JPH0365256A - Specimen grinding tool - Google Patents

Specimen grinding tool

Info

Publication number
JPH0365256A
JPH0365256A JP19932389A JP19932389A JPH0365256A JP H0365256 A JPH0365256 A JP H0365256A JP 19932389 A JP19932389 A JP 19932389A JP 19932389 A JP19932389 A JP 19932389A JP H0365256 A JPH0365256 A JP H0365256A
Authority
JP
Japan
Prior art keywords
grinding
crushing
specimen
hardness
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19932389A
Other languages
Japanese (ja)
Inventor
Kiyohiko Saito
清彦 齊藤
Yuji Chiba
千葉 祐二
Atsuo Kawana
淳雄 川名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP19932389A priority Critical patent/JPH0365256A/en
Publication of JPH0365256A publication Critical patent/JPH0365256A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)

Abstract

PURPOSE:To control the pollution amount of impurities at the time of grinding a material by covering the surfaces of a crucible-shaped grinding section and a grinding bar of a specimen grinding tool made of a metal of specified softening point at the specified hardness as a base with a high hardness ceramic by means of the physical deposition process. CONSTITUTION:The surfaces of a crucible-shaped grinding section 1 and a grinding bar 2 of a specimen grinding tool made of a metal or an alloy (example: stainless steel) having Vickers hardness of 200HV or more and the softening point of 300 deg.C or over as a base is covered with a high hardness ceramic 3 (for example titanium nitride) by the physical deposition process. As a result, in case a high purity material is ground, pollution other than the elements contained in the base and the high hardness ceramic can be controlled to 2mug per g of specimen or under, when the high purity material is ground. Also, oxidative corrosion of the grinding section surface can be prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は物質の粉砕に用いる試料粉砕棒具に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a sample crushing rod used for crushing substances.

[従来の技術] 物質中の不純物を分析するために、その物質を試料粉砕
棒具で粉砕する場合、粉砕面の物理的破損により、粉砕
部の材質に用いられている物質が試料粉砕中に混入する
ことが問題となる。
[Prior art] When a substance is crushed with a sample crushing rod in order to analyze impurities in the substance, physical damage to the crushing surface causes the substance used for the material of the crushing part to break down during sample crushing. Contamination is a problem.

このような粉砕時の汚染をなくすために、通常粉砕部の
本体には、めのう、アルミナ、窒化ケイている。
In order to eliminate such contamination during grinding, the main body of the grinding section is usually made of agate, alumina, or silicon nitride.

[発明が解決しようとする課題] 高純度物質中の微量不純物の分析のためにこれら基材を
用いた場合、試料の硬度が高いと基材からの汚染が無視
し得なくなる。例えば、試料がビッカーズ硬度1500
HV程度であると、5分間径度の粉砕により、基材中に
含まれるけい素又はほう素が、試料粉1gあたり数十μ
gのオーダーで混入する。
[Problems to be Solved by the Invention] When these base materials are used to analyze trace impurities in high-purity substances, contamination from the base material cannot be ignored if the sample has high hardness. For example, if the sample has a Vickers hardness of 1500
If it is around HV, silicon or boron contained in the base material can be reduced to several tens of microns per gram of sample powder by grinding for 5 minutes.
Mix on the order of g.

本発明は上記問題点に鑑み、物質を粉砕する場合、粉砕
時の不純物の汚染量を極力おさえることができる試料粉
砕棒具を提供するものである。
In view of the above-mentioned problems, the present invention provides a sample crushing rod that can minimize the amount of impurity contamination during crushing when a substance is crushed.

[課題を解決するための手段] 上記目的を達成するため、本発明の試料粉砕棒具は、ビ
ッカーズ硬度が2001V以上で、融点が300℃以上
の金属又は合金を基材とする試料粉砕棒具のルツボ状粉
砕部及び粉砕棒の表面に物理蒸着法により高硬度セラミ
ックスを被覆した点に特徴がある。
[Means for Solving the Problems] In order to achieve the above object, the sample crushing rod of the present invention is a sample crushing rod whose base material is a metal or alloy having a Vickers hardness of 2001 V or more and a melting point of 300° C. or more. The feature is that the surfaces of the crucible-shaped crushing part and the crushing rod are coated with high-hardness ceramics by physical vapor deposition.

以下、本発明について図面を用いて具体的に説明する。Hereinafter, the present invention will be specifically explained using the drawings.

第1図は、本発明による試料粉砕棒具の一例を示す図で
、ルツボ状粉枠部A及び粉砕棒Bの断面図である。
FIG. 1 is a diagram showing an example of a sample crushing rod according to the present invention, and is a sectional view of a crucible-shaped powder frame A and a crushing rod B.

第1図において粉砕部の基材1及び粉砕棒の基材2はス
テンレスより成り、この粉砕棒基材1及び粉砕棒基材2
は研磨され、表面を洗浄した後、物理蒸着装置で窒化チ
タン層3を被覆しである。
In FIG. 1, the base material 1 of the crushing section and the base material 2 of the crushing rod are made of stainless steel.
After polishing and cleaning the surface, it is coated with a titanium nitride layer 3 using a physical vapor deposition device.

粉砕棒基材1及び粉砕棒基材2はハステロイ、高速度鋼
、ダイス鋼、超硬合金等のビッカーズ硬度200 +1
V以上の金属又は合金であればよく、被覆する高硬度セ
ラミックスは、窒化チタンに限らず、窒化ジルコニウム
、窒化ハフニウム、窒化クロム、窒化ニオブ、窒化タン
タル、炭化チタンでもよい。
The crushing rod base material 1 and the crushing rod base material 2 are made of Hastelloy, high speed steel, die steel, cemented carbide, etc. with a Vickers hardness of 200 +1.
Any metal or alloy with V or more may be used, and the high-hardness ceramic to be coated is not limited to titanium nitride, but may also be zirconium nitride, hafnium nitride, chromium nitride, niobium nitride, tantalum nitride, or titanium carbide.

基材1,2及び被覆する高硬度セラミックスの材質を適
宜選択することにより、目的元素の汚染を効果的に防止
することができる。
By appropriately selecting the materials of the base materials 1 and 2 and the covering high-hardness ceramics, contamination of the target element can be effectively prevented.

[実施例J ステンレスを基材とし、この表面にイオブレーティング
法により窒化チタンを数μ厘の厚さで被覆した試料粉砕
部を有する粉砕棒具を用い、高純度リン化ガリウム多結
晶を5分間粉砕し、粉砕粉中のけい素、はう素及び他の
数元素を高周波誘導汚染量を調べた。
[Example J Using a crushing rod having a sample crushing part whose base material is stainless steel and whose surface is coated with titanium nitride to a thickness of several micrometers by the ioplating method, 50% of high-purity gallium phosphide polycrystals were crushed. The powder was ground for 1 minute, and the amount of radio frequency induced contamination of silicon, boron, and several other elements in the ground powder was examined.

その結果を他の材質より成る粉砕棒具と対比して第1表
に示す。
The results are shown in Table 1 in comparison with crushing rods made of other materials.

第1表の結果より、本発明の粉砕棒具によれば、ビッカ
ーズ硬度、15008v程度の高純度物質を粉砕する場
合、他の粉砕棒具で問題となるほう素、けい素の汚染、
及び亜鉛、カドミウムの汚染を試料粉1gあたり2μg
以下におさえられることがわかる。
From the results in Table 1, it can be seen that according to the crushing rod of the present invention, when crushing high purity substances with a Vickers hardness of about 15008V, contamination of boron and silicon, which is a problem with other crushing rods, can be avoided.
and zinc and cadmium contamination at 2 μg per 1 g of sample powder.
You can see what can be found below.

[発明の効果] 本発明によれば、高純度材料を粉砕する場合、延材及び
高硬度セラミックスに含まれる元素以外の汚染を試料1
gあたり2μg以下におさえることができる。
[Effects of the Invention] According to the present invention, when grinding high-purity materials, contamination other than elements contained in the rolled material and high-hardness ceramics is removed from sample 1.
It can be suppressed to 2 μg or less per gram.

また金属又は合金の表面を高硬度セラミックスで被覆す
ることにより、粉砕部表面の酸化腐食を防止することが
できる。
Furthermore, by coating the surface of the metal or alloy with a high-hardness ceramic, oxidation corrosion on the surface of the crushed portion can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による試料粉砕装置のルツボ粉砕能A
及び粉砕某Bの断面図である。 1・・・ルツボ状粉砕部基材、2・・・粉砕棒基材、3
・・・窒化チタン層。
Figure 1 shows the crucible crushing capacity A of the sample crushing device according to the present invention.
and a sectional view of a certain crushed B. 1... Crucible-shaped crushing part base material, 2... Grinding rod base material, 3
...Titanium nitride layer.

Claims (1)

【特許請求の範囲】[Claims] ビッカーズ硬度が200HV以上で、軟化点が300℃
以上の金属又は合金を基材とする試料粉砕器具のルツボ
状粉砕部及び粉砕棒の表面が物理蒸着法により高硬度セ
ラミックスで被覆されている試料粉砕器具。
Vickers hardness is 200HV or more, softening point is 300℃
A sample crushing device whose crucible-shaped crushing portion and the surface of the crushing rod are coated with high-hardness ceramics by physical vapor deposition.
JP19932389A 1989-08-02 1989-08-02 Specimen grinding tool Pending JPH0365256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19932389A JPH0365256A (en) 1989-08-02 1989-08-02 Specimen grinding tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19932389A JPH0365256A (en) 1989-08-02 1989-08-02 Specimen grinding tool

Publications (1)

Publication Number Publication Date
JPH0365256A true JPH0365256A (en) 1991-03-20

Family

ID=16405887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19932389A Pending JPH0365256A (en) 1989-08-02 1989-08-02 Specimen grinding tool

Country Status (1)

Country Link
JP (1) JPH0365256A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8303799B2 (en) * 2006-08-31 2012-11-06 Fuji Jukogyo Kabushiki Kaisha Process and apparatus for grinding with electrolytic dressing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815079A (en) * 1981-07-14 1983-01-28 日本化学陶業株式会社 Crusher member comprising zirconia sintered body
JPH01129958A (en) * 1987-11-13 1989-05-23 Babcock Hitachi Kk Formation of titanium nitride film having high adhesive strength

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815079A (en) * 1981-07-14 1983-01-28 日本化学陶業株式会社 Crusher member comprising zirconia sintered body
JPH01129958A (en) * 1987-11-13 1989-05-23 Babcock Hitachi Kk Formation of titanium nitride film having high adhesive strength

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8303799B2 (en) * 2006-08-31 2012-11-06 Fuji Jukogyo Kabushiki Kaisha Process and apparatus for grinding with electrolytic dressing

Similar Documents

Publication Publication Date Title
Theunissen et al. Segregation aspects in the ZrO2-Y2O3 ceramic system
DE69317447T2 (en) Bonding tools and their manufacture
Erb et al. BaZrO3: the solution for the crucible corrosion problem during the single crystal growth of high-Tc superconductors REBa2Cu3O7− δ; RE= Y, Pr
EP0614861B1 (en) Method of manufacturing titania and alumina ceramic sintered bodies
US5087297A (en) Aluminum target for magnetron sputtering and method of making same
DE69333176T2 (en) Process for the production of a synthetic diamond layer
DE3706340A1 (en) METHOD FOR APPLYING A WEAR PROTECTIVE LAYER AND PRODUCT PRODUCED THEREOF
DE68915146T2 (en) MOLDING FORMING OPTICAL PARTS AND METHOD FOR PRODUCING IT.
DE60036814T2 (en) METHOD FOR THE HEAT TREATMENT OF CERAMICS AND THEREFORE OBTAINED OBJECT
JPH03150298A (en) Bridge connecting core wire in polycrystalline silicon producing device
DE60106577T2 (en) Removable umbrella device for plasma reactors
JPH0365256A (en) Specimen grinding tool
Rolland et al. Vapour deposition of lead on Ag (111) and equilibrium surface segregation from Ag Pb (111) solid solutions: A leed-aes comparative study
DE4302407C2 (en) A method of making a silicon nitride based diamond coated layer
DE112004000576T5 (en) Aluminum oxide film production method mainly in α-crystal structure and multilayer film thereof
DE69107244T2 (en) Industrial diamond coating and process for its manufacture.
Ogawa et al. Effect of Nb Addition on Oxide Formation on Ti–xNb Alloys
DE69207613T2 (en) Sintered silicon nitride tool
Dörfel et al. Microstructural characterization of binary and ternary hard coating systems for wear protection. Part I: PVD coatings
Yang et al. Epitaxial grain growth during splat cooling of alumina droplets produced by atmospheric plasma spraying
US4690693A (en) High purity silicon nitride polishing compound
Hughes et al. Spark plasma sintering apparatus used for the formation of strontium titanate bicrystals
Jordan et al. The growth of gadolinium single crystals during solid state electrotransport processing
Naidich et al. Adhesion, wetting, and formation of intermediate phases in systems composed of a titanium-containing melt and an oxide
JPS60100660A (en) Surface-coated hard material