに個別の担体に固定化してもよく、また同一の
担体たとえば固定化酵素膜に固定化してもよい。
Note that the enzyme for the enzymatic reaction to be coupled with the enzymatic reaction of NAD(P)H oxidase may be immobilized on separate carriers as described above, or may be immobilized on the same carrier, for example, an immobilized enzyme membrane. may be converted into

以上のように、この発明によれば、NAD(P)
H酸化酵素を固定化してなる酵素固定化担体と電
極との組合わせによつて、NAD(P)Hを定量す
ることができ、単独であるいは他の酵素反応と共
役させることによつて、種々の生化学物質を定量
することができる。
As described above, according to the present invention, NAD(P)
NAD(P)H can be quantified by a combination of an enzyme-immobilized carrier formed by immobilizing H-oxidase and an electrode, and can be used alone or in combination with other enzyme reactions to perform various reactions. biochemical substances can be quantified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に用いられ得る酵素電極の一
例を示す断面図解図である。第2図は固定化酵素
膜の一例を示す拡大断面図である。第3図はこの
発明の一実施例を示すフローダイアグラムであ
る。第4図は第3図実施例に従つて作成した
NAD(P)Hの検量線の一例を示すグラフであ
る。第5図はこの発明の他の実施例を示すフロー
ダイアグラムである。第6図は第5図実施例に従
つて得た乳酸の検量線の一例を示すグラフであ
る。 図において、1は酵素電極、3は作用電極、4
は対照電極、8は固定化酵素膜、11は電流検出
器、20は固定化酵素カラムを示す。
FIG. 1 is an illustrative cross-sectional view showing an example of an enzyme electrode that can be used in the present invention. FIG. 2 is an enlarged sectional view showing an example of an immobilized enzyme membrane. FIG. 3 is a flow diagram showing one embodiment of the present invention. Figure 4 was created according to the example in Figure 3.
It is a graph showing an example of a calibration curve of NAD(P)H. FIG. 5 is a flow diagram showing another embodiment of the present invention. FIG. 6 is a graph showing an example of a lactic acid calibration curve obtained according to the example shown in FIG. In the figure, 1 is the enzyme electrode, 3 is the working electrode, and 4 is the enzyme electrode.
8 is a control electrode, 8 is an immobilized enzyme membrane, 11 is a current detector, and 20 is an immobilized enzyme column.

Claims (1)

【特許請求の範囲】 1 NADH酸化酵素またはNADPH酸化酵素を
固定化してなる固定化酵素担体を備え、 前記固定化酵素担体に固定化されたNADH酸
化酵素またはNADPH酸化酵素とNADHまたは
NADPHを含有する溶液とによつて酵素反応を
生ぜしめ、 前記酵素反応に伴う酸素の減少を測定するため
の電極を備える、固定化NAD(P)H酸化酵素を
用いた定量装置。 2 前記固定化酵素担体は固定化酵素膜を含み、
前記固定化酵素膜は前記電極表面に装着され、そ
れによつて酵素電極が形成され、 前記酵素電極が前記NADHまたはNADPHを
含有する溶液に浸漬された、特許請求の範囲第1
項記載の定量装置。 3 前記固定化酵素担体は固定化酵素カラムであ
る、特許請求の範囲第1項記載の定量装置。 4 前記固定化酵素担体は固定化酵素チユーブで
ある、特許請求の範囲第1項記載の定量装置。
[Claims] 1. An immobilized enzyme carrier on which NADH oxidase or NADPH oxidase is immobilized, and NADH oxidase or NADPH oxidase immobilized on the immobilized enzyme carrier and NADH or
A quantitative device using immobilized NAD(P)H oxidase, comprising: an electrode for causing an enzymatic reaction with a solution containing NADPH and measuring a decrease in oxygen accompanying the enzymatic reaction. 2. The immobilized enzyme carrier includes an immobilized enzyme membrane,
Claim 1, wherein the immobilized enzyme membrane is attached to the electrode surface, thereby forming an enzyme electrode, and the enzyme electrode is immersed in the solution containing the NADH or NADPH.
Quantification device as described in section. 3. The quantitative device according to claim 1, wherein the immobilized enzyme carrier is an immobilized enzyme column. 4. The quantitative determination device according to claim 1, wherein the immobilized enzyme carrier is an immobilized enzyme tube.
JP57091938A 1982-05-28 1982-05-28 Quantitative apparatus using immobilized nad(p)h oxidase Granted JPS58208658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57091938A JPS58208658A (en) 1982-05-28 1982-05-28 Quantitative apparatus using immobilized nad(p)h oxidase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57091938A JPS58208658A (en) 1982-05-28 1982-05-28 Quantitative apparatus using immobilized nad(p)h oxidase

Publications (2)

Publication Number Publication Date
JPS58208658A JPS58208658A (en) 1983-12-05
JPH0365490B2 true JPH0365490B2 (en) 1991-10-14

Family

ID=14040529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57091938A Granted JPS58208658A (en) 1982-05-28 1982-05-28 Quantitative apparatus using immobilized nad(p)h oxidase

Country Status (1)

Country Link
JP (1) JPS58208658A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428555A (en) * 1987-07-24 1989-01-31 Terumo Corp Enzyme sensor
JPH01257499A (en) * 1988-04-07 1989-10-13 Sekisui Chem Co Ltd Quantification of nad(p)h using nad(p)h oxidase

Also Published As

Publication number Publication date
JPS58208658A (en) 1983-12-05

Similar Documents

Publication Publication Date Title
Guilbault et al. Enzyme electrodes based on the use of a carbon dioxide sensor. Urea and L-tyrosine electrodes
Thevenot et al. Enzyme collagen membrane for electrochemical determination of glucose
EP0136362B1 (en) Biosensor
Wangsa et al. Fiber-optic biosensors based on the fluorometric detection of reduced nicotinamide adenine dinucleotide
JPS61128152A (en) Biochemical sensor
Mizutani et al. Amperometric determination of pyruvate, phosphate and urea using enzyme electrodes based on pyruvate oxidase-containing poly (vinyl alcohol)/polyion complex-bilayer membrane
Gilmartin et al. Fabrication and characterization of a screen-printed, disposable, amperometric cholesterol biosensor
Chang et al. Determination of glutamate pyruvate transaminase activity in clinical specimens using a biosensor composed of immobilized L-glutamate oxidase in a photo-crosslinkable polymer membrane on a palladium-deposited screen-printed carbon electrode
Bodur et al. A sensitive amperometric detection of neurotransmitter acetylcholine using carbon dot‐modified carbon paste electrode
Connor et al. Silicone-grease-based immobilisation method for the preparation of enzyme electrodes
Beechey et al. Chapter II Oxygen Electrode Measurements
JPH046907B2 (en)
WO1995021934A1 (en) Hexacyanoferrate modified electrodes
US5306413A (en) Assay apparatus and assay method
Yao et al. On‐line amperometric assay of glucose, l‐glutamate, and acetylcholine using microdialysis probes and immobilized enzyme reactors
Böhm et al. A flow-through amperometric sensor based on dialysis tubing and free enzyme reactors
McNeil et al. Amperometric biosensor for rapid measurement of 3-hydroxybutyrate in undiluted whole blood and plasma
Mizutani et al. Interference-free, amperometric measurement of urea in biological samples using an electrode coated with tri-enzyme/polydimethylsiloxane-bilayer membrane
Bolshakov et al. Catalase activity of cytochrome c oxidase assayed with hydrogen peroxide-sensitive electrode microsensor
JPH043500B2 (en)
Palleschi et al. Amperometric probe for 3-hydroxybutyrate with immobilized 3-hydroxybutyrate dehydrogenase
JPH0365490B2 (en)
Scheller et al. Flow injection analysis of lactate and lactate dehydrogenase using an enzyme membrane in conjunction with a modified electrode
Bogdanovskaya et al. Electrochemical biosensors for medicine and ecology
Carpenter et al. The Determination of Total Serum Cholesterol by Flowinjection Analysis with Amperometric Detection