JPH0365373B2 - - Google Patents

Info

Publication number
JPH0365373B2
JPH0365373B2 JP57233295A JP23329582A JPH0365373B2 JP H0365373 B2 JPH0365373 B2 JP H0365373B2 JP 57233295 A JP57233295 A JP 57233295A JP 23329582 A JP23329582 A JP 23329582A JP H0365373 B2 JPH0365373 B2 JP H0365373B2
Authority
JP
Japan
Prior art keywords
materials
present
functional group
reactive functional
polymeric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57233295A
Other languages
Japanese (ja)
Other versions
JPS59124934A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP23329582A priority Critical patent/JPS59124934A/en
Publication of JPS59124934A publication Critical patent/JPS59124934A/en
Publication of JPH0365373B2 publication Critical patent/JPH0365373B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高分子材料の微粉化方法に関する。
更に詳しくは、本発明は、反応性官能基を有する
高分子材料を該官能基と反応する2以上の官能基
を有する化合物で処理および加熱して架橋反応さ
せた後粉砕する該方法に関する。 高分子材料の微粉には、従来種々の用途があ
る。その一つは熱硬化性樹脂への充填材(兼増量
材)である。例えば、フエノール樹脂若しくは尿
素樹脂を用いて成形品を製造するに際しては、多
量の高分子材料製の充填材例えば、木粉,ヤシ殻
粉若しくはパルプ粉末が配合されている。近年は
熱硬化樹脂のみでなく必要に応じて熱可塑性樹脂
に対しても多量の高分子材料製充填材が配合され
るようになつた。 上述のようなセルロース系高分子材料の微粉末
を製造するには、該材料を乾燥して機械的に粉砕
するのが通常の方法である。しかし、この方法
は、粉砕効率が低く動力を多量に消費する欠点が
ある。この欠点を克服するために次の諸方法が提
案されている。すなわち、イ.該材料の粉砕時に
無機酸,アルカリ若しくは塩を適量加えて粉砕し
粉砕後被粉砕物を洗滌して該無機酸等を除去する
方法ロ.粉砕助剤として非イオン系界面活性剤を
使用する方法(特公昭50−1141号)、ハ.仝じく
高級脂肪酸、そのアルカリ塩若しくはそのアルカ
リ土類金属塩を使用する方法(特公昭50−1142
号)が提案されている。また、ニ.対象物に放射
線を照射後粉砕する方法(特公昭48−23540号)
もある。しかしながら、前述イ〜ハの方法は、未
だ微粉砕効果が不十分であり、前述ニ.の方法
は、別途照射設備を要し、かつ、微粉砕物の重合
度低下も著しい。 微粉砕を要する“反応性基を有する高分子材
料”はセルロース系に限られず、植物質では、米
類,トウモロコシなどの殻類,ばれいしよ,甘藷
などの芋類,各種の澱粉質材料,若しくは柑橘類
の果皮に代表されるペクチン質材料等がある。ま
た、動物質では、皮革材料,カゼイン,ニカワ,
ゼラチン,乾燥魚,乾燥蛹若しくは乾燥動物肉が
ある。その他の生物系材料では、たとえば、乾燥
した海藻,キノコ類,クロレラのような有用物の
ほか、各種排水を活性汚汚法により処理した際発
生する余剰汚泥などがある。さらに合成高分子材
料では、各種の熱硬化性、熱可塑性プラスチツク
成形品若しくは合成繊維製造時の不良品使用後の
廃棄物例えばフエノール樹脂,尿素樹脂,ポリビ
ニルアルコール等に係る物がある。 本発明者は、上述のような動,植物その他の生
物系若しくは合成高分子材料であつて反応性官能
基を有するものを効率よく粉砕する方法について
鋭意研究した。その結果、これらの材料を一定の
架橋剤で処理後加熱して架橋反応させた後粉砕す
れば粉砕効率が非処理品または公知方法で処理し
たものに較べて飛躍的に向上し目的とする各種材
料の微粉化を達成できることを知つて本発明を完
成した。 以上の記述から明らかなように、本発明の目的
は、反応性官能基を有する高分子材料(以下反応
性高分子材料ということがある)を効率よく処理
する方法および該方法によつて製造された高分子
材料の微粉末を提供するにある。その他の目的
は、以下の記述から明らかにされる。 (1) 反応性官能基を有する高分子材料を該官能基
を反応する2以上の官能基を有する 一般式
The present invention relates to a method for pulverizing a polymeric material.
More specifically, the present invention relates to a method in which a polymeric material having a reactive functional group is treated with a compound having two or more functional groups that react with the functional group, heated to cause a crosslinking reaction, and then pulverized. Fine powder of polymeric materials has conventionally been used in various ways. One of them is a filler (also an extender) for thermosetting resins. For example, when a molded article is manufactured using a phenolic resin or a urea resin, a large amount of filler made of a polymeric material, such as wood flour, coconut shell powder, or pulp powder, is blended. In recent years, large amounts of fillers made of polymeric materials have come to be blended not only with thermosetting resins but also with thermoplastic resins as needed. In order to produce a fine powder of a cellulosic polymer material as described above, the usual method is to dry and mechanically crush the material. However, this method has the drawback of low pulverization efficiency and high power consumption. The following methods have been proposed to overcome this drawback. In other words, a. A method of adding an appropriate amount of an inorganic acid, alkali, or salt to the material during pulverization, and washing the pulverized material after pulverization to remove the inorganic acid, etc. A method of using a nonionic surfactant as a grinding aid (Japanese Patent Publication No. 1141/1983), c. A method of using higher fatty acids, their alkali salts or their alkaline earth metal salts (Special Publication No. 50-1142)
No.) has been proposed. Also, d. Method of pulverizing an object after irradiating it with radiation (Special Publication No. 1972-23540)
There is also. However, the above-mentioned methods 1 to 3 still have insufficient pulverization effect, and the above-mentioned methods 2. The method requires separate irradiation equipment and also significantly reduces the degree of polymerization of the finely pulverized product. "Polymer materials with reactive groups" that require pulverization are not limited to cellulose-based materials; vegetable materials include rice, shells such as corn, potatoes such as potatoes and sweet potatoes, various starchy materials, and There are pectic materials such as citrus peel. In addition, animal materials include leather materials, casein, glue,
Includes gelatin, dried fish, dried pupae, or dried animal meat. Examples of other biological materials include useful substances such as dried seaweed, mushrooms, and chlorella, as well as surplus sludge generated when various types of wastewater are treated by activated septic methods. Furthermore, among synthetic polymer materials, there are various types of thermosetting and thermoplastic plastic molded products, and waste materials after use of defective products during the production of synthetic fibers, such as phenolic resins, urea resins, polyvinyl alcohols, and the like. The present inventor has conducted extensive research into methods for efficiently pulverizing animals, plants, other biological materials, or synthetic polymeric materials having reactive functional groups as described above. As a result, if these materials are treated with a certain cross-linking agent, heated to cause a cross-linking reaction, and then pulverized, the pulverization efficiency will be dramatically improved compared to untreated materials or those treated with known methods, and it will be possible to achieve various desired purposes. The present invention was completed knowing that it is possible to achieve pulverization of materials. As is clear from the above description, the objects of the present invention are a method for efficiently processing a polymeric material having a reactive functional group (hereinafter sometimes referred to as "reactive polymeric material"), and a method for efficiently processing a polymeric material having a reactive functional group, and a method for efficiently processing a polymeric material having a reactive functional group. The purpose of the present invention is to provide a fine powder of a polymeric material. Other purposes will become clear from the description below. (1) A polymeric material having a reactive functional group has a general formula that has two or more functional groups that react with the functional group.

【式】 (ただし、A若しくはBは、それぞれH,炭素
数1〜12のアルキル若しくは炭素数7〜12のアラ
ルキルである)化合物で処理後加熱して架橋反応
させ該架橋反応物を粉砕することを特徴とする高
分子材料の微粉化方法。 (2) 反応性官能基を有する高分子材料の処理をPH
7以下で行う前記第1項に記載の微粉化方法。 (3) 反応性官能基を有する高分子材料の処理を触
媒量の強酸の金属塩、アンモニウム塩若しくは
アミン塩の存在下に行う前記第1項に記載の微
粉化方法。 (3) 反応性官能基を有する高分子材料の処理をPH
7以下で行う前記第1項に記載の微粉化方法。 (4) 反応性官能基を有する高分子材料の処理を触
媒量の強酸の金属塩,アンモニウム塩若しくは
アミン塩の存在下に行う前記第(1)項に記載の微
粉化方法。 本発明の構成と効果につき以下詳述する。 本発明に使用する反応性官能基を有する高分子
材料としては、前述のように動,植物質若しくは
他の生物系材料と各種の合成高分子材料がある。
これらの材料は、後述の2以上の官能基を有する
化合物での処理を容易にするために、必要に応じ
予め適当な形状および寸法に切断、若しくは予備
粉砕または、乾燥,加湿若しくは熱処理を行う。 本発明に係る2以上の官能基を有する化合物で
の処理に適当な形状とは、小粒状,粉状,薄片
状,小繊維状等である。したがつて例えばセルロ
ース系材料について述べれば、ヤシ殻のように粉
砕可能な材料は、粒径5mm〜10mmφ程度に粗砕
し、パルプのように切断可能な材料は、同様のサ
イズまで切断する。他方、オガ屑のような木粉は
そのまゝで架橋剤処理に使用できる。 本発明に使用する反応性高分子材料の反応性官
能基と反応する2以上の官能基を有する化合物
(以下本発明に係る架橋剤という事がある)とし
ては、該材料に対する後述の処理および加熱で架
橋され硬化された被架橋物の架橋密度が高くなる
ものほど少量の使用で効果がある。 このような本発明に係る架橋剤としては例えば
グリオキザール若しくはメチルグリオキザールが
挙げられる。 本発明における反応性高分子材料の前記架橋剤
による処理は、好ましくは、該架橋剤の水溶液に
該材料を浸漬し、若しくは該材料の表面に該水溶
液を散布もしくは噴霧する等して、該架橋剤を反
応性高分子材料中に浸透させる。したがつて、該
材料の形状,寸法を前述のように調整すること
は、本発明の架橋剤処理工程にとつて望ましい付
加的工程である。前述の架橋剤水溶液の濃度は限
定されないが、0.5〜90重量%好ましくは1〜70
%である。また、浸漬等の条件は、限定されない
が0〜40℃,0.5分ないし100時間好ましくは5分
ないし50時間浸漬する。浸漬は、被処理の内部ま
で浸漬液を充分浸透することが必要である。その
ため多孔質の材料を処理するなどの場合は浸漬液
に少量の界面活性剤を添加し、または、減圧若し
くは加圧下に浸漬を行うことができる。浸漬処理
の温度は限定されないが、好ましくは、0〜100
℃で実施できる。 本発明に係る上記浸漬処理には、後述の加熱処
理(架橋反応)において架橋を促進するため浸漬
液のPHを7以下とすることが必要である。PH調整
は各種の酸殊に硫酸,リン酸,塩酸,硝酸,スル
フアミン酸のような無機酸若しくはギ酸,酢酸,
プロピオン酸のような有機酸を添加して行う。こ
れらの酸に代えて塩化アンモニウム,硫酸アンモ
ニウム,リン酸アンモニウム,アルカノールアミ
ン塩酸塩のような強酸のアンモニウム塩若しくは
有機アミンの塩酸塩が使用できる。また、塩化亜
鉛,塩化マグネシウム,硫酸亜鉛,硫酸アルミニ
ウム,リン酸2水素マグネシウムなどの強酸の金
属塩も使用できる。これらの酸,酸のアンモニウ
ム塩,アミン塩酸塩若しくは強酸の金属塩は前記
浸漬液のPHを7以下とする程度の量、換言すれば
いわゆる触媒量使用すれば充分である。 本発明に加熱処理は、前述の架橋剤による処理
後該架橋剤を反応性高分子材料と架橋反応させ、
該架橋後の該材料の粉砕微粉化を容易にするため
の工程である。この加熱によつて、架橋反応と同
時にまたは架橋反応開始前に前述の架橋剤の溶剤
としての水分を蒸発させ、乾燥することができ
る。加熱条件は、限定されないが、通常70〜200
℃、0.5ないし3時間例えば120℃,5分で必要な
加熱処理を終了できる。前記処理につづく加熱後
の反応性高分子材料(以下被架橋高分子材料)
は、つづいて粉砕工程にかけられる微粉化され
る。使用する粉砕機および粉砕条件は公知の無機
質粉体の微粉砕の場合と同様である。すなわち、
ボールミル,チユーブミル,ロツドミル,振動ミ
ルなどを用い、0℃〜100℃好ましくは室温ない
し50℃で1分ないし3時間、好ましくは1分ない
し1時間で、本発明に係る粒状の被架橋高分子材
料は容易に粒径0.01〜1mmの程度まで微粉砕され
る。 本発明の方法の主要な効果としては次の四つが
あげられる。すなわち、第一に粉砕効率が向上す
るので粉砕用の動力(エネルギー)を大巾に節約
できる。第二に微粉が容易に得られる(註、微粉
化効率が高い)。したがつて、従来微粉化困難で
あつた反応性高分子材料の微粉化用資源としての
利用が可能となる。かゝる材料の具体例として
は、生長の早い植物性材料であるポプラ、各種南
洋材若しくは笹等がある。 第三に本発明の方法は、いわゆる産業若しくは
生活廃棄物の処理方法若しくは処理後の活用(再
資源化)を可能にする方法として有用である。本
発明の方法によれば、例えば、おがくず,もみが
ら、古紙,パルプ工場の(有機系)廃棄物若しく
は余剰汚泥などの処理および再資源化が可能であ
る。その他、パルプ工業では本来的に利用不能な
ヘミセルローズ若しくはリグニンの固定化微粉化
も本発明により可能である。 第四に、本発明の方法により得られた微粉末
は、物性が良好なため各種用途たとえば、プラス
チツク用,建材用,土木工事用等の充填材もしく
は増量材として有用である。かゝる改善される物
性項目としては、(非処理の粉末と比較して)耐
水,および耐薬品性が向上することである。その
他、本発明に係る反応性高分子材料の種類によつ
ては、本発明の処理により、該材料から発生する
アンモニア,アミン等の含窒素低分子または硫化
水素若しくはメルカプタン等の含イオウ低分子化
合物を捕捉して無臭化するので、これら悪臭に係
る廃棄物の処理ならびに資源化方法として有用で
ある。 以下本発明の構成と効果を実施例,比較例に示
す。 実施例 1 おがくず100gを室温で10日間放置,乾燥した
ものを取り、グリオキザール10%水溶液300gに
室温で24時間浸漬し、これをブフナーロートで減
圧過し、室温で24時間放置後100℃1時間加熱
処理した。この処理物50gを家庭用ミキサー(ナ
シヨナルMX−120)で1分間づつ5回粉砕し粒
度を測定した。結果は第1表に示す(以下の実施
例,比較例も仝じ)。 実施例 2 グリオキザール5%水溶液を用いた以外は実施
例1と同様に行つた。 比較例 1 グリオキザール水溶液に代えて水を使用した以
外は実施例1と同様に行つた。 実施例 3 細断した新聞紙100gを35〜40℃で1時間乾燥
後グリオキザール10%水溶液に室温で浸漬し12時
間後ブーフナーロートで減圧過し室温で24時間
放置後100℃1時間熱処理した。この処理物50g
を家庭用ミキサー(ナシヨナルMX−120)で1
分づつ5回粉砕し粒度を測定した。 比較例 2 グリオキザール水溶液に代えて水を使用した以
外は実施例3と同様に行つた。 実施例 4 製紙工場廃棄物(組成分析値:還元性糖類54.3
%,ペントーザン12.9%,硫酸不溶灰分17.8%,
硫酸可溶灰分6.5%,アルミニウム分1.8%)100
gを35〜40℃で4時間乾燥後6.8%グリオキザー
ル水溶液300gに室温で12時間浸漬し、ついで
別し室温で12時間放置後100℃1時間熱処理し被
処理物を家庭用ミキサー(ナシヨナルMX−120)
で1分づつ5回粉砕し粒度を測定した。 比較例 3 グリオキザール水溶液に代えて同量の水を使用
した以外は実施例4と同様に行つた。
[Formula] (A or B is H, alkyl having 1 to 12 carbon atoms, or aralkyl having 7 to 12 carbon atoms, respectively) After treatment with a compound, heating to cause a crosslinking reaction and pulverizing the crosslinked reaction product A method for pulverizing a polymeric material, characterized by: (2) PH processing of polymeric materials with reactive functional groups
The pulverization method according to the above item 1, which is carried out at a temperature of 7 or less. (3) The pulverization method according to item 1 above, wherein the polymeric material having a reactive functional group is treated in the presence of a catalytic amount of a metal salt, ammonium salt or amine salt of a strong acid. (3) PH processing of polymeric materials with reactive functional groups
The pulverization method according to the above item 1, which is carried out at a temperature of 7 or less. (4) The pulverization method according to item (1) above, wherein the polymeric material having a reactive functional group is treated in the presence of a catalytic amount of a metal salt, ammonium salt, or amine salt of a strong acid. The structure and effects of the present invention will be explained in detail below. As mentioned above, the polymeric materials having reactive functional groups used in the present invention include animal, vegetable or other biological materials, and various synthetic polymeric materials.
In order to facilitate treatment with a compound having two or more functional groups as described below, these materials are pre-cut into appropriate shapes and dimensions, or pre-pulverized, or dried, humidified, or heat-treated as necessary. Suitable shapes for treatment with compounds having two or more functional groups according to the present invention include small particles, powder, flakes, fibrils, and the like. Therefore, for example, regarding cellulose-based materials, materials that can be crushed, such as coconut shells, are coarsely crushed to a particle size of about 5 mm to 10 mm, and materials that can be cut, such as pulp, are cut to a similar size. On the other hand, wood flour such as sawdust can be used as is for crosslinking treatment. Compounds having two or more functional groups that react with the reactive functional groups of the reactive polymeric material used in the present invention (hereinafter referred to as the crosslinking agent according to the present invention) include the treatment and heating described below for the material. The higher the crosslinking density of the crosslinked and cured product, the more effective it is when used in a small amount. Examples of such crosslinking agents according to the present invention include glyoxal and methylglyoxal. In the present invention, the treatment of the reactive polymer material with the crosslinking agent is preferably carried out by immersing the material in an aqueous solution of the crosslinking agent, or by sprinkling or spraying the aqueous solution onto the surface of the material. The agent is infiltrated into the reactive polymeric material. Therefore, adjusting the shape and dimensions of the material as described above is a desirable additional step to the crosslinking agent treatment step of the present invention. The concentration of the aqueous crosslinking agent solution is not limited, but is preferably 0.5 to 90% by weight, preferably 1 to 70% by weight.
%. Further, conditions such as immersion are not limited, but immersion is carried out at 0 to 40°C for 0.5 minutes to 100 hours, preferably for 5 minutes to 50 hours. During immersion, it is necessary that the immersion liquid sufficiently penetrate into the inside of the object to be treated. Therefore, when processing porous materials, a small amount of surfactant may be added to the immersion liquid, or immersion may be performed under reduced pressure or increased pressure. The temperature of the immersion treatment is not limited, but is preferably 0 to 100°C.
It can be carried out at ℃. In the above-mentioned immersion treatment according to the present invention, it is necessary to set the pH of the immersion liquid to 7 or less in order to promote crosslinking in the heat treatment (crosslinking reaction) described below. For pH adjustment, use various acids, especially inorganic acids such as sulfuric acid, phosphoric acid, hydrochloric acid, nitric acid, sulfamic acid, or formic acid, acetic acid,
This is done by adding an organic acid such as propionic acid. In place of these acids, ammonium salts of strong acids such as ammonium chloride, ammonium sulfate, ammonium phosphate, and alkanolamine hydrochlorides or hydrochlorides of organic amines can be used. Metal salts of strong acids such as zinc chloride, magnesium chloride, zinc sulfate, aluminum sulfate, and magnesium dihydrogen phosphate can also be used. It is sufficient to use these acids, ammonium salts of acids, amine hydrochlorides, or metal salts of strong acids in such amounts that the pH of the immersion liquid is kept at 7 or less, in other words, in so-called catalytic amounts. In the present invention, the heat treatment includes, after treatment with the above-mentioned crosslinking agent, causing the crosslinking agent to undergo a crosslinking reaction with a reactive polymer material;
This step is to facilitate the pulverization of the material after the crosslinking. By this heating, water as a solvent of the above-mentioned crosslinking agent can be evaporated and dried simultaneously with the crosslinking reaction or before the start of the crosslinking reaction. Heating conditions are not limited, but usually 70 to 200
The necessary heat treatment can be completed in 0.5 to 3 hours at 120°C for 5 minutes, for example. Reactive polymer material after heating following the above treatment (hereinafter referred to as crosslinked polymer material)
is then pulverized which is subjected to a grinding process. The pulverizer used and the pulverizing conditions are the same as in the case of known pulverization of inorganic powders. That is,
The granular crosslinked polymer material according to the present invention is processed using a ball mill, tube mill, rod mill, vibration mill, etc. at 0°C to 100°C, preferably room temperature to 50°C, for 1 minute to 3 hours, preferably 1 minute to 1 hour. is easily pulverized to a particle size of 0.01 to 1 mm. The following four main effects of the method of the present invention are listed below. That is, firstly, since the crushing efficiency is improved, the power (energy) for crushing can be greatly saved. Second, fine powder can be easily obtained (note: high pulverization efficiency). Therefore, it becomes possible to use it as a resource for pulverizing reactive polymer materials, which have been difficult to pulverize in the past. Specific examples of such materials include fast-growing plant materials such as poplar, various South Sea woods, and bamboo. Thirdly, the method of the present invention is useful as a method for processing so-called industrial or domestic waste, or a method for enabling post-processing utilization (recycling). According to the method of the present invention, it is possible to treat and recycle, for example, sawdust, rice husk, used paper, (organic) waste from pulp mills, or surplus sludge. In addition, the present invention also enables the immobilization and pulverization of hemicellulose or lignin, which is essentially unusable in the pulp industry. Fourthly, the fine powder obtained by the method of the present invention has good physical properties and is therefore useful as a filler or extender for various purposes such as plastics, building materials, civil engineering, etc. Such improved physical properties include improved water resistance and chemical resistance (compared to untreated powder). In addition, depending on the type of the reactive polymer material according to the present invention, the treatment of the present invention may generate nitrogen-containing low molecules such as ammonia and amines, or sulfur-containing low molecular compounds such as hydrogen sulfide or mercaptan. Since it captures and deodorizes waste, it is useful as a method for processing and recycling waste related to these odors. The structure and effects of the present invention are shown below in Examples and Comparative Examples. Example 1 100g of sawdust was left at room temperature for 10 days, dried, immersed in 300g of glyoxal 10% aqueous solution at room temperature for 24 hours, filtered under reduced pressure with a Buchner funnel, left at room temperature for 24 hours, and then heated at 100°C for 1 hour. Heat treated. 50 g of this treated product was ground 5 times for 1 minute each using a household mixer (National MX-120) and the particle size was measured. The results are shown in Table 1 (the same applies to the following Examples and Comparative Examples). Example 2 The same procedure as in Example 1 was carried out except that a 5% glyoxal aqueous solution was used. Comparative Example 1 The same procedure as in Example 1 was carried out except that water was used instead of the glyoxal aqueous solution. Example 3 100 g of shredded newspaper was dried at 35 to 40°C for 1 hour, immersed in a 10% glyoxal aqueous solution at room temperature, 12 hours later filtered under reduced pressure using a Buchner funnel, left to stand at room temperature for 24 hours, and then heat treated at 100°C for 1 hour. 50g of this processed material
1 with a household mixer (Nanational MX-120)
The powder was crushed 5 times for 5 minutes and the particle size was measured. Comparative Example 2 The same procedure as in Example 3 was carried out except that water was used instead of the glyoxal aqueous solution. Example 4 Paper mill waste (compositional analysis value: reducing sugars 54.3
%, pentozan 12.9%, sulfuric acid insoluble ash 17.8%,
Sulfuric acid soluble ash 6.5%, aluminum 1.8%) 100
g was dried at 35-40°C for 4 hours, immersed in 300g of 6.8% glyoxal aqueous solution at room temperature for 12 hours, separated and left at room temperature for 12 hours, then heat-treated at 100°C for 1 hour. 120)
The powder was ground 5 times for 1 minute each and the particle size was measured. Comparative Example 3 The same procedure as in Example 4 was carried out except that the same amount of water was used instead of the glyoxal aqueous solution.

【表】 第1表の本発明の方法によると反応性高分子材
料の種類を問わず良好な微粉末を得られることが
明らかである。 実施例 5〜9 グリオキザール水溶液又はグリオキザールと硬
化促進剤を溶解した水溶液のいづれか300gに
紙20gを浸漬させ室温で24時間放置後、細断し加
熱処理を行い、これを家庭用ミキサーで30秒づつ
5回粉砕し粒度を測定した。条件および結果は第
2表に示す(以下の実施例,比較例も仝じ)。 比較例 4 グリオキザール水溶液に代えて水に紙を浸漬
させる以外は実施例5と同様に行つた。 比較例 5 グリオキザール水溶液に代えてスルフアミン酸
0.2%水溶液に紙を浸漬させる以外は実施例5
と同様に試験を行つた。この場合、粉砕物に着色
がみられた。
[Table] It is clear that according to the method of the present invention shown in Table 1, a good fine powder can be obtained regardless of the type of reactive polymer material. Examples 5 to 9 20 g of paper is immersed in 300 g of either an aqueous glyoxal solution or an aqueous solution containing glyoxal and a curing accelerator, left at room temperature for 24 hours, then shredded and heat-treated, and then chopped in a household mixer for 30 seconds each. It was crushed 5 times and the particle size was measured. The conditions and results are shown in Table 2 (the same applies to the following Examples and Comparative Examples). Comparative Example 4 The same procedure as in Example 5 was carried out except that the paper was immersed in water instead of the glyoxal aqueous solution. Comparative Example 5 Sulfamic acid instead of glyoxal aqueous solution
Example 5 except that the paper was immersed in a 0.2% aqueous solution.
The test was conducted in the same manner. In this case, coloring was observed in the crushed material.

【表】 第2表によれば、本発明方法の場合でも硬化促
進剤を併用した場合の方がグリオキザール単独の
場合より粉砕効果が大きいことが明らかである。
[Table] According to Table 2, it is clear that even in the case of the method of the present invention, the crushing effect is greater when a curing accelerator is used in combination than when glyoxal is used alone.

Claims (1)

【特許請求の範囲】 1 反応性官能基を有する高分子材料を該官能基
と反応する2以上の官能基を有する 一般式【式】 (ただし、A若しくはBは、それぞれH,炭素
数1〜12のアルキル若しくは炭素数7〜12のアラ
ルキルである)化合物で処理後加熱して架橋反応
させ該架橋反応物を粉砕することを特徴とする高
分子材料の微粉化方法。 2 反応性官能基を有する高分子材料の処理をPH
7以下で行う特許請求の範囲第1項に記載の微粉
化方法。 3 反応性官能基を有する高分子材料の処理を触
媒量の強酸の金属塩、アンモニウム塩若しくはア
ミン塩の存在下に行う特許請求の範囲第1項に記
載の微粉化方法。
[Claims] 1. A polymeric material having a reactive functional group having two or more functional groups that react with the functional group General formula [Formula] (wherein A or B is H, carbon number 1 to 1, respectively) 12 alkyl or aralkyl having 7 to 12 carbon atoms), heat to cause a crosslinking reaction, and pulverize the crosslinked reaction product. 2 PH processing of polymeric materials with reactive functional groups
7 or less, the pulverization method according to claim 1. 3. The pulverization method according to claim 1, wherein the polymeric material having a reactive functional group is treated in the presence of a catalytic amount of a metal salt, ammonium salt or amine salt of a strong acid.
JP23329582A 1982-12-29 1982-12-29 Method for pulverizing high-molecular material Granted JPS59124934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23329582A JPS59124934A (en) 1982-12-29 1982-12-29 Method for pulverizing high-molecular material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23329582A JPS59124934A (en) 1982-12-29 1982-12-29 Method for pulverizing high-molecular material

Publications (2)

Publication Number Publication Date
JPS59124934A JPS59124934A (en) 1984-07-19
JPH0365373B2 true JPH0365373B2 (en) 1991-10-11

Family

ID=16952860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23329582A Granted JPS59124934A (en) 1982-12-29 1982-12-29 Method for pulverizing high-molecular material

Country Status (1)

Country Link
JP (1) JPS59124934A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62226191A (en) * 1986-03-26 1987-10-05 株式会社デンソー Fluorescent indicator tube driver

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630433A (en) * 1979-08-20 1981-03-27 Matsushita Electric Works Ltd Preparation of amino resin molding compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630433A (en) * 1979-08-20 1981-03-27 Matsushita Electric Works Ltd Preparation of amino resin molding compound

Also Published As

Publication number Publication date
JPS59124934A (en) 1984-07-19

Similar Documents

Publication Publication Date Title
EP2133366B1 (en) Fine fibrous cellulose material and method for producing the same
US6251221B1 (en) Process for preparing cellulose from lignin-poor cellulose-containing feed stocks
CN111492986A (en) Hydrophilic modified plant fiber cat litter material and preparation method thereof
JP2013539959A (en) Method for producing animal feed from lignocellulosic biomass
PL116683B1 (en) Method of treating wood cellulose containing materials
CN108623337A (en) The manufacture craft of organic fertilizer is made in a kind of recycling house refuse
CN105713050B (en) A kind of method that degradation selectivity corncob hemicellulose improves xylose yield
JP2006328346A (en) Biodegradable water-absorbing material, its production method, and composting aid comprising the material
JP4416972B2 (en) Animal manure processing method
KR101529526B1 (en) A method for preparing solid fuel by using aquatic plant
Moko et al. Low-cost alkaline pretreatments and ultrafine grinding in nanocellulose crystal extraction from Giant Swamp Taro (Crytosperma merkusii) processing waste
JPH0365373B2 (en)
EP0480030B1 (en) Method and apparatus for composting mixture of livestock excretion and barn mat
CN116391795A (en) Preparation method of meat and bone powder
JP4313525B2 (en) Manufacturing method of compost fertilizer
CA2247949A1 (en) Process for the production of lignin and microcellulose
CN109571701A (en) A kind of stalk recycling processing method
CA1169794A (en) Process for treating cellulosic material and products produced therefrom
KR20140144821A (en) Method for manufacturing pre-dry distilled fiber powder and method for using the same
WO2022086983A1 (en) Method of preparation for a lignin polyol composition
KR102716895B1 (en) Manufacturing method of eco-friendly materials with enhanced water resistance using vegetable by-products
EP0852174A1 (en) Process for preparing cellulosic fibrous aggregates
Mahajan et al. Development of pharmaceutical aids from agricultural and other wastes
Ngadi et al. Ultrasound-assisted extraction of lignin from oil palm frond
Tong et al. Delignification pretreatment of palm-press fibres by chemical method