JPH0365203B2 - - Google Patents

Info

Publication number
JPH0365203B2
JPH0365203B2 JP61052656A JP5265686A JPH0365203B2 JP H0365203 B2 JPH0365203 B2 JP H0365203B2 JP 61052656 A JP61052656 A JP 61052656A JP 5265686 A JP5265686 A JP 5265686A JP H0365203 B2 JPH0365203 B2 JP H0365203B2
Authority
JP
Japan
Prior art keywords
flow
high viscosity
casing
viscosity substance
filter medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61052656A
Other languages
Japanese (ja)
Other versions
JPS62210020A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5265686A priority Critical patent/JPS62210020A/en
Publication of JPS62210020A publication Critical patent/JPS62210020A/en
Publication of JPH0365203B2 publication Critical patent/JPH0365203B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱可塑性ポリマ溶融高粘度物質を異
常滞留せしめることなく、効率よく濾過すること
ができる濾過方法であつて、有効な濾過面積の増
大と長期間使用が可能で、しかも濾材の再生が容
易な濾過装置を用いた濾過方法に関するものであ
り、とくにポリアミドやポリエステルなどの熱可
塑性高分子物質の溶融物から、異物や不純物を高
性能に濾過するのに好適な高粘度物質の濾過方法
に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention is a filtration method that can efficiently filter a molten thermoplastic polymer high viscosity substance without abnormally retaining it. It relates to a filtration method using a filtration device that can be used for a long period of time, and the filter media can be easily regenerated.It is especially effective for removing foreign substances and impurities from melted thermoplastic polymer materials such as polyamide and polyester. The present invention relates to a method for filtering highly viscous substances suitable for filtering.

〔従来の技術〕[Conventional technology]

熱可塑性ポリマの製造工程において、反応生成
物から異物を除去するための濾過工程は、従来か
ら極めて重要な工程であるとされている。とくに
ポリマの重縮合反応が長期間にわたる、たとえば
連続重合ではポリマ劣化物などの異物が経時的に
増加するため濾過工程が不可欠であり、効率のよ
い濾過手段が要求されている。
In the manufacturing process of thermoplastic polymers, a filtration process for removing foreign substances from reaction products has been considered to be an extremely important process. In particular, in the case where the polycondensation reaction of a polymer is carried out over a long period of time, for example, in continuous polymerization, a filtration step is essential because foreign substances such as polymer deterioration products increase over time, and an efficient filtration means is required.

すなわち、反応生成物に異物が存在する場合に
は、そのポリマを溶融紡糸、延伸する際に、ノズ
ル背圧上昇や単糸切れを招くため、繊維の延伸
性、フアインデニール化および高速紡糸化が阻害
され、またフイルムに押出成形する際には、異常
突起を発生するため、フイルムの表面均一性や収
率が阻害される。したがつてポリマ製造工程の最
終段階に、異物除去手段としての濾過工程を設け
ることが極めて重要視されているのである。
In other words, if foreign matter is present in the reaction product, this will lead to an increase in nozzle back pressure and single fiber breakage when the polymer is melt-spun and drawn, resulting in problems with fiber drawability, fine deniering, and high-speed spinning. Moreover, when extrusion molding into a film, abnormal protrusions are generated, which impairs the surface uniformity and yield of the film. Therefore, it is extremely important to provide a filtration step as a means for removing foreign substances at the final stage of the polymer production process.

熱可塑性ポリマ溶融高粘度物質を濾過するため
の装置としては、従来から種々のタイプのものが
知られているが、いずれも得られる濾過物の品質
および装置の保守において改良の余地が残されて
いた。
Various types of devices have been known for filtering molten thermoplastic polymers with high viscosity, but there is still room for improvement in the quality of the filtrate obtained and in the maintenance of the devices. Ta.

たとえば第3図は従来の代表的な高粘度物質の
濾過装置の断面説明図であり、ケーシング1内に
濾過取付管板2を介して開環型濾材3を並列して
設けた縦型の濾過装置を示す。この従来例におい
ては、溶融ポリマに代表される高粘度物質は、流
入口5から導入されて矢印A方向に上昇しつつ、
各閉環型濾材3の内部へ圧入することにより濾過
される。そして濾過された高粘度物質は閉環型濾
材3の上部開口3′から矢印B方向へ上昇し、排
出口6から排出されるのである。また、9はジヤ
ケツトであり、熱媒でケーシング内を加熱してい
る。
For example, FIG. 3 is a cross-sectional explanatory view of a typical conventional filtering device for high viscosity substances, which is a vertical filtration system in which ring-opening filter media 3 are arranged in parallel in a casing 1 via a filtration mounting tube plate 2. Show the device. In this conventional example, a high viscosity substance represented by a molten polymer is introduced from an inlet 5 and rises in the direction of arrow A.
Filtration is performed by press-fitting into each closed-ring type filter medium 3. The filtered high-viscosity substance then rises in the direction of arrow B from the upper opening 3' of the closed ring filter medium 3 and is discharged from the discharge port 6. Further, 9 is a jacket, which heats the inside of the casing with a heating medium.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに第3図に示した従来の高粘度物質の濾
過装置においては、その構造上ケーシング1内の
下流側流れ方向、とくにケーシング内壁面近傍お
よび濾材取付管板2近辺の高粘度物質の流速が減
少するため、この部分での高粘度物質入替り時間
が無限大となり、いわゆるデツトスペースと称さ
れる異常滞留を生ずることになる。したがつてと
くに熱の影響を受け易い高粘度物質、たとえば溶
融ポリマをこの装置に適用する場合には、上記の
異常滞留部において、高粘度物質が加熱熱媒温度
近くまで上昇し、ポリマに熱劣化を生じ、異物と
なつて近傍の濾過面が早期に閉塞していく。そし
て、濾過面の閉塞に従つてより一層ケーシング1
内の下流側流れ方向での流速が減少し、デツドス
ペースが拡大していき、異常滞留領域(第3図の
ドツト部分)が増大すると共に、有効な濾過面積
が減少し、急激な濾圧上昇を引き起こす。
However, in the conventional filtering device for high viscosity substances shown in FIG. 3, due to its structure, the flow velocity of high viscosity substances decreases in the downstream flow direction within the casing 1, particularly near the inner wall surface of the casing and near the filter medium mounting tube plate 2. Therefore, the time for replacing the high viscosity substance in this part becomes infinite, resulting in abnormal retention called a so-called dead space. Therefore, when a highly viscous substance that is particularly susceptible to heat, such as a molten polymer, is applied to this device, the high viscosity substance rises to near the temperature of the heating medium in the above-mentioned abnormal retention section, causing heat to be applied to the polymer. This causes deterioration and turns into foreign matter, which quickly clogs the nearby filter surface. As the filter surface is blocked, the casing 1 becomes more
The flow velocity in the downstream flow direction decreases, the dead space expands, the abnormal retention area (the dotted area in Figure 3) increases, and the effective filtration area decreases, causing a sudden increase in filtration pressure. cause.

濾圧が高くなると、熱によつてゲル化したポリ
マがすり抜け、すぐれた品質の製品を安定して得
ることが不可能となる。またポリマの熱劣化物が
濾材取付管板2に、炭化物、ゲル化物および高結
晶化物などとして固着するため、補修時に閉環型
濾材3を濾材取付管板2から取外すことが困難に
なるなど、装置保守上のトラブルを発生するばか
りか、このような熱劣化物が固着した閉環型濾材
3は再生が極めて困難であるという問題がある。
If the filtration pressure becomes high, the polymer gelled by the heat will slip through, making it impossible to stably obtain a product of excellent quality. In addition, thermally degraded polymers adhere to the filter media attachment tube plate 2 as carbides, gelled substances, highly crystallized substances, etc., making it difficult to remove the ring-closed filter media 3 from the filter media attachment tube plate 2 during repairs. In addition to causing maintenance troubles, there is a problem in that it is extremely difficult to regenerate the ring-closed filter medium 3 to which such heat-degraded substances are adhered.

したがつて従来の閉環型濾材を用いた高粘度物
質の濾過装置では、長期間使用が不可能で、切替
頻度が増大するばかりか、取り扱いも繁雑であ
り、しかも均一な高粘度物質の濾過物を安定して
得ることが困難であつた。
Therefore, conventional filtration devices for high viscosity substances using closed-ring filter media cannot be used for long periods of time, have to be replaced frequently, are complicated to handle, and cannot be used to filter uniform high viscosity substances. It was difficult to obtain it stably.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、熱可塑性ポリマ溶融高粘度物
質を、熱劣化および異常滞留せしめることなく、
有効な濾過面積の増大と長期間使用が可能であ
り、しかも濾材の再生が容易な濾過装置を用いた
濾過方法の取得にある。
The purpose of the present invention is to process a molten thermoplastic polymer with high viscosity without causing thermal deterioration or abnormal retention.
The object of the present invention is to obtain a filtration method using a filtration device that can increase the effective filtration area, can be used for a long period of time, and allows easy regeneration of the filter medium.

〔発明の構成〕[Structure of the invention]

本発明者らは、上記目的達成のために鋭意検討
した結果、閉環型濾材を用いる熱可塑性ポリマ溶
融高粘度物質の濾過方法において、高粘度物質の
流路を分割し、従来の下部入口から上向きの流れ
とは別に、中央の流入管経由で上部に導き、下向
きの流れを作り、バツフル板により、ケーシング
内壁面近傍および濾材取付管板近傍の流れを強化
すると共に、均等に分散された相対向する流れと
することにより、上記目的に合致した効果が得ら
れることを見出し、本発明に到達した。
As a result of intensive studies to achieve the above object, the present inventors have developed a method for filtrating a thermoplastic polymer molten high viscosity substance using a closed-ring type filter medium by dividing the flow path of the high viscosity substance and directing the flow upward from the conventional lower inlet. Separately from the flow, it is guided to the upper part via the central inflow pipe to create a downward flow, and the baffle plate strengthens the flow near the inner wall of the casing and near the tube plate where the filter medium is attached, and evenly distributed opposing flow. The inventors have discovered that an effect that meets the above objectives can be obtained by following this flow, and have arrived at the present invention.

即ち本発明は、底部に熱可塑性ポリマ溶融高粘
度物質の流入口を、頂部に濾過後の該高粘度物質
を取出す排出口をそれぞれ有すると共に、外壁面
を熱媒で加熱したケーシングの天井部に多数の貫
通孔を有する取付け管板を一面に設け、周面に濾
過面を有する筒状の閉環型濾材を上記取付け管板
の各貫通孔に垂下させて取付けると共に、ケーシ
ング中央部には該高粘度物質を天井部まで導き上
記取付け管板の直下で水平方向放射状に流れを分
散させる窓を有する高粘度物質導入分散管を設
け、林立する各閉環型濾材の少なくとも上方と下
方の2箇所に該高粘度物質の流れを調整するバツ
フル板を設けることにより、高粘度物質流入口か
らケーシング内に流入した高粘度物質を、導入分
散管を上昇する流れと直接閉環型濾材近傍を上昇
する流れに分け、導入分散管を上昇して上部窓か
ら水平方向放射状に分散された後、下方に流下す
る流れと、直接閉環型濾材近傍を上昇する流れと
を作り、ケーシング内壁面近傍の流れを強化する
と共に、上記流下流れと上昇流れを相対向させる
ことを特徴とする熱可塑性ポリマ溶融高粘度物質
の濾過方法を提供するものである。
That is, the present invention has an inlet for a molten thermoplastic polymer high viscosity substance at the bottom and an outlet for taking out the high viscosity substance after filtration at the top. A mounting tube plate having a large number of through holes is provided on one side, and a cylindrical closed-ring type filter medium having a filtration surface on the circumferential surface is hung and installed in each of the through holes of the mounting tube plate. A high viscosity substance introducing dispersion pipe having a window for guiding the viscous substance to the ceiling and dispersing the flow radially in the horizontal direction immediately below the above-mentioned installed tube plate is provided, and the pipe is installed at least in two locations above and below each of the closed ring type filter media arranged in the forest. By providing a baffle plate that adjusts the flow of high-viscosity substances, the high-viscosity substances that flow into the casing from the high-viscosity substance inlet are divided into a flow that ascends through the introduction dispersion pipe and a flow that ascends near the direct ring-closed filter medium. After ascending through the introduction dispersion tube and being dispersed horizontally and radially from the upper window, a flow is created that flows downward and a flow that ascends near the directly closed ring type filter medium, thereby strengthening the flow near the inner wall surface of the casing. , provides a method for filtering a molten thermoplastic polymer high viscosity substance, characterized in that the above-mentioned downstream flow and upward flow are opposed to each other.

本発明で用いる閉環型濾材としては第2図にそ
の斜視図を示したような筒状閉環型濾材が代表的
である。これら閉環型濾材3は、いずれも高粘度
物質が外部から周囲のフイルター部分を通つてそ
の内部に入る時に濾過が行なわれ、濾過された高
粘度物質は濾材3の上部開口3′から排出される
ようになつている。かかる閉環型濾材の形式とし
てはとくにローソク型が好ましく、これらを必要
な濾過面積に相当する濾材数を濾材周囲の容積が
最小となるのに最適な配列に配置するのが好適で
ある。
A typical closed ring filter medium used in the present invention is a cylindrical closed ring filter medium as shown in a perspective view in FIG. In each of these closed ring type filter media 3, filtration is performed when high viscosity substances enter the inside from the outside through the surrounding filter portion, and the filtered high viscosity substances are discharged from the upper opening 3' of the filter media 3. It's becoming like that. Candle-shaped filter media are particularly preferred as the type of closed-ring filter media, and it is preferable to arrange the number of filter media corresponding to the required filtration area in an optimal arrangement to minimize the volume around the filter media.

本発明に適用しうる熱可塑性ポリマ溶融高粘度
物質とは、ケーシング内各部で層流状態となつて
流れる物質であるが、通常1000ポイズ以上、特に
1000ポイズ以上の熱劣化しやすいポリマの場合に
効果が大きく、ポリアミドやポリエステルなどの
重縮合溶融ポリマが代表的である。
The high-viscosity thermoplastic polymer melt that can be applied to the present invention is a material that flows in a laminar state in various parts of the casing, and usually has a flow rate of 1000 poise or more, especially
It is most effective for polymers with a temperature of 1000 poise or more that easily deteriorate due to heat, and polycondensation melt polymers such as polyamide and polyester are typical examples.

〔作用〕[Effect]

本発明の方法においては、高粘度物質流入口か
らケーシング内に流入した高粘度物質を、導入分
散管を上昇する流れと直接開環型濾材近傍を上昇
する流れに分け、導入分散管を上昇して上部窓か
ら水平方向放射状に分散された後、下方に流下す
る流れと、直接閉環型濾材近傍を上昇する流れと
を相対向させることにより、ケーシング内壁面近
傍および濾材取付管板近傍の流れが強化され、ま
た、流れが衝突する部分は各濾材で高さの位置が
ずれるため、デツドスペースがなくなる。
In the method of the present invention, the high viscosity substance flowing into the casing from the high viscosity substance inlet is divided into a flow ascending through the introduction dispersion pipe and a flow ascending near the direct ring-opening type filter medium, and the high viscosity substance flows upward through the introduction dispersion pipe. By opposing the flow that flows downward after being dispersed horizontally and radially from the upper window and the flow that rises near the directly closed ring type filter media, the flow near the inner wall surface of the casing and near the tube plate where the filter media is attached is reduced. In addition, the height of each filter medium is shifted at the part where the flow collides, so there is no dead space.

特に加熱ジヤケツトにより加熱されやすいケー
シング内壁面近傍の流れが強化されることによ
り、熱可塑性ポリマの劣化が防止され、ゲルが発
生しにくくなり、その結果、濾材の閉塞が起こり
にくくなる。
In particular, by strengthening the flow near the inner wall surface of the casing, which is easily heated by the heating jacket, deterioration of the thermoplastic polymer is prevented, gel is less likely to form, and as a result, filter media is less likely to be clogged.

以下、本発明に用いる装置を図面に基づいて説
明する。
Hereinafter, the apparatus used in the present invention will be explained based on the drawings.

第1図は、本発明の方法を含めて示す装置の断
面説明図であり、1はケーシング、、2は濾材取
付管板、3は閉環型濾材、4,4′はバツフル板、
5は流入口、6は排出口、7は流入管、8は導入
分散管、9はジヤケツト、矢印は高粘度物質の流
通経路を示す。
FIG. 1 is an explanatory cross-sectional view of the apparatus including the method of the present invention, in which 1 is a casing, 2 is a filter medium attachment tube plate, 3 is a closed-ring filter medium, 4 and 4' are butt-full plates,
5 is an inlet, 6 is an outlet, 7 is an inflow pipe, 8 is an introduction/dispersion pipe, 9 is a jacket, and the arrows indicate the flow paths of the high-viscosity substances.

第1図の装置においては、多数の閉環型濾材3
の上下にバツフル板4,4′を設けると共に、こ
れを取付管板2でケーシング1内に固定し、さら
に濾材3の中間位置に管状の高粘度物質流入管7
を設けることにより、濾材3の周囲に高粘度物質
が相対向して向流する流路を形成したことを特徴
としている。
In the apparatus shown in FIG. 1, a large number of closed ring filter media 3
Buff-full plates 4, 4' are provided above and below the casing 1, and these are fixed in the casing 1 by the mounting tube plate 2, and a tubular high-viscosity substance inflow pipe 7 is provided at an intermediate position of the filter medium 3.
By providing this, a flow path is formed around the filter medium 3 in which highly viscous substances flow in countercurrent directions.

この第1図の装置を用いて、たとえば熱可塑性
溶融ポリマの濾過を行なう場合、まず溶融ポリマ
は流入口5から矢印A方向に圧入され、バツフル
板4に当たることにより、バツフル板4の外周を
ケーシング1とのすき間(矢印B)、バツフル板
4と濾材3とのすき間を経由した流入管7と濾材
3とのすき間(矢印C)および流入管7(矢印
D)の三方向に分割されて、それぞれの矢印方向
へと流れる。ここで流入管7の内部へ矢印D方向
に流入した溶融ポリマは、流入管7上端の、周囲
に窓を有する分散管8から均等に外周方向(矢印
d)へと流出して、濾材取付管板近傍を流れ、さ
らにバツフル板4′に当たり、分配されて、バツ
フル板4′と濾材3とのすき間を経由した流入管
7と濾材3とのすき間(矢印c)およびバツフル
板4′の外周とケーシングとのすき間(矢印b)
へと下向きの流れを形成する。
For example, when filtrating a thermoplastic molten polymer using the apparatus shown in FIG. 1 (arrow B), the gap between the inflow pipe 7 and the filter medium 3 via the gap between the buttful plate 4 and the filter medium 3 (arrow C), and the inflow pipe 7 (arrow D). Flows in the direction of each arrow. The molten polymer that has flowed into the inflow pipe 7 in the direction of arrow D flows out uniformly in the outer circumferential direction (arrow d) from the dispersion pipe 8 having a window around the upper end of the inflow pipe 7, and flows out into the filter medium attachment pipe. It flows near the plate, further hits the buff-full plate 4', is distributed, passes through the gap between the buff-full plate 4' and the filter medium 3, and connects to the gap between the inflow pipe 7 and the filter medium 3 (arrow c) and the outer periphery of the buff-full plate 4'. Gap with casing (arrow b)
Forms a downward flow.

このように構成された第1図の装置を使用する
本発明おいて、溶融ポリマはケーシング1の内部
でその流路が複数に分割されると共に、上部と下
部で異方向の流れを形成し、さらには濾材3の周
囲で相対向する流れを形成して、衝突しながら順
次濾材3の内部へと導入する。そして濾過された
溶融ポリマは濾材3の上端開口3′から排出口6
へと排出される。
In the present invention, which uses the apparatus shown in FIG. Further, opposing flows are formed around the filter medium 3 and are introduced into the filter medium 3 one after another while colliding with each other. The filtered molten polymer is then discharged from the upper end opening 3' of the filter medium 3 through the discharge port 6.
is discharged to.

したがつて濾材取付管板2近辺に溶融ポリマが
異常滞留することは全くなく、従来の濾過装置の
構造上の大きな問題であつたデツトスペースが解
消するため、ケーシング外周付近のポリマの熱媒
による熱劣化もなく、効率のよい濾過が達成でき
るばかりか、装置における濾過面積の増大および
長期間使用が可能で、しかも濾材の再生が容易で
あるという利点が得られる。
Therefore, there is no abnormal accumulation of molten polymer near the filter media mounting tube plate 2, and the dead space, which was a major problem in the structure of conventional filter devices, is eliminated. Not only can efficient filtration be achieved without deterioration, but the filtration area of the device can be increased, the device can be used for a long period of time, and the filter medium can be easily regenerated.

ここで、相対向するポリマの衝突する中央部に
異常滞留が形成される懸念があつたが、衝突する
部分は各濾材で全く同じ高さの位置とはならず、
若干ズレが生じるため、渦のように混合され易く
なり、異常滞留とはなりにくいことと、熱媒によ
る加熱がされにくいケーシング内中央側であるこ
とから熱劣化しにくく、ここで生成する熱劣化異
物は少なく、濾材の閉塞を起こしにくいためと
で、実際の濾過寿命は非常に長くなる。
Here, there was a concern that abnormal retention would be formed in the central part where the opposing polymers collide, but the colliding parts are not at exactly the same height on each filter medium,
Because there is a slight misalignment, it becomes easier to mix like a vortex, making it difficult to cause abnormal stagnation, and because it is located in the center of the casing, which is less likely to be heated by the heating medium, it is less susceptible to thermal deterioration, and the thermal deterioration that occurs here The actual filtration life is very long because there are fewer foreign substances and the filter material is less likely to become clogged.

なお上述の装置に於いて、濾過装置のケーシン
グ内上、下高粘度物質流の圧力比は、各流路の径
と長さなどの圧力損失比を選択することにより任
意に変えることができるが、圧力比1:1が最も
好ましい。
Note that in the above-mentioned device, the pressure ratio of the high viscosity substance flow above and below the casing of the filtration device can be arbitrarily changed by selecting the pressure loss ratio such as the diameter and length of each flow path. , a pressure ratio of 1:1 is most preferred.

〔実施例〕〔Example〕

以下、実施例を挙げて本発明を具体的に説明す
る。
The present invention will be specifically described below with reference to Examples.

実施例 1および比較例 1 装置として第1図(実施例)および第3図(比
較例)に示した高粘度物質の濾過装置を使用し
た。装置内が観察できるようにする為、材質は透
明の塩化ビニル製とした(ケーシング容量7000ml
閉塞型濾材14mmφ 30本)。流体としてポリアル
キレングリコール(ニツサンユニルーブ70DE−
2620:日本油脂(株))、着色染料として赤色インク
(Pilot:ユニルーブ中に0.5wt%で吸光度5.8)を
使用した。装置上の問題から粘度を60〜70Poise
として実施する為、水を28wt%混合したポリア
ルキレングリコールに赤色インクを0.5wt%添加
し、色が均一になるまで撹拌した。ケーシング内
にこの赤色液体を注入し、上から静かに閉塞型濾
材(14mmφ 30本)を挿入し、濾材内の気泡除去
の為、一昼夜静置した。ここに赤色インクを加え
ない透明流体(ポリアルキレングリコール:含水
率28wt%)を40Kg/hrの規定量、吐出圧1.15Kg/
cm2・Gでスネークポンプを利用して送り込みケー
シング内の入れ替わり状況を観察するとともに、
規定時間毎に彩取し、吸光度より赤色染料濃度及
び置換率を求めた。
Example 1 and Comparative Example 1 The high viscosity substance filtration apparatus shown in FIG. 1 (Example) and FIG. 3 (Comparative Example) was used as the apparatus. In order to be able to observe the inside of the device, the material was made of transparent PVC (casing capacity 7000ml).
30 closed type filter media 14mmφ). Polyalkylene glycol (Nitsun Unilube 70DE−
2620: Nippon Oil & Fats Co., Ltd.), red ink (Pilot: Absorbance 5.8 at 0.5 wt% in Unilube) was used as a coloring dye. Due to equipment issues, the viscosity has been reduced to 60~70Poise.
In order to carry out this experiment, 0.5 wt% of red ink was added to polyalkylene glycol mixed with 28 wt% of water, and the mixture was stirred until the color became uniform. This red liquid was injected into the casing, and closed-type filter media (30 pieces of 14 mm diameter) were gently inserted from above, and the filter was allowed to stand overnight to remove air bubbles within the filter media. A transparent fluid (polyalkylene glycol: water content 28wt%) without red ink is added at a specified amount of 40Kg/hr and a discharge pressure of 1.15Kg/hr.
Using a snake pump at cm2・G, we observed the exchange status inside the feeding casing, and
Coloring was carried out at specified time intervals, and the red dye concentration and substitution rate were determined from the absorbance.

結果は、第4図のグラフのようになり、比較例
1(従来型)に比べ実施例は開始直後、採取流体
の赤色染料濃度が高い位置でより長時間推移して
いる。これは透明流体の入口が下方に一箇所のみ
である上、出口流路は上方にある為透明流体が、
先に注入されていた赤色流体を押し出す恰好にな
つた為であると考えられる。しかし約10分経過以
後、濃度は逆転している。この時点で実施例のも
のはすでにケーシングの中央付近にのみ赤色流体
が存在し従来型より多く置換されていた。最終的
に従来型では採取液にいつまでも赤色インクが微
量含有していたのに対し、実施例のものでは30分
経過以後0となつた。置換率としても実施例のも
のの場合、全赤色流体が置換していたのに対し、
従来型は96%より置換が停止し、4%がケーシン
グ上隅部に貯留し動かなくなつた。これにより従
来型ではケーシング上隅部に異常滞留が発生して
いることがわかたつた。
The results are as shown in the graph of FIG. 4, and compared to Comparative Example 1 (conventional type), the red dye concentration of the collected fluid remained at a high position for a longer period of time in the example immediately after the start. This is because the transparent fluid has only one inlet at the bottom and the outlet channel is at the top, so the transparent fluid
It is thought that this was because the red fluid that had been injected earlier was pushed out. However, after about 10 minutes, the concentration reversed. At this point, in the example, the red fluid was already present only near the center of the casing, and more was being replaced than in the conventional type. In the end, in the conventional type, a small amount of red ink remained in the sampled liquid forever, but in the example, it disappeared after 30 minutes. As for the replacement rate, in the case of the example, all the red fluid was replaced, whereas
In the conventional model, replacement stopped at 96%, and 4% was stored in the upper corner of the casing and stopped moving. This revealed that in the conventional type, abnormal accumulation occurred at the upper corner of the casing.

比較例 2 比較実施例1で使用したものと同種の従来型濾
過装置を材質を耐熱性ステンレスとしてポリエエ
ステル直連重設備に組み込み実地試験を行つた。
尚、有効濾過面積0.0498m2の濾材を210本用いて
実施した。ここに、温度を280〜300℃に保ち、粘
度を2000〜3000Poiseにしたポリエチレンテレフ
タレートを1〜2T/hrの規定量で送り込んで濾
圧の上昇と異物の増加量を測定した。尚、異物数
は、フイツシユ・アイ数により測定した。(得ら
れたポリマを二軸延伸フイルムとし顕微鏡で15μ
以上の異物を数え、ポリマ1g当たりの異物数に
換算してフイツシユ・アイ数とした。) 実施例 2 実施例1で使用したものと同種の濾材の周囲に
高粘度物質が相対向して向流する流路を形成した
濾過装置を材質を耐熱性ステンレスとしてポリエ
ステル直連重設備に組み込み実地試験を行つた。
尚、有効濾過面積0.0498m2の濾材を200本用いて
実施した。ここに温度を280〜300℃に保ち粘度を
2000〜3000Poiseのポリエチレンテレフタレート
を1〜2T/hrの規定量で送り込んで濾圧の上昇
と異物の増加量を測定した。結果は、以下のよう
になつた。
Comparative Example 2 A conventional filtration device of the same type as that used in Comparative Example 1, made of heat-resistant stainless steel, was installed in a polyester straight-line heavy equipment and a field test was conducted.
The experiment was conducted using 210 filter media with an effective filtration area of 0.0498 m 2 . Here, the temperature was maintained at 280 to 300°C, and polyethylene terephthalate with a viscosity of 2000 to 3000 Poise was fed at a specified rate of 1 to 2 T/hr, and the increase in filtration pressure and the amount of foreign matter increased were measured. Note that the number of foreign substances was measured by the number of fish eyes. (The obtained polymer was made into a biaxially stretched film and was
The above foreign matter was counted and converted into the number of foreign matter per gram of polymer, which was determined as the number of foreign matter. ) Example 2 A filtration device with a flow path in which highly viscous substances flow in countercurrents around a filter medium of the same type as that used in Example 1 was incorporated into a polyester straight-connection equipment using heat-resistant stainless steel. We conducted a practical test.
The experiment was conducted using 200 filter media with an effective filtration area of 0.0498 m 2 . Here, the temperature is kept at 280 to 300℃ and the viscosity is
Polyethylene terephthalate of 2000 to 3000 Poise was fed at a specified rate of 1 to 2 T/hr, and the increase in filtration pressure and increase in foreign matter was measured. The results were as follows.

まず、濾圧の上昇であるが比較例2(従来型)
は、開始直後より吐出圧が第5図のグラフのよう
に急激に上昇し、わずか22日で150Kg/cm2・Gを
越え濾材交換となつた。交換を試み、濾材取付管
板を取りはずしたところ管板付近に炭化物等が付
着し、濾材の取り外しが不可能となつた。また、
濾圧上昇が早すぎて濾材再生も間に合わず、濾材
なしでの運転をせざるを得なかつた。これは比較
例1で観察されたとおりケーシングの上隅部に溶
融ポリマの異常滞留が生じ、これが濾材取付管板
の熱で炭化し、次第に成長した結果炭化物が付着
したと考えられる。
First, regarding the increase in filtration pressure, Comparative Example 2 (conventional type)
Immediately after the start of the test, the discharge pressure rose rapidly as shown in the graph in Figure 5, and exceeded 150 kg/cm 2 G in just 22 days, requiring the filter medium to be replaced. When I tried to replace the filter and removed the tube plate to which the filter was attached, carbide etc. adhered to the vicinity of the tube plate, making it impossible to remove the filter. Also,
The filtration pressure rose too quickly to regenerate the filter material in time, and the plant had no choice but to operate without the filter material. This is thought to be because, as observed in Comparative Example 1, abnormal retention of molten polymer occurred in the upper corner of the casing, which was carbonized by the heat of the filter medium attachment tube plate and gradually grew, resulting in adhesion of carbide.

これに対し、実施例2は、開始直後より50日間
は変化の割合は小さく、この後急激に上昇したも
のの濾材交換基準の150Kg/cm2・Gまで70日間を
要した。交換を実施したところ比較例2のような
炭化物は一切見られず円滑な交換を行うことがで
きた。また再生を要する時間にも余裕が生まれた
為、以後濾圧120〜130Kg/cm2・Gでの早期交換可
能となつた。次に異物量(第6図のグラフ)であ
るが比較例2(従来型)は、開始10日後より異物
量が急増しているが、それに対して実施例2は58
日後まで0〜2個/g間で推移している。このこ
とからも従来型では、濾材からの異物のすり抜け
が開始早々発生していることがわかる。
On the other hand, in Example 2, the rate of change was small for 50 days immediately after the start, and although it rapidly increased after that, it took 70 days to reach the filter medium replacement standard of 150 kg/cm 2 ·G. When the exchange was carried out, no carbide was observed as in Comparative Example 2, and the exchange could be carried out smoothly. Also, since there was more time available for regeneration, it became possible to replace the filter earlier at a filtration pressure of 120 to 130 kg/cm 2 G. Next, regarding the amount of foreign matter (graph in Figure 6), in Comparative Example 2 (conventional type), the amount of foreign matter rapidly increased from 10 days after the start, whereas in Example 2, 58
The number remains between 0 and 2 pieces/g until a few days later. This also shows that in the conventional type, foreign matter slips through the filter medium as soon as it starts.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の方法によれば、
溶融ポリマに代表される高粘度物質を、異常滞留
させ、ジヤケツトの熱媒による熱劣化を起こさせ
ることなく、効率よく濾過することができる。
As explained above, according to the method of the present invention,
High viscosity substances such as molten polymers can be efficiently filtered without causing abnormal retention and thermal deterioration due to the heat medium in the jacket.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の熱可塑性ポリマ溶融高粘度物
質の濾過方法を実施する装置を示す断面図、第2
図は閉環型濾材の斜視図、第3図は従来の高粘度
物質の濾過方法を実施する装置を示す断面図、第
4図は経過時間と置換率および赤色塗料濃度の関
係を示すグラフ、第5図は経過日数と吐出圧の関
係を示すグラフ、第6図は経過日数と異物数の関
係を示すグラフである。 1……ケーシング、2……濾材取付管板、3…
…閉管型濾材、3′…閉管型濾材の開口、4,
4′……スペーサー、5……高粘度物質流入口、
6……高粘度物質排出口、7……高粘度物質流入
管、8……分散管、9……ジヤケツト。
FIG. 1 is a sectional view showing an apparatus for carrying out the method of filtering a molten thermoplastic polymer high viscosity substance of the present invention, and FIG.
The figure is a perspective view of a closed-ring type filter medium, Figure 3 is a sectional view showing a device for carrying out a conventional filtration method for high viscosity substances, Figure 4 is a graph showing the relationship between elapsed time, substitution rate, and red paint concentration. FIG. 5 is a graph showing the relationship between the number of elapsed days and discharge pressure, and FIG. 6 is a graph showing the relationship between the number of elapsed days and the number of foreign objects. 1... Casing, 2... Filter medium mounting tube plate, 3...
...closed tube type filter medium, 3'...opening of closed tube type filter medium, 4,
4'...Spacer, 5...High viscosity substance inlet,
6... High viscosity substance outlet, 7... High viscosity substance inflow pipe, 8... Dispersion pipe, 9... Jacket.

Claims (1)

【特許請求の範囲】[Claims] 1 底部に熱可塑性ポリマ溶融高粘度物質の流入
口を、頂部に濾過後の該高粘度物質を取出す排出
口をそれぞれ有すると共に、外壁面を熱媒で加熱
したケーシングの天井部に多数の貫通孔を有する
取付け管板を一面に設け、周囲に濾過面を有する
筒状の閉環型濾材を上記取付け管板の各貫通孔に
垂下させて取付けると共に、ケーシング中央部に
は該高粘度物質を天井部まで導き上記取付け管板
の直下で水平方向放射状に流れを分散させる窓を
有する高粘度物質導入分散管を設け、林立する各
閉環型濾材の少なくとも上方と下方の2箇所に該
高粘度物質の流れを調整するバツフル板を設ける
ことにより、高粘度物質流入口からケーシング内
に流入した高粘度物質を、導入分散管を上昇する
流れと直接閉環型濾材近傍を上昇する流れに分
け、導入分散管を上昇して上部窓から水平方向放
射状に分散された後、下方に流下する流れと、直
接閉環型濾材近傍を上昇する流れとを作り、ケー
シング内壁面近傍の流れを強化すると共に、上記
流下流れと上昇流れを相対向させることを特徴と
する熱可塑性ポリマ溶融高粘度物質の濾過方法。
1 The bottom part has an inlet for the molten high-viscosity substance of thermoplastic polymer, and the top part has an outlet for taking out the high-viscosity substance after filtration, and a large number of through holes are provided in the ceiling of the casing whose outer wall surface is heated with a heating medium. A cylindrical closed-ring type filter medium having a filtration surface around the periphery is installed by hanging down into each through hole of the mounting tube plate, and the high viscosity substance is placed in the ceiling of the central part of the casing. A high viscosity substance introducing dispersion pipe having a window for dispersing the flow radially in the horizontal direction is provided directly below the above-mentioned attached tube plate, and the flow of the high viscosity substance is at least two places above and below each of the closed ring filter media arranged in a forest. By providing a buffer plate to adjust the high viscosity substance, the high viscosity substance flowing into the casing from the high viscosity substance inlet is divided into a flow rising through the introduction dispersion pipe and a flow rising near the direct ring-closed filter medium. After rising and being dispersed horizontally and radially from the upper window, a flow that flows downward and a flow that rises directly near the closed ring type filter medium are created, thereby strengthening the flow near the inner wall surface of the casing, and also strengthening the flow near the inner wall of the casing. A method for filtrating a molten thermoplastic polymer with high viscosity, characterized by opposing upward flows.
JP5265686A 1986-03-12 1986-03-12 Method and device for filtering high-viscosity substance Granted JPS62210020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5265686A JPS62210020A (en) 1986-03-12 1986-03-12 Method and device for filtering high-viscosity substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5265686A JPS62210020A (en) 1986-03-12 1986-03-12 Method and device for filtering high-viscosity substance

Publications (2)

Publication Number Publication Date
JPS62210020A JPS62210020A (en) 1987-09-16
JPH0365203B2 true JPH0365203B2 (en) 1991-10-11

Family

ID=12920900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5265686A Granted JPS62210020A (en) 1986-03-12 1986-03-12 Method and device for filtering high-viscosity substance

Country Status (1)

Country Link
JP (1) JPS62210020A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5272440B2 (en) * 2008-02-20 2013-08-28 Jsr株式会社 Dummy filter, filter device, and filtration method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074715U (en) * 1983-10-31 1985-05-25 オルガノ株式会社 Precoat type filtration tower

Also Published As

Publication number Publication date
JPS62210020A (en) 1987-09-16

Similar Documents

Publication Publication Date Title
US7762404B2 (en) Device for performing the purifying separation of crystals out of their suspension in a contaminated crystal melt
US5456828A (en) Polymer melt filtration apparatus
US2266368A (en) Apparatus for the production of artificial structures
KR100189231B1 (en) Process and device for producing cellulose films
US3994810A (en) Onstream backflush filter
CN101116804B (en) Integrated reacting and separating device
US5698101A (en) Hollow fiber membranes
SA04250337B1 (en) process for the continuous production of emulsions
CN1346909A (en) Melt spray filter medium having all doubling stagnation support and filter comprising said medium
US3257487A (en) Melt spinning of epsilon-polycaproamide filament
KR102146547B1 (en) Method for cleaning a fluid and filter device
ZA200604189B (en) Membrane filter system comprising parallel cross-flow filter modules
JP3157608B2 (en) Polymerization reactor and polymerization method
US3891593A (en) Method and apparatus for dissolution of polymer in solvent
CN110917663A (en) Continuous defoaming device and method for solvent spinning cellulose spinning solution
JPH0365203B2 (en)
BG62494B1 (en) Device and installation used for the treatment of cellulose solutions
US3360597A (en) Melt-spinning of synthetic linear polymers
US4670202A (en) Method and apparatus for melt spinning
JP6965567B2 (en) Optical fiber drawing device and optical fiber drawing method
JP3549881B2 (en) Method of operating a tank in a process for producing a cellulosic product
JP3874470B2 (en) Methyl methacrylate production equipment
US3389429A (en) Spinning apparatus
CN206652502U (en) A kind of melt polymerization falling film reactor
JPH0796152A (en) Gradient hollow-fiber membrane and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term