JPH0365190A - Recombinant plasmid and microorganism containing the same - Google Patents

Recombinant plasmid and microorganism containing the same

Info

Publication number
JPH0365190A
JPH0365190A JP20209589A JP20209589A JPH0365190A JP H0365190 A JPH0365190 A JP H0365190A JP 20209589 A JP20209589 A JP 20209589A JP 20209589 A JP20209589 A JP 20209589A JP H0365190 A JPH0365190 A JP H0365190A
Authority
JP
Japan
Prior art keywords
gene
recombinant plasmid
bacillus subtilis
plasmid
bacillus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20209589A
Other languages
Japanese (ja)
Inventor
Takeshi Uozumi
魚住 武司
Atsunori Kitamura
北村 敦則
Akira Nakamura
顕 中村
Haruhiko Masaki
春彦 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Boshoku Co Ltd
Original Assignee
Toa Boshoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Boshoku Co Ltd filed Critical Toa Boshoku Co Ltd
Priority to JP20209589A priority Critical patent/JPH0365190A/en
Publication of JPH0365190A publication Critical patent/JPH0365190A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To enable efficient mass-production of gene products by introducing an extracellular cellulase gene and a specific gene into the cloning site of the vector plasmid for Escherichia coli. CONSTITUTION:A recombinant plasmid (A) is prepared by introducing the gene promoter and the signal sequence of extracellular cellulase from Bacillus subtilis IFO 3034 strain into the cloning site of a vector plasmid of Bacillus bacteria selected form Bacillus subtilis and its analogues, then a structural gene of penicillinase originating from Escherichia coli coding a useful protein such as lactamase on a terminal site of the sequence to give a recombinant plasmid (A). Then, the plasmid (A) is added to Bacillus subtilis N-24(B) belonging to Bacillus and the strain B is cultured in a desired medium to extracellularly produce the gene products such as lactamase.

Description

【発明の詳細な説明】 技術分野 本発明は組換え体プラスミドならびに該プラスミドを含
む、異種遺伝子産物をペリプラズムあるいは菌体外に蓄
積可能な微生物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a recombinant plasmid and a microorganism containing the plasmid that is capable of accumulating a heterologous gene product in the periplasm or extracellularly.

従来技術 クローニングされた酵素などの生理活性蛋白質の遺伝子
を用いて微生物によりその遺伝子産物を大量生産する方
法に注目があっめられている。
BACKGROUND ART Attention has been focused on methods for mass-producing the gene products using microorganisms using cloned genes for physiologically active proteins such as enzymes.

かかる技術のひとつとして異種蛋白質の遺伝子を大腸菌
用ベクタープラスミドに接続し、これを大腸菌に導入し
て異種蛋白質を生産することが試みられたが、菌体内に
蓄積された蛋白質のインクルージヨンボディー〈凝集塊
〉の形成による蛋白質の失活や微生物自体の成育阻害に
よる生産阻害が認められ、遺伝子産物の大量生産にはま
だ問題点が残っている。
As one such technique, an attempt was made to connect the gene of a heterologous protein to a vector plasmid for E. coli and introduce it into E. coli to produce a heterologous protein. Problems still remain in the mass production of gene products, as production inhibition has been observed due to inactivation of proteins due to the formation of clumps and inhibition of growth of the microorganisms themselves.

菌体外酵素遺伝子は数多くクローン化され、その塩基配
列の決定がなされている。その結果、はとんどの菌体外
酵素遺伝子はシグナル配列とよばれる部分を有し、その
産物はアミノ末端にシグナルペプチドのついた前駆体と
して翻訳合成されることが明らかとなった。シグナルペ
プチドはアミノ末端のメチオニンに続きリジンやアルギ
ニンの塩基性アミノ酸の多い部分、そして疎水性アミノ
酸の領域よりなり、全体で17〜36のアミノ酸程度の
長さを示すが、この領域がタンパク質の菌体外分泌の際
に重要な役割を果たす、そこでシグナル配列の下流に有
用蛋白質をコードするための異種生物由来の構造遺伝子
を組込み、主として枯草菌を宿主として有用蛋白質の菌
体外生産が試みられたく山根國男著、蛋白質核酸酵素、
 設巻 925(1983) 、中山等、 J、Bio
technol 、5.71 (1987)〉、この場
合に用いられたシグナル配列は枯草菌のα−アミラーゼ
やプロテアーゼ遺伝子由来のものであった。しかしなが
ら枯草菌の場合、蛋白質と共にプロテアーゼをも菌体外
に分泌するため、生産分泌された異種蛋白質がこのプロ
テアーゼにより分解され生産性の向上が阻害される。
Many extracellular enzyme genes have been cloned and their nucleotide sequences determined. As a result, it was revealed that most bacterial extracellular enzyme genes have a part called a signal sequence, and that their products are translated and synthesized as a precursor with a signal peptide attached to the amino terminus. The signal peptide consists of a methionine at the amino terminal, followed by a region with many basic amino acids such as lysine and arginine, and a region of hydrophobic amino acids, and has a total length of about 17 to 36 amino acids. This protein plays an important role in in vitro secretion, so we would like to attempt the extracellular production of useful proteins mainly using Bacillus subtilis as a host by incorporating a structural gene derived from a foreign organism to encode a useful protein downstream of the signal sequence. Written by Kunio Yamane, Protein Nucleic Acid Enzymes,
Tomaki 925 (1983), Nakayama et al., J. Bio
Technol, 5.71 (1987)>, the signal sequences used in this case were derived from the α-amylase and protease genes of Bacillus subtilis. However, in the case of Bacillus subtilis, protease is also secreted outside the bacterial cell along with protein, so the produced and secreted foreign protein is degraded by this protease, inhibiting the improvement of productivity.

発明が解決しようとする問題点 そこで新規な組換え体プラスミドを用い大腸菌による蛋
白質の如き有用物質の、失活がなく効率的な大量生産可
能な製造法が要望されている。さらにまた、枯草菌を使
用する技術にあっては有用蛋白質の発現効率を大にする
ことと、せっかく分泌生産された有用蛋白質をプロテア
ーゼにより分解されることを防止する有効な手段を提供
することが要望されている。さらにまた、新規な組換え
体プラスミドで大腸菌に対しても枯草菌に対してもくみ
こむことが可能なものの提供が望まれている。かかる要
望に応えることが本発明目的である。
Problems to be Solved by the Invention Therefore, there is a need for a method for producing useful substances such as proteins using Escherichia coli using a novel recombinant plasmid, which can be efficiently mass-produced without deactivation. Furthermore, in the technology using Bacillus subtilis, it is necessary to increase the expression efficiency of useful proteins and to provide an effective means for preventing the secreted and produced useful proteins from being degraded by proteases. It is requested. Furthermore, it is desired to provide a novel recombinant plasmid that can be introduced into both Escherichia coli and Bacillus subtilis. It is an object of the present invention to meet such demands.

問題点を解決するための手段 本発明に従えば、上記発明目的が (1)大腸菌用ベクタープラスミドのクローニングサイ
トに、枯草菌I F 0 3034株の菌体外セルラー
ゼ遺伝子のプロモーター及びシグナル配列と、その下流
に特定有用物をコードするための異種生物由来の構造遺
伝子とを組み入れてなる組換え体プラスミドおよび (3Bacillus 5ubtilisおよびその近
縁種がら選ばれるBacillus菌のベクタープラス
ミドのクローニングサイトに、前記第1項記載の組換え
体プラスミドのプロモーター、シグナル配列および構造
遺伝子部分から該プラスミドに含まれるレプリコン部ま
でを酵素的に切り取り連結してなる組換え体プラスミド
により遠戚せられる。
Means for Solving the Problems According to the present invention, the above-mentioned objects of the invention are (1) adding the promoter and signal sequence of the extracellular cellulase gene of Bacillus subtilis IF 0 3034 strain to the cloning site of the vector plasmid for E. coli; A recombinant plasmid incorporating a structural gene derived from a heterologous organism to encode a specific useful substance downstream thereof, and a vector plasmid of a Bacillus selected from Bacillus ubtilis and its related species are inserted into the cloning site of the above-mentioned vector plasmid. It is distantly related to a recombinant plasmid obtained by enzymatically cutting and ligating the promoter, signal sequence, and structural gene portion of the recombinant plasmid described in Section 1 to the replicon portion contained in the plasmid.

本発明では枯草菌の菌体外酵素の1つであるセルラーゼ
の遺伝子のもつ分泌生産能力を利用して、異種蛋白質に
分泌機能を与え、大腸菌菌体内での生産異種蛋白質の蓄
積を解消し、ペリプラズム空間あるいは培地中にそれを
放出させることを骨子とする。即ち、枯草菌I F 0
 3034株の菌体外セルラーゼ遺伝子のプロモーター
及びシグナル配列とその下流に有用蛋白質をコードする
ための異種生物由来の構造遺伝子とを接続したキメラ遺
伝子を作成し、これを大腸菌用ベクタープラスミドのク
ローニングサイトに組み入れ分泌ベクターとし、このよ
うに構築された組換え体プラスミドを大腸菌に導入して
形質転換体を得るものである。
The present invention utilizes the secretory production ability of the gene for cellulase, which is one of the extracellular enzymes of Bacillus subtilis, to impart a secretory function to a foreign protein, thereby eliminating the accumulation of the foreign protein produced within the E. coli body. The main idea is to release it into the periplasmic space or culture medium. That is, Bacillus subtilis I F 0
A chimeric gene was created by connecting the promoter and signal sequence of the extracellular cellulase gene of strain 3034 with a structural gene derived from a heterologous organism to encode a useful protein downstream, and this was used as a cloning site for a vector plasmid for E. coli. The recombinant plasmid thus constructed is introduced into Escherichia coli to obtain a transformant.

さらに枯草菌用ベクタープラスミドに上記の分泌ベクタ
ーのプロモーター、シグナル配列および構造遺伝子部分
から該プラスミドに含まれるレプリコン部までを連結し
て、新規な組換え体プラスミドを作成し、これを枯草菌
にくみいれ形質転換体をうることにより、枯草菌での異
種蛋白質の効率的な生産が可能となり、特に枯草菌のプ
ロテアーゼ欠損株B、5ubtilisN−24(Ak
ira  Nakamura: Eur、 J、Bio
chem、169,137 (1987) )に上記の
組換え体プラスミドを導入した形質転換体とすることに
より、菌体外での異種蛋白質の分解を有効に防止し、又
こういった組換え体プラスミドを枯草菌のみならず大腸
菌にくみいれ利用することを意図するものである。
Furthermore, a new recombinant plasmid was created by ligating the promoter, signal sequence, and structural gene part of the secretion vector described above to the replicon part contained in the plasmid to the vector plasmid for Bacillus subtilis, and this was introduced into Bacillus subtilis. By obtaining transformants, it becomes possible to efficiently produce heterologous proteins in Bacillus subtilis.
ira Nakamura: Eur, J, Bio
chem. It is intended to be used not only for Bacillus subtilis but also for E. coli.

以下本発明を有用蛋白質をコードするための異種生物由
来の構造遺伝子として大腸菌のペニシリン分解酵素β−
ラクタマーゼを例にとり説明する0本発明で利用する枯
草菌セルラーゼは菌の戒育期に構成的に生産される。ま
た36個のアミノ酸がシグナルペプチドとして機能し、
菌体膜透過時に切断され成熟蛋白質として菌体外に分泌
せられる。本発明では枯草菌、I F 0 3034株
の菌体外セルラーゼ遺伝子のプロモーターとシグナル配
列をラクタマーゼ遺伝子の成熟体アミノ末端側に接続し
、このキメラ遺伝子を大腸菌用ベクタープラスミドに組
み入れ、組換え体プラスミド(pBTDl)となし、大
腸菌に導入してラクタマーゼを生産せしめ、また上記の
組換え体プラスミドの前記キメラ遺伝子部分からレプリ
コン部分までを枯草菌用ベクタープラスミドに組み入れ
、組換え体プラスミド(pCesec2)となし、これ
を枯草菌あるいは大腸菌に導入してラクタマーゼを生産
せしめた。
Hereinafter, the present invention will be described as a structural gene derived from a heterologous organism for encoding a useful protein.
Bacillus subtilis cellulase used in the present invention is constitutively produced during the breeding period of the bacterium. In addition, 36 amino acids function as a signal peptide,
It is cleaved when penetrating the bacterial cell membrane and is secreted outside the bacterial cell as a mature protein. In the present invention, the promoter and signal sequence of the extracellular cellulase gene of Bacillus subtilis, I F 0 3034 strain are connected to the amino terminal side of the mature lactamase gene, and this chimeric gene is incorporated into a vector plasmid for E. coli to create a recombinant plasmid. (pBTDl) was introduced into Escherichia coli to produce lactamase, and the above recombinant plasmid from the chimera gene portion to the replicon portion was incorporated into a vector plasmid for Bacillus subtilis to create a recombinant plasmid (pCesec2). This was introduced into Bacillus subtilis or Escherichia coli to produce lactamase.

以下実施例により本発明をより詳細かつ具体的に説明す
る。
EXAMPLES The present invention will be explained in more detail and specifically with reference to Examples below.

及1燵LニブラスミドpBTD1の構築大腸菌用ベクタ
ープラスミドpBR322を改変したプラスミドル T
 G 2 (Kadonaga J、T、 ;J、Bi
ol、chem、 259.2149〜2154 (1
984) 1 Bと、制限酵素BstEIIにューイン
グランドバイオラブス162 ) 10  単位を30
−のB s t E 11Mg液(10mM Tris
 )IcI  (pH8,0) 10mM Mgc12
150++M NaCI)にいれ37℃で1時間反応さ
せた。そこに50−M NTP(トリフオスエート混合
物、シグマ社(製)〉を加えポリメラーゼIラージフラ
グメント(宝酒造2140A )  4.5  単位で
37℃にて30分間反応させ5′突出末端を修復して平
滑末端とした。アガロース電気泳動法により4366b
pのDNA断片(断片a)を回収した。この断片aと制
限酵素BamHI(東洋紡BAH−105) 15単位
と201N1のBamHI&!I!r液(10mM T
ris HCI (pH7,5) 7mM MgC1□
 150+nM KCI )とを混合し37℃にて1時
間消化反応を行った。アガロース電気泳動法により約3
.7  KbのDNA断片(断片A〉を回収した。
Construction of niblasmid pBTD1 Plasmid T modified from vector plasmid pBR322 for E. coli
G 2 (Kadonaga J, T, ;J, Bi
ol, chem, 259.2149-2154 (1
984) 1 B and restriction enzyme BstEII to New England Biolabs 162) 10 units to 30
- B s t E 11Mg solution (10mM Tris
) IcI (pH 8,0) 10mM Mgc12
150++M NaCI) and reacted at 37°C for 1 hour. 50-M NTP (triphosulfate mixture, manufactured by Sigma) was added thereto and reacted with 4.5 units of polymerase I large fragment (Takara Shuzo 2140A) at 37°C for 30 minutes to repair the 5' overhanging end and make it blunt. 4366b was determined by agarose electrophoresis.
A DNA fragment of p (fragment a) was recovered. This fragment a, 15 units of restriction enzyme BamHI (Toyobo BAH-105) and 201N1 BamHI&! I! r solution (10mM T
ris HCI (pH7,5) 7mM MgC1□
150+nM KCI) and a digestion reaction was performed at 37°C for 1 hour. Approx. 3 by agarose electrophoresis
.. A 7 Kb DNA fragment (fragment A) was recovered.

枯草菌I F 0 3034株の菌の体外セルラーゼ遺
伝子のプロモーター、シグナル配列領域をプラスミドp
BR322のEcoRI、C1aI制限部位の中にサブ
クローニングしたプラスミドpBR3igo1 1mg
を制限酵素DdeIにューイングランドバイオラブス1
75 ) 6単位でDdeIilli液20rIIl中
20rIIl中最終濃度5mMになるようNTPを加え
ポリメラーゼ■ラージフラグメント(宝酒造214OA
 )  4.5  単位で37℃にて30分間反応させ
5°突出末端を修復して平滑末端とした。
The promoter and signal sequence region of the in vitro cellulase gene of Bacillus subtilis I F 0 3034 strain were transferred to the plasmid p.
1 mg of plasmid pBR3igo1 subcloned into the EcoRI, C1aI restriction sites of BR322
New England Biolabs 1 to the restriction enzyme DdeI
75) Add 6 units of NTP to a final concentration of 5mM in 20rIIl of DdeIlli solution and incubate with polymerase Large Fragment (Takara Shuzo 214OA
) 4.5 units were reacted at 37° C. for 30 minutes to repair the 5° protruding end and make it a blunt end.

アガロース電気泳動法で約600bpの断片(断片b)
を回収した。この断片すと制限酵素EcoRI(東洋紡
Eco−103)10単位と20+* IのEc。
Approximately 600 bp fragment (fragment b) by agarose electrophoresis
was recovered. This fragment contains 10 units of restriction enzyme EcoRI (Toyobo Eco-103) and 20+*I Ec.

RIII衝液 (100+*M  Tris  HCI
(pH7,5)  7mM  14gcI260mM 
NaC1)とを混合し37℃にて1時間消化反応を行っ
た。アガロース電気泳動法により564bpのDNA断
片(断片B)を回収した。
RIII solution (100+*M Tris HCI
(pH 7,5) 7mM 14gcI260mM
NaC1) was mixed and a digestion reaction was performed at 37°C for 1 hour. A 564 bp DNA fragment (fragment B) was recovered by agarose electrophoresis.

プラスミドpBR322を制限酵素E c o RI 
 10単位、BamHI  15  単位でEcoRI
m衝液(100mM  Tris  HCI(pH7,
5)  7sM  MgCl2  6 0  rm  
MNaCI) 20nd中で37℃にて1時間消化反応
を行った。アガロース電気泳動法により377bpのD
NA断片(断片C)を回収した。
Plasmid pBR322 was digested with restriction enzyme EcoRI.
EcoRI in 10 units, BamHI 15 units
m solution (100mM Tris HCI (pH 7,
5) 7sM MgCl2 60 rm
The digestion reaction was carried out in MNaCI) 20nd at 37°C for 1 hour. D of 377 bp was determined by agarose electrophoresis.
The NA fragment (fragment C) was recovered.

3つの断片A、B、CをT4リガーゼ(宝酒造2011
B ) 350単位でリガーゼM[r液(66mM T
ris−HCI(pH7,6)  6.6mM  Mg
CI2MgCl21O66mMATP)  30d中で
10時間4℃で反応させた。結合したDNAを用いて大
腸菌RRIをカルシウム法(Norgard、M。
Three fragments A, B, and C were treated with T4 ligase (Takara Shuzo 2011
B) Ligase M[r solution (66mM T
ris-HCI (pH 7,6) 6.6mM Mg
CI2MgCl21O66mMATP) 30d for 10 hours at 4°C. The bound DNA was used to transform E. coli RRI using the calcium method (Norgard, M.

V、 Gene 3.279 (1978) )で形質
転換しテトラサイクリン含有寒天培地(7μgird 
)で選抜し成育したコロニーをアンピシリン含有寒天培
地(50μg/rlfiりで二段階選抜を行い両耐性株
より約4.5KbのプラスミドpBTD1を得た。
Gene 3.279 (1978)) and transformed with tetracycline-containing agar medium (7 μgird
Colonies selected and grown on an ampicillin-containing agar medium (50 μg/rlfi) were subjected to two-step selection, and a plasmid pBTD1 of approximately 4.5 Kb was obtained from both resistant strains.

′1JULLニブラスミドpCesec2の構築プラス
ミドpBTD11mgを制限酵素Ec。
'1 Construction of JULL niblasmid pCesec2 11 mg of plasmid pBTD was treated with restriction enzyme Ec.

RI(東洋紡Eco−103>10単位、P v u 
II(ベーリンガーマンハイム643,703 ) 9
単位でEcoRIII衝液(1001M Tris−H
CI (pH7,5)  ?+aMMgCh、60mM
 NaCl ) 20−中で37℃1時間消化し、アガ
ロース電気泳動法により約2.OKbのDNA断片(断
片α)を回収する。
RI (Toyobo Eco-103>10 units, P v u
II (Boehringer Mannheim 643,703) 9
EcoRIII solution (1001M Tris-H
CI (pH7,5)? +aMMgCh, 60mM
Digested for 1 hour at 37°C in NaCl) 20°C, and analyzed by agarose electrophoresis. The OKb DNA fragment (fragment α) is recovered.

次にプラスミドP U B 110  (Grycza
n T、J、 Proc。
Next, plasmid PU B 110 (Grycza
n T, J, Proc.

Natl、 Acad、 Sci、745463 (1
979) ) 1 mgを制限酵素EcoRI (東洋
紡Eco−103)10単位、PvulI  (ベーリ
ンガーマンハイム643.703 )9単位でEcoR
II!衝液(100mM Tris−HCI (pH7
,5) 7i+M MgCh 60s+14 NaCl
 ) 20−中で37℃1時間消化し、アガロース電気
泳動法により約3.5KbのDNA断片〈断片β〉を回
収する。DNA断片αと断片βをT4リガーゼ(宝酒造
2011B ’) 350単位でリガーゼ緩衝液(66
szM Tris−HCI(p)17.6)6.6 g
eMMgCIalOdDTT 66mMATP ) 3
Od中で10時間4℃で反応させた。結合したDNAを
用いて大腸菌RRIをカルシウム法(Norgard、
M、V、 Gene3、279 (1978) ”)で
形質転換しアンピシリン含有寒天培地(50μg/d)
で選択してアンピシリン性株を得た。この形質転換体が
ら約6.6KbのプラスミドpCesec2を得た。
Natl, Acad, Sci, 745463 (1
979)) 1 mg was converted into EcoR using 10 units of restriction enzymes EcoRI (Toyobo Eco-103) and 9 units of PvulI (Boehringer Mannheim 643.703).
II! solution (100mM Tris-HCI (pH 7)
,5) 7i+M MgCh 60s+14 NaCl
20-20 at 37° C. for 1 hour, and a DNA fragment of approximately 3.5 Kb (fragment β) was recovered by agarose electrophoresis. DNA fragment α and fragment β were treated with 350 units of T4 ligase (Takara Shuzo 2011B') in ligase buffer (66
szM Tris-HCI (p) 17.6) 6.6 g
eMMgCIalOdDTT 66mMATP) 3
The reaction was carried out in Od for 10 hours at 4°C. The bound DNA was used to transform E. coli RRI using the calcium method (Norgard,
M, V, Gene 3, 279 (1978)'') and ampicillin-containing agar medium (50 μg/d).
An ampicillin-prone strain was obtained. A plasmid pCesec2 of approximately 6.6 Kb was obtained from this transformant.

塞」U烈」−二プラスミドpCesec2を用いた枯草
菌B、5ubtilis  RM141およびB、5u
bt口is  N−24の形質転換および組変え株の取
得 枯草菌B、5ubtilis RM 141株をL−ブ
ロス(バクトドリプトン10g、バクトイ−ストエクス
トラクト5 g 、 NaCl3 g、グルコース1g
、水1ffl)3M1で、試験官内で一夜37℃で損料
培養し、次にこの培養液を51111のアンチバイオチ
ックメディウム3(バクトビーフエキストラクト 1.
5.バクトイ−ストエキストラクト、バクトドリプトン
5g、バットデキストロース1 g、 NaCt 3.
5g 、NaHPO43,68g 、 KHPO41,
32g、水1ffl)に対して100N1接種し37℃
で2時間損料培養した。その後氷水中で5分間静置し遠
心分離(7000rpm、 5 a+in、)で集菌し
培養上清除去f!50ONMノSMMP(シェーク0ス
0.5 M、マL/イン酸0.02 M、 MgCl2
0.02M、PH6,5)を2倍濃度のアンチバイオチ
イクメディウムに溶解したものに加え、37℃で90分
間反応させ、遠心分離(7000rpm、 5 win
、 )でプロトプラスト化した菌を集め、SMMPに懸
濁、洗浄後、再度遠心分離し、得られた菌体に500−
のSMMPを加えプロトプラスト懸濁液を作った。プラ
スミドル Ce s c 2 0.5gをS M M 
P  30Fdに溶解したDNA溶液はプロトプラスト
懸濁液に加えた後、すぐに40%ポリエチレングリコー
ル60005MM液(0,5Mシュークロス0.02M
マレイン酸、0.02M Mgc12、PH6゜5)1
.5−を添加し室温で2分間静置した。5−のSMMP
をさらに加え、遠心分離し、集菌物をSMMPI−に懸
濁後ゆっくりと90分間振損料養した。最後にDM3寒
天゛培地(0,8%寒天、0.5%カザミノ酸、0.5
%バクトイ−ストエキストラクト、0.35%に、HP
O,,0,15%KH2PO,,0,5%グルコース、
0.02M Mgc12゜0.01%ボバイレセーラム
アルブミン、0.5Mコハク酸ナトリウム、300μg
/−カナマイシン)に200−のプロトプラスト懸濁液
を塗り付は広げ2日間37℃で成育させコロニー形成を
見る。このコロニーをアンピシリン含有寒天培地に移し
たところアンピシリン耐性株が得られた。
Bacillus subtilis B, 5ubtilis RM141 and B, 5u using two plasmids pCesec2
Transformation of bt is N-24 and acquisition of recombinant strain Bacillus subtilis B, 5ubtilis RM 141 strain was mixed with L-broth (10 g of bactodryptone, 5 g of bacto yeast extract, 3 g of NaCl, 1 g of glucose).
, 1 ffl of water) was cultured overnight at 37°C in a test tube, and then the culture was mixed with 51111 Antibiotic Medium 3 (Bact Beef Extract 1.
5. Bacto Yeast Extract, Bactodorypton 5g, Vatdextrose 1g, NaCt 3.
5g, NaHPO43,68g, KHPO41,
32g, water 1ffl) was inoculated with 100N1 at 37°C.
The cells were cultured for 2 hours. After that, the cells were left standing in ice water for 5 minutes, centrifuged (7000 rpm, 5 in) to collect bacteria, and the culture supernatant was removed. 50ONM SMMP (shake 0.5M, MAL/inic acid 0.02M, MgCl2
0.02M, PH 6,5) dissolved in double concentration anti-biotic medium, reacted at 37°C for 90 minutes, and centrifuged (7000 rpm, 5 win).
, ) were collected, suspended in SMMP, washed, and centrifuged again.
of SMMP was added to make a protoplast suspension. S M M
After adding the DNA solution dissolved in P30Fd to the protoplast suspension, immediately add 40% polyethylene glycol 60005MM solution (0.5M shoecloth 0.02M
Maleic acid, 0.02M Mgc12, PH6゜5)1
.. 5- was added and left standing at room temperature for 2 minutes. 5- SMMP
was further added, centrifuged, and the collected bacteria was suspended in SMMPI- and then slowly cultured under shaking for 90 minutes. Finally, DM3 agar medium (0.8% agar, 0.5% casamino acids, 0.5%
% Bakto Yeast Extract, 0.35%, HP
O,,0,15%KH2PO,,0,5% glucose,
0.02M Mgc12゜0.01% Bobyle Serum Albumin, 0.5M Sodium Succinate, 300μg
A 200-ml protoplast suspension was spread on the plate (Kanamycin) and grown at 37°C for 2 days to observe colony formation. When this colony was transferred to an agar medium containing ampicillin, an ampicillin-resistant strain was obtained.

免東燵し:細胞分画とβ−ラクタマーゼ活性の測定 大腸菌RRI (pBTDl>、枯草菌RM 141(
pCesec2)、枯草菌N−24(pCesec2)
の分泌を確認するために培養の時間経過によるβ−ラク
タマーゼ活性の所在について調べた。また比較のために
大腸菌RRI (pTG2>についても同様の実験を行
った。
Tatsushi Mento: Cell fractionation and measurement of β-lactamase activity E. coli RRI (pBTDl>, Bacillus subtilis RM 141 (
pCesec2), Bacillus subtilis N-24 (pCesec2)
In order to confirm the secretion of β-lactamase, the location of β-lactamase activity over time of culture was investigated. For comparison, a similar experiment was also conducted on E. coli RRI (pTG2>).

L−グロス(アンピシリン50μg/rI11)3rI
t1でRRl (pTG2)、RRI (pBTDl)
、RM141  (pCesec2)、N−24(pC
esec2)をそれぞれ7℃でlO時間戒戒育せ、夫々
2XYT(バクトドリプトン16g、バクトイ−ストエ
キストラクト10g 、 NaC15g、水I J ”
) 50−に37℃で1%接種した後、1時間毎に吸光
’ (650nm)を測定しながら3時間、6時間後に
10−ずつ分取し、大腸菌の場合は細胞内、へりプラズ
マ画分、培養上清の3画分、枯草菌の場合は培養上清と
細胞内の2画分についてラクタマーゼ活性を測定した。
L-Gloss (ampicillin 50μg/rI11) 3rI
RRl (pTG2), RRI (pBTDl) at t1
, RM141 (pCesec2), N-24 (pC
esec2) were incubated at 7°C for 10 hours, and each was incubated with 2XYT (16 g of Bactodryptone, 10 g of Bacto Yeast Extract, 15 g of NaC, IJ water).
) After 1% inoculation at 37°C in 50-, aliquots of 10- were collected after 3 and 6 hours while measuring the absorbance (650 nm) every hour. The lactamase activity was measured in three fractions of the culture supernatant, and in the case of Bacillus subtilis, the culture supernatant and two intracellular fractions.

細胞分画は10−の培養液を遠心分離(15000rp
(5分間)で集菌して上清は保存し、菌体を洗浄液(0
,85%NaCl、10mTris−HCI、 PH8
,0)で2度洗浄し、高張&!衝街中20%シュークロ
ース、30mMTris−HCI、 PH8,0)に懸
濁する。0.25M  EDTAを400−添加し10
分間室温で静置した後、遠心分離で集菌し、氷水中で冷
却した蒸留水を振とうしながら急激に加え外膜を破壊す
る1、遠心分離(15000rpgz、 5分間〉で不
溶画分を分離し上清をペリプラズムとする。
For cell fractionation, centrifuge the 10-cell culture solution (15,000 rpm).
(5 minutes) to collect bacteria, save the supernatant, and wash the bacterial cells with washing solution (0
, 85% NaCl, 10mTris-HCI, PH8
,0) twice to remove hypertonic &! Suspend in 20% sucrose, 30mM Tris-HCI, PH8.0). Add 0.25M EDTA to 400-10
After standing at room temperature for a minute, collect the bacteria by centrifugation, and rapidly add distilled water cooled in ice water while shaking to destroy the outer membrane. 1. Remove the insoluble fraction by centrifugation (15,000 rpm, 5 minutes). Separate and use the supernatant as periplasm.

不溶画分に10mM  Tris−HCI[街中(PH
7,5)を加えて懸濁後、超音波処理し内膜も破壊して
遠心分離 (15000rp■、5分間〉で不溶物を沈
殿させ上清を保存し細胞質画分とした。枯草菌RM14
1  (pCesec2)、N−24(pCesec2
)では遠心分離(15000rpm、 5分間〉で培養
液から上清を分離し10 mM  Tris−HCIM
街液中で懸濁後、超音波処理を行い、細胞質画分とした
The insoluble fraction was treated with 10mM Tris-HCI [City (PH
7, 5) was added and suspended, the inner membrane was destroyed by sonication, and the insoluble material was precipitated by centrifugation (15,000 rpm, 5 minutes). The supernatant was saved and used as the cytoplasmic fraction.Bacillus subtilis RM14
1 (pCesec2), N-24 (pCesec2
), the supernatant was separated from the culture medium by centrifugation (15,000 rpm, 5 minutes) and diluted with 10 mM Tris-HCIM.
After suspension in street fluid, ultrasonication was performed to obtain a cytoplasmic fraction.

活性測定は基質溶液(アンピシリン14+ag / M
l。
Activity measurement was performed using a substrate solution (ampicillin 14+ag/M
l.

0.1M  リン酸MI街中、 PH7,0) 5−を
30℃5分間加温後、1−の酵素液(培養上清10倍希
釈液、ペリプラズム画分50倍希釈液、細胞質画分50
倍希釈液)を加え、30分間反応させた。ヨウ素溶液(
100gKI、 20.3g I 2 / 1 ) 2
 M酢酸緩衝液PH4,0を加えて反応を停止後、澱粉
溶液(2%コーンスターチ’)  500−を加えて青
色に発色させた。
After heating 5- for 5 minutes at 30°C, the enzyme solution of 1- (culture supernatant diluted 10 times, periplasm fraction diluted 50 times, cytoplasm fraction 50
2-fold dilution solution) was added, and the mixture was allowed to react for 30 minutes. Iodine solution (
100g KI, 20.3g I 2 / 1) 2
After the reaction was stopped by adding M acetate buffer pH 4.0, a starch solution (2% cornstarch') 500- was added to develop a blue color.

ハイポ液(3,97gチオ硫酸ナトリウム、10011
g炭酸ナトリウム、水11)で青色が消失するまで滴定
しハイポ液量より分解したアンピシリン量を算出した。
Hypo solution (3,97g sodium thiosulfate, 10011
Titration was performed with g sodium carbonate and water 11) until the blue color disappeared, and the amount of ampicillin decomposed was calculated from the amount of hypo liquid.

ただしヨウ素を加えた後に酵素を添加したものを対照と
して用いた。
However, a sample in which enzyme was added after iodine was used as a control.

画酵素の原液中の酵素活性は次の式で示される。The enzyme activity in the stock solution of the enzyme is expressed by the following formula.

[(対照滴定量ml) −(反応滴定1m1) ] X
8/F  X  1/T  XD 式中Fはヨウ素消費当量(アンピシリンの場合F=4)
;’rは反応時間;Dは反応液に加えた酵素液の希釈率 第1表に画両分中の酵素活性を培養液1−に換算した値
を示す。
[(Control titration amount ml) - (Reaction titration 1 ml) ] X
8/F
;'r is the reaction time; D is the dilution rate of the enzyme solution added to the reaction solution Table 1 shows the enzyme activity in both fractions converted to culture solution 1-.

Claims (6)

【特許請求の範囲】[Claims] (1)大腸菌用ベクタープラスミドのクローニングサイ
トに、枯草菌IFO3034株の菌体外セルラーゼ遺伝
子のプロモーター及びシグナル配列と、その下流に有用
蛋白質をコードするための異種生物由来の構造遺伝子と
を組み入れてなる組換え体プラスミド。
(1) The promoter and signal sequence of the extracellular cellulase gene of Bacillus subtilis IFO3034 strain and a structural gene derived from a heterologous organism for encoding a useful protein are incorporated into the cloning site of a vector plasmid for E. coli. Recombinant plasmid.
(2)Escherichia coli種に属し請求
項第1項記載の組換え体プラスミドを含む、遺伝子産物
をペリプラズムに蓄積可能な微生物。
(2) A microorganism that belongs to the Escherichia coli species and is capable of accumulating a gene product in the periplasm, containing the recombinant plasmid according to claim 1.
(3)Bacillus subtilisおよびその
近縁種から選ばれるBacillus菌のベクタ−プラ
スミドのクローニングサイトに、請求項第1項記載の組
換え体プラスミドのプロモーター、シグナル配列および
構造遺伝子部分から該プラスミドに含まれるレプリコン
部までを酵素的に切り取り連結してなる組換え体プラス
ミド。
(3) The promoter, signal sequence, and structural gene portion of the recombinant plasmid according to claim 1 are contained in the cloning site of the vector-plasmid of a Bacillus bacterium selected from Bacillus subtilis and its related species. A recombinant plasmid made by enzymatically cutting and ligating the replicon part.
(4)Escherichia coli種に属し請求
項第3項記載の組換え体プラスミドを含む、遺伝子産物
をペリプラズムに蓄積又は菌体外への分泌可能な微生物
(4) A microorganism belonging to the species Escherichia coli and containing the recombinant plasmid according to claim 3, which is capable of accumulating a gene product in the periplasm or secreting it outside the bacterial body.
(5)Bacillus種に属し請求項第3項記載の組
換え体プラスミドを含む、遺伝子産物を菌体外に分泌す
ることが可能な微生物。
(5) A microorganism belonging to the species Bacillus and containing the recombinant plasmid according to claim 3, which is capable of secreting a gene product to the outside of the cell.
(6)Bacillus種に属する微生物が枯草菌N−
24である請求項第5項記載の微生物。
(6) The microorganism belonging to the Bacillus species is Bacillus subtilis N-
The microorganism according to claim 5, which is No. 24.
JP20209589A 1989-08-03 1989-08-03 Recombinant plasmid and microorganism containing the same Pending JPH0365190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20209589A JPH0365190A (en) 1989-08-03 1989-08-03 Recombinant plasmid and microorganism containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20209589A JPH0365190A (en) 1989-08-03 1989-08-03 Recombinant plasmid and microorganism containing the same

Publications (1)

Publication Number Publication Date
JPH0365190A true JPH0365190A (en) 1991-03-20

Family

ID=16451885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20209589A Pending JPH0365190A (en) 1989-08-03 1989-08-03 Recombinant plasmid and microorganism containing the same

Country Status (1)

Country Link
JP (1) JPH0365190A (en)

Similar Documents

Publication Publication Date Title
US5004686A (en) Process for producing human epidermal growth factor and analogs thereof
JP5275306B2 (en) Method for obtaining active β-NGF
AU2002231784B2 (en) Fusion protein for the secretion of a protein of interest into the supernatant of the bacterial culture
KR20080018960A (en) A method of secretion expression of lysostaphin in escherichia coli at high level
JPH07106147B2 (en) Maltopentaose-Producing Amylase A-180, Process for Producing the Same, DNA-Structure and Alkali Isolate
JP2787585B2 (en) Method for producing human EGF
Sakurada et al. Cloning, expression, and characterization of the Micromonospora viridifaciens neuraminidase gene in Streptomyces lividans
JPH04166085A (en) New protease
EP0422049A4 (en) Vector for secretion of proteins directly into periplasm or culture medium
Thompson et al. Isolation and characterization of Pseudomonas aeruginosa exotoxin A binding glycoprotein from mouse LM cells
Liu et al. Large scale preparation of recombinant human parathyroid hormone 1–84 from Escherichia coli
JP3550409B2 (en) Dipeptidyl aminopeptidase of dictyosterium
KR100401028B1 (en) Method for the extraction of periplasmic proteins from prokaryotic microorganisms in the presence of arginine
JP2003526314A (en) Expression of starch binding domain (SBD)
RU2062301C1 (en) Method for hydrolysis of amino acid consequence of forerunner of insulin at human
JPH0365190A (en) Recombinant plasmid and microorganism containing the same
CA2179623A1 (en) Proteases from streptomyces and use thereof in protein expression systems
WO1992003557A1 (en) RECOMBINANT DNA PRODUCTION OF β-1,3-GLUCANASE
Uesugi et al. Two bacterial collagenolytic serine proteases have different topological specificities
Murooka et al. Biosynthesis and secretion of pullulanase, a lipoprotein from Klebsiella aerogenes
Wang et al. Production of phoA promoter-controlled human epidermal growth factor in fed-batch cultures of Escherichia coli YK537 (pAET-8)
JPH04502260A (en) N-acetylmuramidase M1
Paus et al. Production of recombinant endotoxin neutralizing protein in Pichia pastoris and methods for its purification
JP2745152B2 (en) Recombinant plasmid and microorganism containing the plasmid
Kudo Escherichia coli secretion vector using the kil gene