JPH0365260B2 - - Google Patents

Info

Publication number
JPH0365260B2
JPH0365260B2 JP57097694A JP9769482A JPH0365260B2 JP H0365260 B2 JPH0365260 B2 JP H0365260B2 JP 57097694 A JP57097694 A JP 57097694A JP 9769482 A JP9769482 A JP 9769482A JP H0365260 B2 JPH0365260 B2 JP H0365260B2
Authority
JP
Japan
Prior art keywords
film
hot air
heat treatment
air blowing
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57097694A
Other languages
Japanese (ja)
Other versions
JPS58215318A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9769482A priority Critical patent/JPS58215318A/en
Publication of JPS58215318A publication Critical patent/JPS58215318A/en
Publication of JPH0365260B2 publication Critical patent/JPH0365260B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、熱可塑性重合体フイルムを連続して
走行せしめながらボーイング現象(フイルム中央
部の遅れ)を発生させることなく行うことができ
るフイルムの熱処理装置に関するものである。 熱可塑性重合体フイルムの工業的な熱処理方法
には、大別して加熱したロールに接触させて行う
ロール式熱処理方法と、フイルムの両側縁部を拘
束して熱風などにより加熱するテンター式熱処理
方法とがある。ロール式熱処理方法ではロールの
傷が転写されたり、ロールの幅方向の温度ムラに
よりフイルムの幅方向に品質が不均一になつた
り、シワが発生したり(ニツプロールを使用する
場合特に多い)する欠点があつた。またテンター
式熱処理方法では、シワや傷は入らないがロール
式熱処理方法に比べてボーイング現象、すなわち
物理的性質がフイルムの幅方向においてフイルム
の中央部分が側縁部に比べて遅れていて弓状の分
布を成している状態が発生し易く、それによつて
幅方向の分子配向性が不均一となり、その結果寸
法安定性(熱収縮率)、機械的強伸度などにムラ
が生じてコーテイング、ラミネート、スリツテイ
ング、印刷、製袋などの後加工で障害を惹き起こ
し、また仕上つた製品の商品価値を損う場合も少
なくないから、そのため後処理で許容される均一
性の範囲のものだけを製品化するので製品収率が
低下する欠点を持つていた。 このような欠点を防止するために、従来種々な
方法が試みられているがいずれも欠点がある。例
えばニツプロールを持つ加熱ロールにフイルムを
接触させる熱処理方法(特公昭39−29214号公報
参照)には、ロール式熱処理方法の前記欠点と共
に両縁部を拘束しないことによるネツクダウンの
欠点がある。また、幅方向に温度差を与えて行う
熱処理方法(特公昭42−9273号公報参照)には、
ロール式の場合は前記のような欠点が、またテン
ター式の場合は設備の複雑化や条件調整時間によ
る有効稼働率の低下などの欠点がある。また、フ
イルムの両側縁部の風速を増加させて物理的性質
を幅方向に均一化することを図る熱処理方法(特
開昭51−91973号公報参照)には、上記特公昭42
−9273号におけるテンター式の場合と同様の欠点
がある。また、テンター内の横延伸工程と熱処理
工程との間に設けられたニツプロールによつて横
延伸終了後のフイルムを熱処理する方法(特開昭
50−73978号公報参照)では、フイルムが加熱状
態でロールに接触するためにロールの傷が転写さ
れ易かつたり、周りの雰囲気とロールとの温度差
によりシワが発生するなどの欠点があるし、また
延伸工程と熱処理工程との間のフイルム張力をカ
ツトするだけではボーイング現象の発生を充分に
防止することはできない。 本発明者らは、テンター式の利点を活かしてフ
イルムの熱処理を良好に行うためにボーイング現
象を発生せしめることなく行えるテンター式熱処
理装置を提供することを目的にボーイング現象の
発生状況を詳細に調べた結果、次のような発生原
因が判明した。 先ず従来のテンター式熱処理方法の実施状態の
1例を第1図によつて説明すると、フイルム1は
矢印Xの方向に走行せしめられており、熱風吹付
け装置2が通常はフイルム1の走行面の表裏両側
に設置されていて、熱効率の関係から熱風をフイ
ルム1にほぼ垂直に吹き付けるのである。その結
果、熱風は矢印Yのように流れてフイルム1に熱
を与えて自分自身の温度を低下させながらフイル
ム1の面上を流れるのであるが、熱風吹付け方向
がフイルム1の面にほぼ垂直であることによりそ
の相当量がフイルム1の走行方向(矢印X)の上
流側にも流れてフイルム1の未加熱処理部分を吹
付け時の温度すなわち熱処理ゾーンの温度よりも
少し低下した温度で加熱することになるのであ
る。 またテンター式の熱処理装置に熱処理ゾーンよ
り低温雰囲気の一定の大きさの予熱ゾーン(図示
なし)が設けられている場合にも、同様の未加熱
処理部分への加熱が行われる。そして本発明者ら
の調べにより、このように熱処理ゾーンよりも少
し低い温度で加熱される部分がフイルムに存在す
るとこの部分で熱収縮が発生して縦・横両方向に
フイルムが引張られる結果、高温の熱処理ゾーン
の近傍で拘束力が加えられているフイルム両側縁
部から最も遠いフイルム中央部分に最も大きい遅
れを示す弓形の変形すなわちボーイング現象が生
ずることが判明したのである。更に本発明者らは
このボーイング現象の防止について鋭意検討した
結果、両側縁部を拘束されて連続的に走行せしめ
られるフイルム1に対して熱風を吹き付ける熱風
吹付け装置の少なくともフイルム1の走行方向の
最上流側に位置する熱風吹付け装置をその熱風吹
付け方向がフイルム1の面に対してフイルム1の
走行方向の上流側の斜め上方から下流側の斜め下
方に傾斜するように設けることにより、前記目的
を達成できることを究明して本発明を完成した。 すなわち本発明は、両側縁部を拘束されて連続
的に走行せしめられるフイルムに対して熱風を吹
き付ける熱風吹付け装置を備えた熱処理装置にお
いて、該熱風吹付け装置の少なくともフイルムの
走行方向の最上流側に位置する熱風吹付け装置を
その熱風吹付け方向が該フイルムの面に対してフ
イルムの走行方向の上流側の斜め上方から下流側
の斜め下方に傾斜するように設けられていること
を特徴とするフイルムの熱処理装置に関するもの
である。 以下に本発明装置をその実施例の主要部を示す
図面により詳細に説明する。 第2図、第3図及び第4図は本発明に係るフイ
ルムの熱処理装置の3つの実施例の要部を各別に
示す断面説明図である。 図面中、番号1,2及び矢印X,Yの意味は前
記第1図と同様である。 本発明装置においては、フイルム1の両側縁部
1a(第2図、第3図及び第4図には図示せず)
を拘束して連続的に走行せしめながら熱風加熱処
理を行う熱処理ゾーンの頭初において実質的に熱
風をフイルム1の走行方向(矢印X)の上流側へ
流さないようにしてフイルム1に吹き付けて熱処
理を行うのである。熱風がフイルム1の走行方向
の上流側へ流れることによつてフイルム1にボー
イング現象が起こるのは、熱処理ゾーンよりも上
流側の未加熱処理部分に熱風が流れる場合であ
り、或る程度熱処理された状態になつている熱処
理ゾーン内では熱風が上流側に流れることは差し
支えなく、従つて熱処理ゾーンの頭初において熱
風がフイルム1に当つた後に上流側へ流れること
を防止すれば良いのである。また上流側への熱風
の流れの防止は、例えば上流側への微量の熱風や
熱処理対象フイルム1のガラス転移点よりも低温
の熱風ならば上流側への流れは許容される。若し
熱風以外にフイルム1をガラス転移点以上に加熱
し得る輻射熱源が存在する場合はその輻射熱を防
止しなければならないことは当然である。 本発明装置は、両側縁部1aを拘束されて(拘
束装置は図示せず)連続的に走行せしめられるフ
イルム1に対して熱風を吹き付ける熱風吹付け装
置2の1列又は複数列がフイルム1の片面側又は
両面側に設置されていて、吹き付けられた熱風が
実質的にフイルム1の走行方向の上流側へ流れな
いように、少なくとも最上流側の列の熱風吹付け
装置2をその熱風吹付け方向(矢印Y′)がフイ
ルム1の面に対してフイルム1の走行方向の上流
側の斜め上方から下流側の斜め下方に傾斜するよ
うに設けられているフイルムの熱処理装置であ
る。 熱風吹付け方向が上記の如く傾斜していれば、
すなわち熱風吹付け方向(矢印Y′)とフイルム
1の走行方向(矢印X)との成す角(第2図の
θ、以下吹付け角と言う)で示して180゜>θ>
90゜であれば本発明の目的とするボーイング減少
の発生を防止するという効果はあるが、好ましく
は135゜>θ>105゜の場合に効果は一層大きい。第
2図では熱風吹付け装置2自体が傾斜して設置さ
れているが、第3図は熱風吹付け装置2自体から
の熱風吹出し方向はフイルム1に垂直であるが、
熱風吹付け装置2の熱風吹出し口に設けられた熱
風変向板4によつて熱風吹付け方向が規制されて
いるものであり、そしてこの熱風変向板4は吹き
付けられた熱風がフイルム1の走行方向の上流側
へ流れることを防止する熱風遮断板としての効果
も有して効果的である。このように熱風吹付け方
向を規制することは熱風吹付け装置2のすべてに
必要ではなく、第4図の如く少なくとも最上流側
の列について行われていれば良い理由は、前述し
たようにフイルム1に吹き付けられた熱風がフイ
ルム1の面上をフイルム1の走行方向(矢印X)
の上流側にも流れてフイルム1の未加熱処理部分
を吹付け時の温度すなわち熱処理ゾーンの温度よ
りも少し低下した温度で加熱することを防止でき
れば良いからである。そしてこの熱風変向板4と
フイルム1の面との間隙は0〜5mm程度が最適で
あるが、熱風変向板4とフイルム1とが当接しな
いことがフイルム1を損傷させないので好まし
い。 かかる本発明装置による熱風処理対象は、ポリ
エチレンテレフタレート、ポリエチレン−2,6
−ナフタレート、ポリテトラメチレンテレフタレ
ート、ポリヘキサメチレンアジパミド、ポリカプ
ラミド、ポリエチレン、ポリプロピレン、ポリ塩
化ビニル、ポリフツ化ビニルなどの熱可塑性重合
体、これらを主成分とした共重合体又はこれらの
混合物から成るフイルム1であり、特にその1軸
延伸フイルム及び2軸延伸フイルムに対し好適に
適用できる。 このような構造の本発明装置によれば、従来の
テンター式と異なり熱処理ゾーンの上流側におけ
るフイルム1の熱収縮は発生しないか無視し得る
程小さく、その結果ボーイング現象は殆んど発生
しない。例えば未処理フイルムの幅方向に予め画
いておいた直線は熱処理後も中央部が遅れた弓形
には殆んど変形しない。条件によつてはテンター
の横延伸で生じたボーイングを修正するように作
用させることも可能である。また幅方向の熱風の
温度差や風速差をつける、必要がないため、設備
は簡単であり、従つて運転操作は容易で安定した
運転ができる。また本発明装置によつて得られた
熱処理フイルムは幅方向の品質ムラは殆んどなく
て破断しにくく、品質の安定性は非常に優れてい
るものである。 実施例1〜2、比較例1 円形のスリツトを有する口金からポリエチレン
テレフタレートを押し出し、急冷後加熱し、チユ
ーブ状で機械方向(縦方向)に3.3倍、周方向
(横方向)に3.5倍延伸し、厚さ20μmの2軸延伸
フイルムを得た。次いで第3図と同様なテンター
式熱処理装置を使用し、上記延伸フイルムを2枚
重ね状で幅1300mmに保つて速度20m/分で走行せ
しめながら220℃の熱風を熱風変向板4に沿つて
吹付け角が120゜(実施例1)と135゜(実施例2)と
で延伸フイルムに吹き付けながら7秒間加熱処理
して熱処理フイルムを得た。熱風の温度は吹き付
けられているフイルム面上で測定した値である
(以下の実施例、比較例においても同じ)。比較例
として上記の熱処理装置から熱風変向板4を取り
除いて同様に熱処理操作を施して熱処理フイルム
を得た。上記の各場合において、熱処理前にフイ
ルム面の幅方向に直線を画いておき、熱処理後に
変形(ボーイング現象)の量を示すものとしてフ
イルムの幅中央部の遅れを実測した。また一方の
側縁端からフイルムの幅方向への所定距離離れた
各位値における配向主軸の基準値からのズレを偏
光顕微鏡で測定した。但し基準の配向主軸は横方
向であり、配向主軸のズレはフイルムの走行方向
に向かつてフイルムの上方から見て真横方向より
左回り方向へずれる場合を+方向、右回り方向へ
ずれる場合を−方向とした。 以上の結果を第1表に示す。
The present invention relates to a film heat treatment apparatus that can heat a thermoplastic polymer film while continuously running the film without causing a bowing phenomenon (lag in the center of the film). Industrial heat treatment methods for thermoplastic polymer films are broadly divided into roll-type heat treatment methods in which the film is brought into contact with heated rolls, and tenter-type heat treatment methods in which both edges of the film are restrained and heated with hot air or the like. be. Disadvantages of the roll heat treatment method include transfer of scratches from the roll, uneven temperature in the width direction of the roll, resulting in uneven film quality in the width direction, and wrinkles (especially common when using Nitpro rolls). It was hot. In addition, the tenter heat treatment method does not cause wrinkles or scratches, but compared to the roll heat treatment method, there is a bowing phenomenon in which the center of the film lags behind the side edges in the width direction of the film, resulting in an arched shape. This tends to result in uneven molecular orientation in the width direction, resulting in uneven dimensional stability (thermal shrinkage), mechanical strength, and elongation, resulting in poor coating quality. It often causes problems in post-processing such as laminating, slitting, printing, and bag making, and also impairs the commercial value of the finished product. Since it is made into a product, it has the disadvantage of decreasing product yield. Various methods have been tried in the past to prevent such drawbacks, but all of them have drawbacks. For example, a heat treatment method in which a film is brought into contact with a heating roll having a nip roll (see Japanese Patent Publication No. 39-29214) has the disadvantage of neck-down due to not restraining both edges, as well as the drawbacks of the roll-type heat treatment method. In addition, heat treatment methods that apply a temperature difference in the width direction (see Japanese Patent Publication No. 42-9273) include:
The roll type has the above-mentioned drawbacks, and the tenter type has drawbacks such as complication of equipment and reduction in effective operating rate due to the time taken to adjust conditions. In addition, there is a heat treatment method (see Japanese Patent Application Laid-Open No. 1983-91973) that increases the wind speed at both side edges of the film to make the physical properties uniform in the width direction.
It has the same drawbacks as the tenter type in No.-9273. In addition, a method of heat-treating the film after horizontal stretching using a nip roll provided between the horizontal stretching process and the heat treatment process in a tenter (Japanese Patent Laid-Open No.
50-73978), the film comes into contact with the roll in a heated state, so scratches on the roll are easily transferred, and wrinkles occur due to the temperature difference between the surrounding atmosphere and the roll. Furthermore, the occurrence of the bowing phenomenon cannot be sufficiently prevented simply by cutting the film tension between the stretching process and the heat treatment process. The present inventors investigated in detail the occurrence of the bowing phenomenon in order to provide a tenter-type heat treatment apparatus that can take advantage of the advantages of the tenter system and perform film heat treatment without causing the bowing phenomenon. As a result, the following causes were found. First, an example of the implementation state of the conventional tenter type heat treatment method will be explained with reference to FIG. 1. The film 1 is made to run in the direction of arrow They are installed on both the front and back sides of the film 1, and blow hot air almost perpendicularly onto the film 1 for reasons of thermal efficiency. As a result, the hot air flows as shown by arrow Y, giving heat to film 1 and lowering its own temperature as it flows over the surface of film 1, but the hot air blowing direction is almost perpendicular to the surface of film 1. As a result, a considerable amount of it flows to the upstream side of the film 1 in the running direction (arrow That's what I'm going to do. Further, when a tenter-type heat treatment apparatus is provided with a preheating zone (not shown) having a certain size and a lower temperature atmosphere than the heat treatment zone, similar heating is performed on the unheated portion. According to research conducted by the present inventors, if there is a part of the film that is heated at a temperature slightly lower than that of the heat treatment zone, heat shrinkage occurs in this part and the film is stretched both vertically and horizontally, resulting in a high temperature. It has been found that bowing, or bowing, occurs with the largest delay in the center of the film, which is farthest from both side edges of the film where the restraining force is applied near the heat treatment zone. Furthermore, as a result of intensive studies by the present inventors on how to prevent this bowing phenomenon, the inventors of the present invention have found that a hot air blowing device that blows hot air onto the film 1, which is forced to run continuously with both side edges restrained, is equipped with a hot air blowing device that blows hot air at least in the running direction of the film 1. By providing the hot air blowing device located at the most upstream side so that the hot air blowing direction is inclined from diagonally upward on the upstream side to diagonally downward on the downstream side in the running direction of the film 1 with respect to the surface of the film 1, The present invention was completed by investigating that the above object can be achieved. That is, the present invention provides a heat treatment apparatus equipped with a hot air blowing device that blows hot air onto a film that is forced to run continuously with both side edges restrained. A hot air blowing device located on the side is provided so that the hot air blowing direction thereof is inclined from diagonally upward on the upstream side to diagonally downward on the downstream side in the running direction of the film with respect to the surface of the film. The present invention relates to a film heat treatment apparatus. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The apparatus of the present invention will be explained in detail below with reference to drawings showing main parts of embodiments thereof. FIGS. 2, 3, and 4 are cross-sectional explanatory views showing the main parts of three embodiments of the film heat treatment apparatus according to the present invention. In the drawings, the meanings of numbers 1 and 2 and arrows X and Y are the same as in FIG. 1 above. In the apparatus of the present invention, both side edges 1a of the film 1 (not shown in FIGS. 2, 3, and 4)
Heat treatment is carried out by blowing hot air onto the film 1 at the beginning of the heat treatment zone where the hot air is restrained and allowed to travel continuously while substantially preventing the hot air from flowing upstream in the traveling direction (arrow X) of the film 1. This is what we do. The bowing phenomenon occurs in the film 1 due to the hot air flowing upstream in the running direction of the film 1 when the hot air flows to the unheated part upstream of the heat treatment zone, and the film 1 is heated to some extent. There is no problem in the hot air flowing upstream in the heat treatment zone where the heat treatment zone is in such a state that it is necessary to prevent the hot air from flowing upstream after hitting the film 1 at the beginning of the heat treatment zone. Further, the flow of hot air to the upstream side can be prevented if, for example, a small amount of hot air to the upstream side or hot air at a temperature lower than the glass transition point of the film 1 to be heat treated is allowed to flow to the upstream side. If there is a radiant heat source other than hot air that can heat the film 1 above the glass transition point, it is natural that the radiant heat must be prevented. In the apparatus of the present invention, one or more rows of hot air blowing devices 2 blow hot air onto the film 1 which is continuously run with both side edges 1a restrained (restraint devices not shown). The hot air blowing device 2 in at least the most upstream row is installed on one side or both sides so that the hot air blowing on the film 1 does not substantially flow upstream in the running direction of the film 1. This film heat treatment apparatus is installed so that the direction (arrow Y') is inclined with respect to the surface of the film 1 from diagonally upward on the upstream side to diagonally downward on the downstream side in the running direction of the film 1. If the hot air blowing direction is inclined as shown above,
In other words, the angle formed by the hot air blowing direction (arrow Y') and the running direction of the film 1 (arrow X) (θ in Fig. 2, hereinafter referred to as the blowing angle) is 180°>θ>
If the angle is 90°, there is an effect of preventing the occurrence of bowing reduction, which is the object of the present invention, but the effect is even greater when the angle is preferably 135°>θ>105°. In FIG. 2, the hot air blowing device 2 itself is installed at an angle, but in FIG. 3, the hot air blowing direction from the hot air blowing device 2 itself is perpendicular to the film 1.
The hot air direction plate 4 provided at the hot air outlet of the hot air blowing device 2 regulates the direction of hot air blowing. It is also effective as a hot air blocking plate that prevents hot air from flowing upstream in the traveling direction. The reason why it is not necessary to restrict the direction of hot air blowing in this way for all of the hot air blowing devices 2, and it is sufficient if it is done for at least the most upstream row as shown in FIG. The hot air blown onto film 1 travels on the surface of film 1 in the traveling direction of film 1 (arrow X).
This is because it is sufficient to prevent the unheated portion of the film 1 from being heated to a temperature slightly lower than the temperature at the time of spraying, that is, the temperature of the heat treatment zone. The optimal gap between the hot air deflection plate 4 and the surface of the film 1 is about 0 to 5 mm, but it is preferable that the hot air deflection plate 4 and the film 1 do not come into contact with each other to avoid damaging the film 1. The objects to be treated with hot air by the apparatus of the present invention are polyethylene terephthalate, polyethylene-2,6
- Consists of thermoplastic polymers such as naphthalate, polytetramethylene terephthalate, polyhexamethylene adipamide, polycapramide, polyethylene, polypropylene, polyvinyl chloride, polyvinyl fluoride, copolymers based on these, or mixtures thereof. The present invention is particularly applicable to uniaxially stretched films and biaxially stretched films. According to the apparatus of the present invention having such a structure, unlike the conventional tenter type, thermal contraction of the film 1 on the upstream side of the heat treatment zone does not occur or is negligibly small, and as a result, the bowing phenomenon hardly occurs. For example, a straight line drawn in advance in the width direction of an untreated film hardly deforms into an arched shape with a delayed central part even after heat treatment. Depending on the conditions, it is also possible to correct the bowing caused by the lateral stretching of the tenter. Furthermore, since there is no need to vary the temperature or wind speed of the hot air in the width direction, the equipment is simple, and operation is easy and stable. Furthermore, the heat-treated film obtained by the apparatus of the present invention has almost no quality unevenness in the width direction, is difficult to break, and has excellent quality stability. Examples 1 to 2, Comparative Example 1 Polyethylene terephthalate was extruded from a die having a circular slit, rapidly cooled, heated, and stretched in a tube shape by 3.3 times in the machine direction (longitudinal direction) and 3.5 times in the circumferential direction (horizontal direction). A biaxially stretched film with a thickness of 20 μm was obtained. Next, using a tenter-type heat treatment apparatus similar to that shown in FIG. 3, hot air at 220° C. was passed along the hot air deflection plate 4 while running the stretched film at a speed of 20 m/min while keeping the stretched film in a stacked state with a width of 1300 mm. The stretched film was heated for 7 seconds while being sprayed at spray angles of 120° (Example 1) and 135° (Example 2) to obtain heat-treated films. The temperature of the hot air is a value measured on the surface of the film being blown onto it (the same applies to the following Examples and Comparative Examples). As a comparative example, a heat-treated film was obtained by removing the hot air deflection plate 4 from the heat treatment apparatus and performing the same heat treatment operation. In each of the above cases, a straight line was drawn in the width direction of the film surface before heat treatment, and the delay at the center of the film width was actually measured as an indicator of the amount of deformation (bowing phenomenon) after heat treatment. Further, the deviation of the principal axis of orientation from the reference value at each position a predetermined distance apart from one side edge in the width direction of the film was measured using a polarizing microscope. However, the standard orientation main axis is the horizontal direction, and the deviation of the orientation main axis is in the direction of travel of the film.If it deviates counterclockwise from the lateral direction when viewed from above the film, it is a + direction, and if it deviates clockwise, it is a - direction. direction. The above results are shown in Table 1.

【表】 実施例3、比較例2 実施例1、2と同様にして厚さ15μmのポリエ
チレンテレフタレート2軸延伸フイルムを得た。
上記フイルムを、最上流側の熱風吹付け装置に熱
風変向板4を熱風吹付け角が135゜となるように設
けられた第4図と同様の構造の熱風吹付け装置を
備えたテンター式熱処理装置を使用し、2枚重ね
状で幅1300mmに保つて速度35m/分で走行せしめ
ながら210℃の熱風を吹き付けて5秒間熱処理を
行い、熱処理フイルム(フイルムAと記す)を得
た。 比較例として上記の本発明装置とは最上流側の
熱風吹付け装置に熱風変向板4がない点で異なる
従来のテンター式熱処理装置でフイルム走行方向
の上流側へも熱風が流れる状態で210℃の熱風を
フイルムに吹き付けて5秒間熱処理を行い、熱処
理フイルム(フイルムBと記す)を得た。 かくして得られたフイルムA及びBについてフ
イルムの幅方向の所定個所における諸物性、すな
わちボーイング量(遅れ)、熱処理前後の厚さ変
動、密度、熱収縮率、配向主軸方向と複屈折を測
定した。主な測定事項の測定方法は次の通りであ
つた。 密 度:n−ヘブタン−四塩化炭素系の密度勾配
管を使用し、25℃で測定した。 熱収縮率:熱風循環式のオープン中で150℃、2
時間加熱後の収縮率を測定した。 複屈折と配向主軸方向:偏光顕微鏡でベレク
(Berek)コンペンセーターを用いて光路差を
測定し、光路/厚さで算出した。尚、ここで複
屈折とは平面内での配向軸方向とそれと直角方
向のそれぞれの光を通過させる場合の屈折率の
差を言う。 測定の結果を第5図に示す。 実施例4、比較例3 ポリエチレンテレフタレートの代わりにポリヘ
キサメチレンアジパミドを用いたこと以外は実施
例1、2と同様にして厚さ14μmのポリヘキサメ
チレンアジパミドの2軸延伸フイルムを得た。上
記フイルムを第3図と同様の構造であつて熱風変
向板4により熱風吹付け角を120゜に調整された熱
風吹付け装置を備えたテンター式の熱処理装置を
使用して2枚重ね状態で幅1300mmに保つて速度30
m/分で走行せしめらながら235℃の熱風を吹き
付けながら5秒間熱処理した。得られた熱処理フ
イルムについて実施例1、2と同様にしてフイル
ム中央部の遅れと配向主軸のズレとを測定した。
比較例として、上記本発明装置とは熱風吹付け装
置に熱風変向板4がない点で異なる従来のテンタ
ー式の熱処理装置でフイルム走行方向の上流側へ
も熱風が流れる状態で、235℃の熱風をフイルム
に吹き付けて5秒間熱処理を行つて得たフイルム
についても同様に測定した。 上記の結果を第2表に示す。
[Table] Example 3, Comparative Example 2 A biaxially stretched polyethylene terephthalate film having a thickness of 15 μm was obtained in the same manner as in Examples 1 and 2.
The above film was transferred to a tenter type apparatus equipped with a hot air blowing apparatus having the same structure as that shown in FIG. Using a heat treatment device, the film was heat-treated for 5 seconds by blowing hot air at 210° C. while keeping the width of two films stacked at 1300 mm and traveling at a speed of 35 m/min to obtain a heat-treated film (denoted as film A). As a comparative example, a conventional tenter type heat treatment apparatus is different from the apparatus of the present invention in that the hot air blowing apparatus on the most upstream side does not have a hot air deflection plate 4. The film was heat-treated for 5 seconds by blowing hot air at 0.degree. C. to obtain a heat-treated film (referred to as film B). Various physical properties of the thus obtained films A and B were measured at predetermined locations in the width direction of the film, namely the amount of bowing (delay), thickness variation before and after heat treatment, density, thermal shrinkage rate, orientation principal axis direction, and birefringence. The measurement methods for the main measurement items were as follows. Density: Measured at 25°C using an n-hebutane-carbon tetrachloride density gradient tube. Heat shrinkage rate: 150℃, 2 in an open hot air circulation type
The shrinkage rate after heating for a period of time was measured. Birefringence and orientation principal axis direction: The optical path difference was measured using a Berek compensator with a polarizing microscope, and calculated as optical path/thickness. Note that birefringence here refers to the difference in refractive index when passing light in the direction of the alignment axis within a plane and in the direction perpendicular thereto. The measurement results are shown in FIG. Example 4, Comparative Example 3 A biaxially stretched film of polyhexamethylene adipamide with a thickness of 14 μm was obtained in the same manner as in Examples 1 and 2 except that polyhexamethylene adipamide was used instead of polyethylene terephthalate. Ta. The above films were stacked in two layers using a tenter-type heat treatment device having a structure similar to that shown in Fig. 3 and equipped with a hot air blowing device whose hot air blowing angle was adjusted to 120° using a hot air deflection plate 4. Keep width 1300mm at speed 30
Heat treatment was performed for 5 seconds while blowing hot air at 235° C. while running at a speed of m/min. Regarding the obtained heat-treated film, the delay at the center of the film and the deviation of the main axis of orientation were measured in the same manner as in Examples 1 and 2.
As a comparative example, a conventional tenter-type heat treatment apparatus, which differs from the above-mentioned apparatus of the present invention in that the hot air blowing apparatus does not have a hot air deflection plate 4, is used to heat the film at 235°C with hot air also flowing upstream in the film running direction. A film obtained by blowing hot air onto the film and performing heat treatment for 5 seconds was also measured in the same manner. The above results are shown in Table 2.

【表】 以上の実施例と比較例との対比から、本発明装
置によつて熱処理されたフイルムは品質の幅方向
の均一性に極めて優れていることが判る。そして
寸法安定性(熱収縮率)や厚さ、密度など機械的
特性に関連する特性の幅方向におけるムラが極め
て少ないために、後のコーテイング、ラミネー
ト、スリツテイング、印刷、製袋などの加工工程
で支障の起こることがなく、仕上つた加工製品は
優れたものとなる。従つて本発明装置によれば高
い精度が要求される用途、例えばビデオ用やオー
デイオ用の磁気テープ、航空写真用ベースフイル
ム、コンデンサーなどの電気用途などに最適なフ
イルムが製造できる。しかも品質の幅方向の均一
性が優れているために、フイルムの前幅を有効に
製品化できるので製品収率は高く、工業的価値は
極めて高い。
[Table] From the comparison between the above Examples and Comparative Examples, it can be seen that the film heat-treated by the apparatus of the present invention has extremely excellent uniformity of quality in the width direction. In addition, because there is extremely little unevenness in the width direction in properties related to mechanical properties such as dimensional stability (heat shrinkage rate), thickness, and density, it is possible to use it in subsequent processing steps such as coating, laminating, slitting, printing, and bag making. No problems occur, and the finished product is of excellent quality. Therefore, according to the apparatus of the present invention, it is possible to produce films suitable for applications requiring high precision, such as magnetic tapes for video and audio, base films for aerial photography, and electrical applications such as capacitors. Moreover, since the quality is excellent in uniformity in the width direction, the front width of the film can be effectively converted into products, resulting in a high product yield and extremely high industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のテンター式熱処理方法の実施状
態の1例を示す説明図、第2図、第3図及び第4
図は本発明装置の3つの実施例の要部を各別に示
す断面説明図、第5図は実施例4及び比較例2の
測定結果を示す図である。 図面中、1……フイルム、1a……側縁部、2
……熱風吹付け装置、4……熱風変向板、X……
フイルム走行方向、Y……熱風の流れ方向、
Y′……吹付け方向。
Fig. 1 is an explanatory diagram showing an example of the implementation state of the conventional tenter type heat treatment method, Fig. 2, Fig. 3, and Fig. 4
The figures are explanatory cross-sectional views showing the main parts of three embodiments of the device of the present invention, and FIG. 5 is a diagram showing the measurement results of the fourth embodiment and the second comparative example. In the drawings, 1...film, 1a...side edge, 2
...Hot air blowing device, 4...Hot air deflection plate, X...
Film running direction, Y...Hot air flow direction,
Y′...Spraying direction.

Claims (1)

【特許請求の範囲】[Claims] 1 両側縁部を拘束されて連続的に走行せしめら
れるフイルムに対して熱風を吹き付ける熱風吹付
け装置を備えた熱処理装置において、該熱風吹付
け装置の少なくともフイルムの走行方向の最上流
側に位置する熱風吹付け装置をその熱風吹付け方
向が該フイルムの面に対してフイルムの走行方向
の上流側の斜め上方から下流側の斜め下方に傾斜
するように設けられていることを特徴とするフイ
ルムの熱処理装置。
1. In a heat treatment apparatus equipped with a hot air blowing device that blows hot air onto a film that is forced to run continuously with both side edges restrained, the hot air blowing device is located at least on the most upstream side in the running direction of the film. A hot air blowing device is installed so that the hot air blowing direction is inclined from diagonally upward on the upstream side to diagonally downward on the downstream side in the running direction of the film with respect to the surface of the film. Heat treatment equipment.
JP9769482A 1982-06-09 1982-06-09 Method and equipment for heat treating of film Granted JPS58215318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9769482A JPS58215318A (en) 1982-06-09 1982-06-09 Method and equipment for heat treating of film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9769482A JPS58215318A (en) 1982-06-09 1982-06-09 Method and equipment for heat treating of film

Publications (2)

Publication Number Publication Date
JPS58215318A JPS58215318A (en) 1983-12-14
JPH0365260B2 true JPH0365260B2 (en) 1991-10-11

Family

ID=14199046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9769482A Granted JPS58215318A (en) 1982-06-09 1982-06-09 Method and equipment for heat treating of film

Country Status (1)

Country Link
JP (1) JPS58215318A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960013068B1 (en) * 1989-10-16 1996-09-30 도오요오 보오세끼 가부시끼가이샤 Thermoplastic resin film & a method for producing the same
US5536158A (en) * 1993-10-25 1996-07-16 Eastman Kodak Company Apparatus for drying solvent based film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523539A (en) * 1978-08-04 1980-02-20 Fujitsu Ltd Input/output control unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523539A (en) * 1978-08-04 1980-02-20 Fujitsu Ltd Input/output control unit

Also Published As

Publication number Publication date
JPS58215318A (en) 1983-12-14

Similar Documents

Publication Publication Date Title
EP0748273B1 (en) Method of making biaxially oriented thermoplastic films
JPH0334456B2 (en)
EP0944468B1 (en) Film bead heating for simultaneous stretching
JP2999379B2 (en) Relaxation heat treatment method for stretched film
KR20150034610A (en) Method and facility for producing stretched film
JPS58153616A (en) Method of stretching nylon-film in mechanical direction
JPH0243611B2 (en)
JPH0365260B2 (en)
JPH0617065B2 (en) Heat treatment method for biaxially stretched polyester film
JPS6321603B2 (en)
JPH0455377B2 (en)
JP3852671B2 (en) Method for producing biaxially stretched polyester film
JPS60262624A (en) Stretching method of polyester film
JPS618324A (en) Heat treatment of film
JPS62268629A (en) Heat treating method for thermoplastic resin film
JP2012071476A (en) Stretching equipment and method of polymer film
JP3983361B2 (en) Method for producing stretched film
JPH0245976B2 (en) NIJIKUENSHINHORIIIPUSHIRONNKAPUROAMIDOFUIRUMUNOSEIZOHOHO
JPH04290726A (en) Manufacture of thermoplastic resin film
JPS6341126A (en) Simultaneous biaxial orientation of plastic film
JPH04142918A (en) Manufacture of thermoplastic resin film
JPH04292937A (en) Manufacture of thermoplastic resin film
JP2841817B2 (en) Method for producing thermoplastic resin film
JPH04292934A (en) Manufacture of thermoplastic resin film
KR100235565B1 (en) Method for producing sequentially biaxially oriented plastic film