JPH0365136A - Foaming and spray-drying process, apparatus therefor and production of powdery cream - Google Patents

Foaming and spray-drying process, apparatus therefor and production of powdery cream

Info

Publication number
JPH0365136A
JPH0365136A JP19976989A JP19976989A JPH0365136A JP H0365136 A JPH0365136 A JP H0365136A JP 19976989 A JP19976989 A JP 19976989A JP 19976989 A JP19976989 A JP 19976989A JP H0365136 A JPH0365136 A JP H0365136A
Authority
JP
Japan
Prior art keywords
gas
raw material
pressure
material liquid
pressure pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19976989A
Other languages
Japanese (ja)
Other versions
JP2808016B2 (en
Inventor
Mikio Kanzaki
神崎 幹雄
Fumio Kato
文男 加藤
Akio Shigekane
重兼 彰夫
Kaichiro Takahashi
嘉一郎 高橋
Shigeya Urata
浦田 茂也
Shigenori Ando
安藤 成徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morinaga Milk Industry Co Ltd
Original Assignee
Morinaga Milk Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morinaga Milk Industry Co Ltd filed Critical Morinaga Milk Industry Co Ltd
Priority to JP19976989A priority Critical patent/JP2808016B2/en
Publication of JPH0365136A publication Critical patent/JPH0365136A/en
Application granted granted Critical
Publication of JP2808016B2 publication Critical patent/JP2808016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Dairy Products (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To stably perform foaming and spray-drying of a liquid over a long period with a low-cost apparatus by blowing a gas to a low-pressure piping of an inlet side (upstream side) of a high-pressure pump. CONSTITUTION:A liquid raw material to which a gas is blown (e.g. concentrated milk for powdery cream) is transferred with a high pressure pump, sprayed through a spray nozzle and subjected to foaming and spray-drying in the following manner. A gas composed of air, an inert gas, N2 gas, etc., is blown into the liquid raw material at a flow rate exceeding 2.5% of the flow rate of the liquid raw material in terms of the volume of the standard state. The liquid raw material is foamed into fine bubbles and uniformly dispersed and, at the same time, the pressure in the channel at the upstream-side of the high-pressure pump is increased. The gas can be mixed into the liquid raw material essentially without limitation of the mixing ratio within a practical range. The quality and various properties such as specific volume and solubility of the powdery cream prepared by this process can be controlled over wide ranges.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は噴霧乾燥法、特に泡沫噴霧乾燥法、およびその
装置、並びに該乾燥法を用いた粉末クリームの新規な製
造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a spray drying method, in particular a foam spray drying method, an apparatus therefor, and a novel method for producing powdered creams using this drying method.

従来技術の問題点 従来、コーヒー、紅茶等に添加される粉末クリームは、
熱風噴霧乾燥法、凍結乾燥法等によって製造されて来た
。噴霧乾燥法は、乾燥時間が短く、大量処理に適する乾
燥方法である。従来法によって製造された粉末クリーム
は、分散性、溶解性が充分ではなく、コーヒー等に添加
した際に沈降。
Problems with conventional technology Conventionally, powdered cream added to coffee, tea, etc.
It has been manufactured by hot air spray drying method, freeze drying method, etc. The spray drying method is a drying method that takes a short drying time and is suitable for large-scale processing. Powdered cream produced using conventional methods does not have sufficient dispersibility or solubility, and it settles when added to coffee, etc.

沈澱する傾向があり、砂糖と同様にスプーンで撹拌しな
ければ完全に分散、溶解しない。これに比して、生クリ
ームはコーヒー等に添加したとき液面に展開して薄膜を
形成した後、次第に全体に沈降、拡散する。この差異は
、粉末クリームの欠点となっていた。また、粉末クリー
ムの製品によっては、溶解後にオイルオフを生ずる問題
があった。
It has a tendency to precipitate, and like sugar, it will not be completely dispersed or dissolved unless stirred with a spoon. In contrast, when fresh cream is added to coffee or the like, it spreads on the liquid surface to form a thin film, and then gradually settles and diffuses throughout. This difference has been a drawback of powdered creams. Furthermore, some powdered cream products have the problem of causing oil-off after dissolution.

これを改善するために、泡沫噴霧乾燥法を用いて粉末ク
リーム粒子の多孔性を増大させることが提案されている
。泡沫噴霧乾燥法においては、原料液体に気体を予め混
合した後に乾燥する。泡沫噴霧乾燥法は、それによって
得られた乾燥物の比容積、沈降性、溶解性等の各種物性
および品質をコントロールすることができるばかりでな
く、製品の乾燥効果を高めることができ、幅広い利用価
値がある(特開昭59−196701号公報)。
To improve this, it has been proposed to increase the porosity of powder cream particles using foam spray drying methods. In the foam spray drying method, a raw material liquid is mixed with a gas in advance and then dried. The foam spray drying method not only makes it possible to control various physical properties such as specific volume, sedimentation, and solubility, but also improves the drying effect of the product, making it suitable for a wide range of applications. It is valuable (Japanese Unexamined Patent Publication No. 196701/1983).

かかる泡沫乾燥法の具体例としては、原料液体に気体を
混合し、凍結乾燥することにより、乾燥製品の沈降性を
調節し、製品に新たな付加価値を与える方法(特開昭5
5−37119号公報)、ガスを分散させた原料を真空
乾燥して乾燥製品の溶解性を調節して同様の効果を得る
方法(特開昭59−183649号公報)が挙げられる
A specific example of such a foam drying method is a method in which a gas is mixed with a raw material liquid and freeze-dried, thereby adjusting the sedimentation property of the dried product and adding new value to the product (Japanese Patent Laid-Open No.
5-37119), and a method of vacuum drying a raw material in which a gas is dispersed to adjust the solubility of the dried product to obtain a similar effect (Japanese Patent Application Laid-open No. 59-183649).

従来の泡沫噴霧乾燥法およびその装置においては、第6
図の如く、一般の圧力噴霧型の噴霧乾燥装置と同様に乾
燥塔4と、その内部に配置された噴霧ノズルと、そのノ
ズルに原料を圧送する高圧ポンプlとを有する。原料液
体にガスを吹き込むガス混入部の配置には、第6図及び
第7図に示さ、れた2種類が知られている。これらの図
において、lは高圧ポンプ、2は高圧コンプレッサ、3
は減圧弁、4は噴霧乾燥塔、17は原料液タンク、18
は送液ポンプ、20は加圧ガス供給源、23はガス流量
調節弁を夫々示す。
In the conventional foam spray drying method and its equipment, the sixth
As shown in the figure, like a general pressure spray type spray drying apparatus, it has a drying tower 4, a spray nozzle disposed inside the drying tower 4, and a high-pressure pump 1 for pumping the raw material to the nozzle. Two types of arrangement of the gas mixing section for blowing gas into the raw material liquid are known, as shown in FIGS. 6 and 7. In these figures, l is a high-pressure pump, 2 is a high-pressure compressor, and 3 is a high-pressure pump.
is a pressure reducing valve, 4 is a spray drying tower, 17 is a raw material liquid tank, 18
Reference numeral 20 indicates a liquid feeding pump, 20 indicates a pressurized gas supply source, and 23 indicates a gas flow control valve.

詳述すれば、第6図の配置(特開昭59−196701
号公報)においては、ガス混入部は、高圧ポンプとノズ
ルとの間の高圧配管に配置されており、第7図(特開昭
50−26628号公報)においては、ガス混入部は高
圧ポンプlの流入側若しくは上流側、即ち低圧配管に配
置されている。
To be more specific, the arrangement shown in FIG.
In JP-A No. 50-26628, the gas mixing part is arranged in the high-pressure piping between the high-pressure pump and the nozzle, and in Fig. It is arranged on the inflow side or upstream side of the pipe, that is, on the low pressure piping.

これらの配置には一長一短があり、前者(第6図)では
、実用範囲においてほぼ無制限にガスを混入でき、乾燥
製品の物性を大幅に調節し得るという利点を有するが、
ガス供給管への原料液の逆流を防止するために、ガス圧
力を高圧配管の内圧以上に常時高めておく必要があった
。従って、この配置では、高圧コンプレッサ2.高圧に
耐えるガス流量調節弁23.減圧弁3.逆止弁(図示せ
ず)等の付帯設備を必要とし、装置のイニシャルコスト
を増大させるばかりでなく、それら付帯設備の保守2点
検等の維持コストの増大をもたらし、更には何等かの故
障によってガス圧が低下した場合におけるガス供給管へ
の原料液の逆流の危険性があり、また、付帯設備の増大
に伴う故障頻度の増大と長時間の安定稼働の信頼性の低
下等、その取り扱い上の安全性(特に圧縮性ガスの爆発
に対する)や安定性などの面で大きな問題があった。
These arrangements have advantages and disadvantages; the former (Fig. 6) has the advantage that almost unlimited gas can be mixed in within a practical range and the physical properties of the dried product can be greatly adjusted;
In order to prevent backflow of the raw material liquid into the gas supply pipe, it was necessary to constantly increase the gas pressure above the internal pressure of the high-pressure pipe. Therefore, in this arrangement, the high pressure compressor 2. Gas flow control valve 23 that can withstand high pressure. Pressure reducing valve 3. Ancillary equipment such as a check valve (not shown) is required, which not only increases the initial cost of the device, but also increases maintenance costs such as maintenance and inspection of these ancillary equipment. There is a risk of backflow of the raw material liquid into the gas supply pipe when the gas pressure decreases, and there are also concerns regarding its handling, such as an increase in the frequency of failures and a decrease in the reliability of long-term stable operation due to the increase in the number of ancillary equipment. There were major problems in terms of safety (especially against explosions of compressible gas) and stability.

後者の配置(第7図)においては、ガス混入部が低圧配
管に配置されているので、第6図の配置の欠点に関して
は有利である。しかしながら、この配置は、少量のサン
プルを実験的に処理する場合や短時間の処理に適してい
るものの、原料液体の流量に対する混入ガスの流量比率
に制限があり(約2.5%)、現実に噴霧ノズルから噴
出する原料液体の噴出流量及び噴霧圧力に脈動を生じ、
長時間に亙って安定に噴霧乾燥が行えず、またノッキン
グ、騒音を発生し、高圧ポンプ及びその周辺機器の耐久
性が低下するなどの問題があった。従って、後者の配置
は、工場的量産において用いられることは極めて少なか
った。また、第7図の配置は混入ガスの流量比率の制限
から、製品の多様な物性のコントロールの幅も制限され
るので、工業的規模における泡沫噴霧乾燥法および装置
としては完成の域に達していなかった。
The latter arrangement (FIG. 7) has advantages over the disadvantages of the arrangement according to FIG. 6, since the gas inlet is located in the low-pressure line. However, although this arrangement is suitable for experimentally processing a small amount of sample or for short-time processing, there is a limit to the ratio of the flow rate of the mixed gas to the flow rate of the raw material liquid (approximately 2.5%), and this is not practical. This causes pulsations in the ejection flow rate and spray pressure of the raw material liquid ejected from the spray nozzle,
There were problems such as not being able to stably perform spray drying over a long period of time, causing knocking and noise, and reducing the durability of the high-pressure pump and its peripheral equipment. Therefore, the latter arrangement was extremely rarely used in factory mass production. In addition, the arrangement shown in Figure 7 limits the flow rate ratio of the mixed gas, which limits the range of control over the various physical properties of the product, so the foam spray drying method and equipment on an industrial scale have not yet reached the stage of perfection. There wasn't.

そもそも、高圧ポンプの上流側における低圧配管部分に
ガス混入部を配置した場合に、吹き込みガス量が多くな
ると安定した製造が困難になる理由は、流体が気液混相
流になることによる。この問題は特に、吹き込みガスの
標準状態換算体積流量が原料液体体積流量に対して2.
5%を越える場合に顕著となる。
In the first place, the reason why stable production becomes difficult when the amount of blown gas increases when the gas mixing section is disposed in the low-pressure piping section on the upstream side of the high-pressure pump is that the fluid becomes a gas-liquid multiphase flow. This problem is especially true when the standard-state equivalent volumetric flow rate of the blown gas is 2.
It becomes noticeable when it exceeds 5%.

高圧ポンプに気液混相流を流した場合に生ずる問題は、
下記の通りである。
The problems that arise when a gas-liquid multiphase flow is passed through a high-pressure pump are as follows:
It is as follows.

■ 原料液体のみを流した場合(ガスの吹込みをしない
場合)に比し、高圧ポンプの吐出量の定量性が崩れ、吐
出量が低下し、噴霧圧力が低下する。
■ Compared to the case where only the raw material liquid is flowed (when no gas is blown), the quantitative nature of the discharge amount of the high-pressure pump is lost, the discharge amount decreases, and the spray pressure decreases.

■ 高圧ポンプ吐出量と噴霧圧の脈動が増大し、ノッキ
ング、異音が発生し、高圧ポンプ及び周辺機器を損傷し
、或はそれら機器の耐久性が低下する。
■ The pulsation of the high-pressure pump discharge amount and spray pressure increases, causing knocking and abnormal noise, which may damage the high-pressure pump and peripheral equipment, or reduce the durability of these equipment.

従って、上述の全ての問題を解決した泡沫噴霧乾燥法は
未だに実現されていなかった。
Therefore, a foam spray drying method that solves all of the above-mentioned problems has not yet been realized.

本発明は、高圧ポンプの上流側の低圧配管部分にガス混
入部を配置して大量のガスの吹込みを可能にしつつ、上
述の弊害を防止し、若しくは低減して、乾燥製品の各種
物性等のコントロール限界を大幅に広げると同時に、極
めて安定した状態で乾燥処理が可能な泡沫噴霧乾燥法及
びその方法を実施するための装置、並びに該方法を適用
することにより前述の従来の粉末クリームにみられる問
題を解決した粉末クリームの新規な製造方法を提供する
ことを目的としている。
The present invention enables the injection of a large amount of gas by arranging a gas mixing section in the low-pressure piping section upstream of the high-pressure pump, while preventing or reducing the above-mentioned disadvantages and improving various physical properties of dried products. A foam spray drying method that allows drying to be carried out in an extremely stable state while greatly expanding the control limits of the product, an apparatus for carrying out the method, and a device for implementing the method, which can be applied to the above-mentioned conventional powder cream. The purpose of the present invention is to provide a new method for producing powdered cream that solves the problems described above.

問題点を解決する手段 本発明者等は、第8図に示した実験装置により、原料液
体とガスとして、各々水と空気とを使用して既存の泡沫
rIX霧乾燥法を模したI!JN実験を実施し、以下の
知見を得た。
Means for Solving the Problems The present inventors have developed an I! method that imitates the existing foam rIX fog drying method using the experimental apparatus shown in FIG. 8, using water and air as the raw material liquid and gas, respectively. We conducted a JN experiment and obtained the following findings.

同図において、5はプランジャーポンプ(高圧ポンプ)
、6は遠心ポンプ、7は圧力調整弁、8は水流量針、9
は空気流量調節弁、10は空気流量計、11は減圧弁、
12はプランジャーポンプ入口用圧力計、13はプラン
ジャーポンプ吐出用圧力計(振動計測兼用)、及び14
は記録計をそれぞれ示す。
In the same figure, 5 is a plunger pump (high pressure pump)
, 6 is a centrifugal pump, 7 is a pressure regulating valve, 8 is a water flow needle, 9
is an air flow control valve, 10 is an air flow meter, 11 is a pressure reducing valve,
12 is a plunger pump inlet pressure gauge, 13 is a plunger pump discharge pressure gauge (also used for vibration measurement), and 14
indicates a recorder, respectively.

a) 一般にプランジャーポンプに気液混相流を流した
場合、その液相の吐出量低下の度合いは、当該ポンプの
入口部における液相に対する気相の体積流量比率と一次
関数的に相関する。
a) Generally, when a gas-liquid multiphase flow is caused to flow through a plunger pump, the degree of decrease in the discharge amount of the liquid phase is linearly correlated with the volumetric flow rate ratio of the gas phase to the liquid phase at the inlet of the pump.

b) 同様に、ポンプの吐出圧振動の振幅も、上記体積
流量比率と一次関数的に相関するが、このとき、ポンプ
入口部に遠心ポンプを設置して、その撹拌作用により気
泡を分散、微細化した場合には体積流量比率に無関係に
一定量の振動低減効果が得られる。
b) Similarly, the amplitude of the pump discharge pressure oscillation is linearly correlated with the volumetric flow rate ratio. In this case, a certain amount of vibration reduction effect can be obtained regardless of the volumetric flow rate ratio.

以上の知見に基づき、実際の泡沫噴霧乾燥法において、
次の手段を講じることにより、本発明の目的を達威し得
ることを見いだした。
Based on the above knowledge, in the actual foam spray drying method,
It has been found that the object of the present invention can be achieved by taking the following measures.

(ア) 高圧ポンプの上流側の原料液体配管の内圧を昇
圧する手段を新たに付加する。
(a) Add a new means to increase the internal pressure of the raw material liquid piping upstream of the high-pressure pump.

(イ) 高圧ポンプの原料液体の入口部に流入するガス
を、微細気泡として原料液体中に分散させる手段を新た
に付加する。
(a) A new means is added to disperse the gas flowing into the raw material liquid inlet of the high-pressure pump into the raw material liquid as fine bubbles.

上記(ア)は、液相に対する気相の体積流量比率(現実
の圧力条件下における体積流量比率)が小さくなること
、上記(イ)は気相の分散によって混相流の挙動が単一
の液相流(比較的大きい圧縮比を有する液相)の状態に
近付くこととなり、各々前記■及び■の弊害の回避に効
果をもつ。
The above (a) means that the volumetric flow rate ratio of the gas phase to the liquid phase (the volumetric flow rate ratio under actual pressure conditions) becomes smaller, and the above (b) means that the behavior of the multiphase flow is changed to that of a single liquid due to the dispersion of the gas phase. This approaches a state of phase flow (liquid phase having a relatively large compression ratio), which is effective in avoiding the disadvantages of (1) and (2) above.

尚、上記(ア)については、従来の通常の製造ラインに
おいても原料液体配管はある程度の内圧を有しているた
めに、吹き込みガス量が少量である場合には、前記弊害
は殆ど見られない。原料液体の物性や操作条件などの種
々の要因により、異なるが、総じて吹き込みガスの標準
状態換算体積流量が原料液体体積流量の2.5%(体積
、以下同じ)を越える場合において、前項の弊害が大き
くなる。そもそも上述の問題は、気液混相に起因するの
で、原料液体中にガスが分散相として存在しても、均質
で且つ極めて微細な分散状態ないしは溶解状態を作り出
せれば、もはやそのガスの分散された原料は気液混相で
はなく、圧縮性液体の単一の液相として挙動し、上述の
問題は生じない。
Regarding (a) above, the raw material liquid piping has a certain amount of internal pressure even in conventional normal production lines, so if the amount of blown gas is small, the above-mentioned adverse effects are hardly seen. . Although it varies depending on various factors such as the physical properties of the raw material liquid and operating conditions, in general, when the standard state equivalent volumetric flow rate of the blown gas exceeds 2.5% (volume, the same applies hereinafter) of the raw material liquid volumetric flow rate, the adverse effects described in the previous section will occur. becomes larger. In the first place, the above-mentioned problem is caused by a gas-liquid mixed phase, so even if gas exists as a dispersed phase in the raw material liquid, if a homogeneous and extremely finely dispersed or dissolved state can be created, the gas will no longer be dispersed. The raw material behaves as a single liquid phase of compressible liquid rather than a gas-liquid mixture, and the above-mentioned problems do not occur.

しかしながら、現実に処理されるべき原料液体の粘度2
表面張力等の性状、原料液体中に含まれる気体粒子の粒
子径、原料液体との親和性等の性状と密度等が関与する
が、そのような理想的分散ないし溶解状態は実際上は実
現不可能である。
However, the viscosity of the raw material liquid to be actually processed is 2
Properties such as surface tension, particle size of gas particles contained in the raw material liquid, properties such as affinity with the raw material liquid, and density are involved, but such an ideal dispersion or dissolution state is practically impossible to achieve. It is possible.

本発明者等は、上述の知見に基づいて、原料液体中にガ
スを吹き込む際に、気泡を極力微細化すると共に、更に
昇圧することによって、泡沫化原料を理想状態に近付け
、事実上上述の問題を克服することに到達した。
Based on the above-mentioned knowledge, the present inventors made the bubbles as fine as possible and further increased the pressure when blowing gas into the raw material liquid, thereby bringing the foamed raw material close to the ideal state. reached to overcome the problem.

即ち、本発明においては、ガスが吹き込まれた原料液体
を高圧ポンプで圧送して噴霧ノズルより噴霧する泡沫噴
霧乾燥法において、標準状態体積に換算してガスの流量
が原料液体の流量の2.5%を越える流量で原料液体中
にガスを吹き込み、かつ微細気泡化して、均一に分散さ
せ、更に上記高圧ポンプの上流側の流路を昇圧する。こ
れによって原料液体に実用上の範囲において、所望の混
入量で実質的に無制限にガスを混入することができる。
That is, in the present invention, in the foam spray drying method in which a raw material liquid into which gas is blown is pumped by a high-pressure pump and sprayed from a spray nozzle, the flow rate of the gas is 2.0 times the flow rate of the raw material liquid in terms of standard state volume. Gas is blown into the raw material liquid at a flow rate exceeding 5%, and the gas is made into fine bubbles to be uniformly dispersed, and the pressure of the flow path upstream of the high-pressure pump is increased. As a result, a desired amount of gas can be mixed into the raw material liquid in a practically unlimited amount within a practical range.

また、上記方法を粉末クリームの製造に適用すること、
即ち、上記方法において上記原料液体を粉末クリーム用
濃縮乳とし、上記吹き込みガスを空気、不活性ガス、炭
酸ガス、窒素ガスよりなる群から選択された少なくとも
1種類のガスとすることにより、生クリームに近い分散
性、溶解性を示し、しかも溶解後にオイルオフを生ずる
ことがなく、また乾燥度の高い(水分の少ない)製品が
得られる。
Also, applying the above method to the production of powdered cream,
That is, in the above method, the raw material liquid is concentrated milk for powdered cream, and the blowing gas is at least one type of gas selected from the group consisting of air, inert gas, carbon dioxide gas, and nitrogen gas. It exhibits dispersibility and solubility close to that of 100%, does not cause oil-off after dissolution, and provides a highly dry product (low moisture content).

更に、ガスが吹き込まれた原料液体を高圧ポンプで圧送
して噴霧ノズルより噴霧する泡沫噴霧乾燥装置において
、上記高圧ポンプの上流側においてガスを微細気泡化し
て原料液体中に均一に分散させる手段と、上記高圧ポン
プの上流側の流路を昇圧させる昇圧手段とを設けること
により、上記方法を実施することができる。
Furthermore, in a foam spray drying device in which a raw material liquid into which a gas is blown is pumped by a high-pressure pump and sprayed from a spray nozzle, a means for making the gas into fine bubbles and uniformly dispersing it in the raw material liquid on the upstream side of the high-pressure pump; The above method can be carried out by providing a pressure increasing means for increasing the pressure in the flow path on the upstream side of the high pressure pump.

本発明の方法及びその装置において、原料液に制限はな
く、乳製品の濃縮液を始め、無機物または有機物の溶液
、懸濁液、及び乳濁液などいかなる原料液についても適
用可能である。
In the method and apparatus of the present invention, there are no limitations on the raw material liquid, and any raw material liquid can be used, including concentrated liquids of dairy products, solutions, suspensions, and emulsions of inorganic or organic substances.

また、本発明の方法及び装置において、用いられるガス
は、窒素ガス、空気等、原料液に対して溶解しにくいガ
スを用いる場合に特に有効であるが、炭酸ガス、アンモ
ニアガス等の溶解性ガスであっても、前記の弊害が生じ
る場合には当然にその改善効果が期待できる。また、ガ
スは原料液体中でガス状態に微細化されて分散されてい
ればよく、吹き込む状態では液化ガスであっても良い。
In addition, in the method and apparatus of the present invention, the gas used is particularly effective when using a gas that is difficult to dissolve in the raw material liquid, such as nitrogen gas or air, but soluble gas such as carbon dioxide gas or ammonia gas However, if the above-mentioned disadvantages occur, an improvement effect can naturally be expected. Further, the gas only needs to be finely divided into a gaseous state and dispersed in the raw material liquid, and may be a liquefied gas in the state in which it is blown into the raw material liquid.

液化ガスの状態または加圧状態での吹き込みは、昇圧の
手段ともなる。
Blowing in a liquefied gas state or a pressurized state also serves as a means of increasing the pressure.

また、ガスが微分散された原料を噴霧ノズルに圧送する
高圧ポンプとしては、プランジャー式、ギア式、ピスト
ン式等、いかなる形式のものであっても良い。
Furthermore, the high-pressure pump that pumps the raw material in which gas is finely dispersed to the spray nozzle may be of any type, such as a plunger type, gear type, or piston type.

吹き込むガスを微細化する手段としては、例えば、回動
する撹拌手段を有するシェアリングポンプなどのメカニ
カルな装置を気液混相流体の流れる配管内に設けても良
いが、後述の実施例1に示すように、液体の流れの中に
多孔質材料で形成された円筒状の部材の表面からガスを
微細化して吹き込むスタティックな機構が望ましい。ま
た後者の形式において円筒状多孔質部材から微細化して
吹き込まれるガスを、更に微細化された気泡に剪断する
よう9円筒面に沿って螺旋状に或は渦流状に原料液体を
高速で導くことが望ましい。流れの拡大による圧損、渦
流及び気泡群の衝突合体確率を小さくするため流れを整
流させることが望ましい。また上記多孔質部材は、数m
m程度の厚みを有し、内外両側面間に貫通する多数の微
細な孔隙を有する素材であっても、或は無数の小孔を有
する比較的薄い膜状の素材であっても良い。孔隙又は小
孔は、均一に分布しでおり、且つ可及的に微小(例えば
1μm”10100pであるのが望ましい。前者の例と
しては、粉末冶金法で製造された焼結材料及びガラス繊
維などがあり、後者の例としてはパンチングメタル並び
にセルロースエステル及びナイロンのメンブレンフィル
ター材料すどの膜が利用できる。
As a means for atomizing the gas to be blown, for example, a mechanical device such as a shearing pump having a rotating stirring means may be installed in the pipe through which the gas-liquid multiphase fluid flows, but this method is shown in Example 1 below. Thus, a static mechanism is desirable in which finely divided gas is blown into the liquid flow from the surface of a cylindrical member made of a porous material. In the latter type, the raw material liquid is guided at high speed in a spiral or vortex shape along the cylindrical surface so that the gas blown into fine particles from the cylindrical porous member is sheared into further fine bubbles. is desirable. It is desirable to rectify the flow in order to reduce the pressure loss caused by the expansion of the flow, the probability of colliding and coalescing of eddy currents and bubble groups. Moreover, the porous member is several meters long.
The material may be a material having a thickness of about 1.5 m and having many fine pores penetrating between the inner and outer surfaces, or a relatively thin film-like material having numerous small pores. It is desirable that the pores or small pores be uniformly distributed and as small as possible (for example, 1 μm" 10100p. Examples of the former include sintered materials manufactured by powder metallurgy and glass fibers, etc.) Examples of the latter include perforated metal and cellulose ester and nylon membrane filter materials.

昇圧手段は、いかなる形式の物であっても良いが、旋回
流、乱流、渦流を生ずるような形式の昇圧手段をガス吹
込み部に近接して用いれば、微小気泡の形成にも利用で
きる。昇圧手段は高圧ポンプの流入側若しくは上流側に
配置され、昇圧手段とガス吹き込み部との配置関係には
、制限はない。
The pressure increasing means may be of any type, but if a type of pressure increasing means that produces swirling flow, turbulent flow, or vortex flow is used close to the gas injection part, it can also be used to form microbubbles. . The pressure increase means is arranged on the inflow side or upstream side of the high pressure pump, and there is no restriction on the arrangement relationship between the pressure increase means and the gas blowing section.

例えば、複数の遠心ポンプを原料液体の配管に直列に配
置し、それらの中間にガスを吹き込むようにしても良い
For example, a plurality of centrifugal pumps may be arranged in series in a raw material liquid pipe, and gas may be blown between them.

次に、本発明の泡沫噴霧乾燥法を用いた粉末りリームの
製造法の実施例に基づき本発明を更に詳述する。
Next, the present invention will be explained in further detail based on an example of the method for producing powder ream using the foam spray drying method of the present invention.

実   施   例 〔実施例1] 既存の粉末クリーム用の混合液を、噴霧乾燥に適した固
形分濃度に濃縮しく乳固形分50%)、且つ脂肪を少な
くとも固形分中20%以上含有させたものを用い、吹き
込みガスには窒素ガスを用いた。窒素ガス吹込み量は、
標準状態換算体積流量が濃縮乳流量に対して2.5%を
超えた量とするために、濃縮乳Mlに対して標準圧力(
1気圧)の窒素ガスを25m12を超えた量吹き込む力
【、当然、吹き込み時の加圧下では、25m12以下の
量となる。
Example [Example 1] An existing mixed liquid for powdered cream is concentrated to a solid content concentration suitable for spray drying (milk solid content: 50%), and contains at least 20% fat in the solid content. was used, and nitrogen gas was used as the blowing gas. The nitrogen gas injection amount is
In order to make the standard state converted volume flow rate exceed 2.5% of the concentrated milk flow rate, the standard pressure (
The force of blowing nitrogen gas (1 atm) in an amount exceeding 25 m12 [, of course, under the pressure at the time of blowing, the amount will be less than 25 m12.

この実施例においては、本発明の装置として第1図に示
した装置を用い、また対照として第9図に示した従来装
置を用いて泡沫噴霧乾燥を行った。
In this example, foam spray drying was carried out using the apparatus shown in FIG. 1 as the apparatus of the present invention and the conventional apparatus shown in FIG. 9 as a control.

第9図の従来装置においては、原料液体である濃縮乳(
固形分50%)は、タンク17から送液ポンプ18によ
って熱交換機19を介して高圧ポンプI5に送られ、乾
燥塔4の噴霧ノズルに圧送される。濃縮乳の流量は、絞
り弁16の開度によって、還流する量を調節することに
より調節する方法をとっている。
In the conventional device shown in Fig. 9, the raw material liquid is concentrated milk (
The liquid (solid content: 50%) is sent from the tank 17 by the liquid sending pump 18 via the heat exchanger 19 to the high-pressure pump I5, and then is sent under pressure to the spray nozzle of the drying tower 4. The flow rate of concentrated milk is adjusted by adjusting the amount of reflux by adjusting the opening degree of the throttle valve 16.

ガスは、窒素ガスポンベ20から減圧弁21゜流量計2
2.調節弁23を介して、高圧ポンプ15の下流側にお
いて原料液体配管中に吹き込まれる。ガス吹込み部は第
4図に示した在米の気液接続配管を使用した。第4図に
おいて矢印29は開口30より導入される管31内部に
8ける原料液体の流れの方向を示し、32はガス供給管
33の接続口34を固定する閉止板であって、閉止板3
2はユニオン35によって着脱可能に固定されている。
Gas is supplied from a nitrogen gas pump 20 to a pressure reducing valve 21° and a flow meter 2.
2. It is blown into the raw material liquid piping downstream of the high-pressure pump 15 via the control valve 23 . For the gas injection section, the gas-liquid connection piping in the United States shown in Figure 4 was used. In FIG. 4, an arrow 29 indicates the flow direction of the raw material liquid introduced from the opening 30 into the pipe 31, and 32 is a closing plate that fixes the connection port 34 of the gas supply pipe 33.
2 is removably fixed by a union 35.

第1図の本発明装置は、第9図の装置を改造したもので
あって、昇圧手段として遠心ポンプ25(揚程18m)
をガス吹込み部24と高圧ポンプ15との間に配置して
いる。この実施例においては、遠心ポンプの撹拌効果を
、気泡を微細化する手段としても活用している。この実
施例においては、ガス吹込み部24は第5図に示した部
材を用いた。第5図において、矢印36は開口37より
導入される原料液体の管38内部における流れの方向を
示し、39はガス供給管41及び閉止板47に固定され
た接tic040を介して導入されるガスの吹込み用導
管である。導管39の一端には管38と同軸に配置され
た円筒状の口径微小な多孔質部材42が接続されている
。43は、多孔質部材42から吹き込まれた微小気泡が
渦流によって百合−するのを防止する整流器である。4
4はガス吹込み用導管39を含むユニット全体を着脱可
能に装着するユニオンである。原料液体は直線的に配置
されたガス吹込み用導管に対して直交方向に導入され、
しかも縮径部45によって液流が加速され、円筒状の多
孔軍部材の表面から発生される気泡は、加速された液流
によって剪断され、引き千切られて、極めて微細な気泡
を生ぜしめることができる。46は拡径部である。
The device of the present invention shown in FIG. 1 is a modified version of the device shown in FIG.
is arranged between the gas blowing section 24 and the high pressure pump 15. In this embodiment, the stirring effect of the centrifugal pump is also utilized as a means for making bubbles finer. In this embodiment, the gas blowing section 24 used the member shown in FIG. In FIG. 5, an arrow 36 indicates the flow direction of the raw material liquid introduced from the opening 37 inside the tube 38, and 39 indicates the direction of the flow of the raw material liquid introduced through the opening 37, and 39 indicates the flow direction of the gas introduced through the gas supply tube 41 and the contact 040 fixed to the closing plate 47. It is a conduit for blowing. A cylindrical porous member 42 with a small diameter is connected to one end of the conduit 39 and is arranged coaxially with the pipe 38 . Reference numeral 43 denotes a rectifier that prevents the microbubbles blown from the porous member 42 from swirling due to the eddies. 4
4 is a union to which the entire unit including the gas blowing conduit 39 is removably attached. The raw material liquid is introduced perpendicularly to the linearly arranged gas blowing conduit,
Moreover, the liquid flow is accelerated by the reduced diameter portion 45, and the air bubbles generated from the surface of the cylindrical porous member are sheared and torn off by the accelerated liquid flow, producing extremely fine air bubbles. can. 46 is an enlarged diameter portion.

再装置における粉末クリームの製造条件及び製品の水分
と比容積は表1に示されており、表1においてA欄は第
9図の従来装置を用いた対照例のデータを、B欄は第1
図の本発明装置を用いた実施例のデータを夫々示す。
The manufacturing conditions for the powdered cream in the re-apparatus and the water content and specific volume of the product are shown in Table 1. In Table 1, column A shows the data of the control example using the conventional apparatus shown in FIG. 9, and column B shows the data of the control example using the conventional apparatus shown in
Data of examples using the apparatus of the present invention shown in the figures are shown respectively.

Aの場合は、ガス流量が25N12/hであっても製造
中の高圧ポンプの脈動が激しく、長時間運転できる状態
ではなかった。Bの場合には、ガス流量が100Nff
/hであっても通常と全く同様の安定した製造ができた
In case A, even if the gas flow rate was 25N12/h, the high-pressure pump during production pulsated violently and could not be operated for a long time. In case B, the gas flow rate is 100Nff
/h, stable production was possible, exactly the same as usual.

乾燥粉末の物性は、水分がAの場合には3.4%、Bの
場合には2.7%であり、ガス量の増加による乾燥効果
の向上が顕著に見られる。また、比容積はAの場合には
1.68mQ/gであり、Bの場合には2.10mQ/
g (何れも衝撃法による測定)であり、ガス流量の増
加によって製品の比容積のコントa−ルが更に広範に行
えるようになっtこ。
The physical properties of the dry powder are 3.4% when the moisture content is A and 2.7% when the moisture content is B, and it can be seen that the drying effect is significantly improved by increasing the amount of gas. In addition, the specific volume is 1.68 mQ/g in case of A, and 2.10 mQ/g in case of B.
(All measurements are performed using the impact method.) By increasing the gas flow rate, the specific volume of the product can be more broadly controlled.

[実施例2] この実施例においては、第1図の装置に、更に昇圧手段
を付加した装置を用いた。詳述すれば、第2図に示すよ
うに、第1図の装置の熱交換機L9とガス吹込み部24
との間に定量ポンプ26と調整弁27とを並列に接続す
ることにより、定量ポンプの出口圧力即ちガス吹込み部
圧力を調節可能とした。
[Example 2] In this example, an apparatus in which a pressure increasing means was further added to the apparatus shown in FIG. 1 was used. More specifically, as shown in FIG. 2, the heat exchanger L9 and gas blowing section 24 of the device shown in FIG.
By connecting a metering pump 26 and a regulating valve 27 in parallel between the metering pump 26 and the regulating valve 27, the outlet pressure of the metering pump, that is, the gas blowing section pressure can be adjusted.

黙交換機出口圧力、ガス吹込み部圧力、高圧ポンプ入り
口圧力、高圧ポンプ吐出圧力を表2に示した以外は、全
て実施例1と同一の製造条件として粉乳を製造した。
Milk powder was produced under all the same production conditions as in Example 1, except that the silent exchanger outlet pressure, gas blowing part pressure, high pressure pump inlet pressure, and high pressure pump discharge pressure are shown in Table 2.

表2において、A欄は第9図の従来装置を用いた対照例
のデータを、C欄は第2図の本発明装置を用いた実施例
のデータを夫々示す。
In Table 2, column A shows data for a control example using the conventional device shown in FIG. 9, and column C shows data for an example using the device of the present invention shown in FIG.

表 圧力[kg/cm”ゲージ1 Aの場合は、高圧ポンプ入り口圧力は0.7kg/am
”(ゲージ)だったが、Cの場合には9゜0kg/am
’(ゲージ)となり、ガスを70ON(2/hまで吹き
込んでも高圧ポンプの脈動、吐出圧低下は起こらず、極
めて安定した状態で製造できた。
If the surface pressure [kg/cm” gauge is 1 A, the high pressure pump inlet pressure is 0.7 kg/am.
” (gauge), but in the case of C it was 9゜0kg/am
' (gauge), and even when gas was blown at 70 ON (2/h), there was no pulsation of the high-pressure pump or a drop in the discharge pressure, and production was possible in an extremely stable state.

得られた粉乳の溶解性をADMI (米国粉乳協会)遠
沈法で測定したところ、AではO,1mαであったのに
対して、CではO−0−0l程度の値となり、本発明の
方法により乾燥製品の溶解性を飛躍的に向上させること
ができた。
When the solubility of the obtained milk powder was measured by ADMI (American Milk Powder Institute) centrifugation method, it was O, 1mα for A, whereas it was about O-0-0l for C, which indicates that the present invention Using this method, we were able to dramatically improve the solubility of the dried product.

[実施例3] この実施例においては、第3図に示した本発明の装置を
用いた。詳述すれば、第3図の装置においては、昇圧機
構と気泡微細化機構とがある程度分離されている。即ち
、第1図(実施例1)及び第2図(実施例2)において
は、−台の遠心ポンプが昇圧手段と気泡微細化手段とを
兼ねていたが、この実施例の装置においては、定量ポン
プ26をガス吹込み部24の上流側に設けて昇圧手段と
して用い、シェアリング装置(エバラマイルダーMDN
−306,)28を高圧ポンプ15とガス吹込み部24
との間に設けて気泡微細化手段の一つとして用いている
[Example 3] In this example, the apparatus of the present invention shown in FIG. 3 was used. Specifically, in the apparatus shown in FIG. 3, the pressure increasing mechanism and the bubble refinement mechanism are separated to some extent. That is, in FIG. 1 (Example 1) and FIG. 2 (Example 2), the - centrifugal pumps served as both the pressure increasing means and the bubble atomization means, but in the apparatus of this example, A metering pump 26 is provided upstream of the gas blowing section 24 and used as a pressure increasing means, and a sharing device (Ebara Milder MDN
-306, ) 28 to the high pressure pump 15 and the gas blowing part 24
It is used as one of the means for making bubbles finer.

上記装置を用いて、下記の粉末クリーム用濃縮乳を原料
液体として用い、下記の製造条件で粉末クリームを製造
した。
Using the above-mentioned apparatus, powdered cream was manufactured using the following concentrated milk for powdered cream as a raw material liquid under the following manufacturing conditions.

(濃縮乳の調製) スチームジャケット付きの200012容撹拌タンク内
に、50°Cの水222.5kgとカゼインナトリウム
27.5kgとを加え、70℃に加温して溶解した。1
75kgのパーム油に5kgのレシチンを溶融した溶融
液を上記溶液I;混合し、次いでコーンシロップ100
kg、食用乳糖175kg% 10%リン酸二カリウム
溶液80 k g。
(Preparation of concentrated milk) 222.5 kg of water at 50°C and 27.5 kg of sodium caseinate were added to a 200,012 volume stirring tank equipped with a steam jacket, and dissolved by heating to 70°C. 1
A melt of 5 kg of lecithin in 75 kg of palm oil was mixed with the above solution I, and then 100 g of corn syrup was mixed.
kg, edible lactose 175 kg% 10% dipotassium phosphate solution 80 kg.

及び水550kgを加え、70’Oに保持して撹拌溶解
した。得られた溶解液を、均質圧150kg/ Cm 
”、温度70℃で均質機にかけ、更にスチームジャケッ
ト付きタンクにて85℃、10分間保持して殺菌し、エ
バポレータで全固形分50%となるまで減圧濃縮した。
Then, 550 kg of water was added, and the mixture was stirred and dissolved at 70'O. The obtained solution was heated to a homogeneous pressure of 150 kg/cm
The mixture was passed through a homogenizer at a temperature of 70°C, then sterilized by being held at 85°C for 10 minutes in a steam-jacketed tank, and concentrated under reduced pressure using an evaporator until the total solid content was 50%.

(製造条件及び窒素ガス流量) 高圧ポンプ入り口圧を9.0kg/cm”及び高圧ポン
プ吐出圧を150kg/cm2とし、吹き込み窒素ガス
流量を原料液に対する標準状態換算流量で0〜70%の
範囲で8段階に変更して泡沫噴霧乾燥を行い、8種類の
粉末クリーム450kg(合計量)を得た。
(Manufacturing conditions and nitrogen gas flow rate) The high pressure pump inlet pressure was 9.0 kg/cm" and the high pressure pump discharge pressure was 150 kg/cm2, and the nitrogen gas flow rate was in the range of 0 to 70% of the raw material liquid in terms of standard state flow rate. Foam spray drying was performed in 8 stages to obtain 450 kg (total amount) of 8 types of powdered creams.

(粉末クリームの性状) 得られた8種類のサンプル(A−H)の各々2gを、通
常の飲用温度である50°C960°0.70°0,8
0℃の1.5%濃度のインスタントコーヒー100m1
2に添加したときの溶解状態を肉眼で観察した。
(Properties of powdered cream) 2 g of each of the 8 types of samples (A-H) obtained were mixed at the usual drinking temperature of 50°C, 960°, 0.70°, 0.8
100ml of 1.5% instant coffee at 0℃
The state of dissolution when added to No. 2 was observed with the naked eye.

また、粉末クリームの比容積は、0.1m+2目盛の3
0m(2試験管に各サンプルを50gずつ取り、石川式
比容積試験機(石川化学機器製作所)で上下幅4cmで
200回タッピングを行い、この見掛は用量を重量で除
して求めた。
In addition, the specific volume of the powdered cream is 0.1 m + 3 on the 2 scale.
0m (50g of each sample was placed in 2 test tubes and tapped 200 times with a vertical width of 4cm using an Ishikawa specific volume tester (Ishikawa Kagaku Kiki Seisakusho), and the apparent amount was determined by dividing the dose by the weight.

遊離脂肪含量(%)は1次のように求めた。即ち、直径
2cm、長さ18cmの共栓付き試験管に各サンプル3
gを取り、沸点10〜60°Cの石油エーテル20mQ
を加えて、室温下で20分間、振蓋し、真空濾過し、濾
液の脂肪を秤量し、全脂肪に対する抽出された脂肪量の
割合(%)を算出した。
Free fat content (%) was determined as follows. That is, each sample was placed in a test tube with a stopper, 2 cm in diameter and 18 cm in length.
Take g and add 20 mQ of petroleum ether with a boiling point of 10 to 60°C.
was added, shaken for 20 minutes at room temperature, vacuum filtered, the fat in the filtrate was weighed, and the ratio (%) of the extracted fat amount to the total fat was calculated.

また、オイルオフは70℃の1.5%濃度のコーヒー液
100mQに各サンプル2gを添加し、完全溶解後にオ
イルオフの有無を肉眼で観察した。
For oil-off, 2 g of each sample was added to 100 mQ of 1.5% coffee liquid at 70°C, and after complete dissolution, the presence or absence of oil-off was visually observed.

以上の結果を表3に示した。The above results are shown in Table 3.

溶解状8Jこついては、窒素ガスを吹き込まなかった粉
末クリーム(サンプルA)は何れの溶解温度におい−C
も、沈降するのみであるが、固形分1kgに窒素ガスを
5O−1400r12の割合で(体積流食費で2.5〜
70%)吹き込んだサンプルB−Hは、何れの溶解温度
でも液面が白濁し、自然に沈降して、生クリーム添加時
と近似した溶解状態を示した。特に、体積流量の比率が
約5%を越えたところから、液面の白濁膜の形成が生ク
リーム添加時のそれと極めて類似して来ていることが知
れる。また、溶解温度が高いほど生クリームの溶解状態
に近くなる。これは、沈降速度に対して溶解速度が相対
的に速くなること(溶解性が良い)及び窒素ガスの散逸
が速くなることによるものと思われる。
If you have a problem with melting state 8J, the powdered cream (sample A) that was not blown with nitrogen gas has a melting temperature of -C
However, nitrogen gas is added to 1 kg of solid content at a ratio of 5O-1400r12 (2.5~2.5~1 kg of solid content).
70%) Samples B-H which were injected had a cloudy liquid surface and spontaneous sedimentation at any dissolution temperature, showing a dissolution state similar to that when fresh cream was added. In particular, it can be seen that when the volumetric flow rate exceeds about 5%, the formation of a cloudy white film on the liquid surface becomes extremely similar to that when fresh cream is added. Further, the higher the melting temperature, the closer the melting state is to that of fresh cream. This seems to be due to the fact that the dissolution rate is relatively faster than the sedimentation rate (good solubility) and that nitrogen gas dissipates faster.

遊離脂肪含量については、窒素ガスの吹き込みによって
殆ど影響を受けていないことが知れ、それゆえサンプル
B−Hは、サンプルAと同様にオイルオフが生じない。
It is known that the free fat content is hardly affected by the nitrogen gas blowing, and therefore samples B-H, like sample A, do not suffer from oil-off.

これは、窒素ガスを微細化して吹き込んだために、多量
の窒素ガスを吹き込んでも、粉体粒子が破壊されないこ
とが原因と思われる。
This seems to be because the powder particles are not destroyed even if a large amount of nitrogen gas is blown into the powder because the nitrogen gas is blown into fine particles.

従って、本発明の泡沫噴霧乾燥法、及びその装置により
、生クリームに近似した溶解状態を呈する粉体クリーム
が製造できる。
Therefore, by using the foam spray drying method and the apparatus of the present invention, it is possible to produce a powdered cream that exhibits a melting state similar to that of fresh cream.

以上に本発明の泡沫噴霧乾燥法およびその装置並びに粉
末クリームの製造法について実施例を通じて詳述して来
たが、本発明は上述の実施例のみに限定されるものでは
なく、本発明の技術思想を逸脱することなしに様々な変
形が可能である。
The foam spray drying method, its apparatus, and the powder cream manufacturing method of the present invention have been described above in detail through Examples, but the present invention is not limited to the above-mentioned Examples, and the technology of the present invention Various modifications are possible without departing from the idea.

例えば、泡沫噴霧乾燥法において、原料液体は濃縮乳の
みに限定されず、有機物、無機物の溶液。
For example, in the foam spray drying method, the raw material liquid is not limited to concentrated milk, but also solutions of organic and inorganic substances.

懸濁液、乳濁液等に広く適用できる。また原料液体とガ
スの体積流量比率は、ガス圧の上昇と逆相関関係にあり
、従ってガス吹込み量の増大はそれに相応するガス圧の
上昇によって対処し得ることが理解されよう。
Widely applicable to suspensions, emulsions, etc. It will also be understood that the volumetric flow rate ratio of the raw material liquid and the gas is inversely correlated with the increase in gas pressure, and therefore an increase in the amount of gas blown can be countered by a corresponding increase in the gas pressure.

本発明の装置において、昇圧手段を複数台設けることが
でき、その際ガス吹込み部と昇圧手段との配置関係は高
圧ポンプの上流側(流入側)にそれらが配置される限り
、いかなる配置関係にあっても良い。
In the apparatus of the present invention, a plurality of pressure boosting means can be provided, and in this case, the arrangement relationship between the gas blowing part and the pressure boosting means can be changed in any manner as long as they are arranged on the upstream side (inflow side) of the high pressure pump. It's okay to be there.

更に、粉末クリームの製造方法において、濃縮乳の組成
及び濃度は、上述の組成及び濃度に限定されるものでは
なく、従来の粉末クリームの製造において常識的な範囲
において種々に変更できる。
Furthermore, in the method for producing powdered cream, the composition and concentration of concentrated milk are not limited to the above-mentioned composition and concentration, but can be variously changed within the common sense in conventional powdered cream production.

発明の効果 本発明の効果は下記のとおりである。Effect of the invention The effects of the present invention are as follows.

(1)  高圧ポンプの流入側(上流側)でガスを吹き
込む場合、流量低下やノッキング等が発生せず、安定し
た状態で製造できる限界のガス流量は、一般的には原料
液体の物性や操作条件などの種々の要因で決定されるが
、何れの場合でも、本発明方法による場合にはより多量
のガスを吹き込むことができ、従って製品の比容積、溶
解性など各種の物性や品質が大幅にコントロールされる
(1) When blowing gas on the inflow side (upstream side) of a high-pressure pump, the limit gas flow rate that can be produced in a stable state without reducing the flow rate or knocking, etc. is generally determined by the physical properties of the raw material liquid and the operation. Although it is determined by various factors such as conditions, in any case, the method of the present invention allows a larger amount of gas to be injected, and therefore the product's various physical properties such as specific volume and solubility and quality can be significantly improved. controlled by.

(2) 泡沫噴霧乾燥法において、高圧ポンプ流入側(
上流側)の低圧配管部にガス吹き込み部を配置すること
により、設備コストを低減し、長時間に互って安定に乾
燥処理を行うことができ、泡沫噴霧乾燥法の工業上の適
用範囲を拡大し得た。
(2) In the foam spray drying method, the high pressure pump inlet side (
By locating the gas blowing section in the low-pressure piping section (on the upstream side), equipment costs can be reduced and drying can be carried out stably over a long period of time, expanding the industrial applicability of the foam spray drying method. It could be expanded.

(3) 本発明の粉末クリーム製造法は、生クリームと
同様な溶解性を呈する粉末クリームの製造を可能にした
(3) The method for producing powdered cream of the present invention makes it possible to produce powdered cream that exhibits the same solubility as fresh cream.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例による泡沫噴霧乾燥装置の
配置図、 第2図は、本発明の他の一実施例による泡沫噴霧乾燥装
置の配置図、 第3図は、本発明の更に他の一実施例による泡沫噴霧乾
燥装置の配置図、 第4図は、従来の気液接続配管の模式的断面図、第5図
は、本発明による気液接続配管の模式的断面図、 第6図は、従来の泡沫噴霧乾燥装置の配置図、第7図は
、従来の他の泡沫噴霧乾燥装置の配置図、 第8図は、従来の泡沫噴霧乾燥装置を模した実験装置の
配置図、 第9図は、従来の泡沫噴霧乾燥装置の配置図である。 符号の説明 l:高圧ポンプ、2:高圧コンプレッサ、3:減圧弁、
4:乾燥塔、5:プランジャーポンプ(高圧ポンプ)、
6:遠心ポンプ、7:圧力調整弁、8:水流量針、9:
空気流量調節弁、lO:空気流量計、ll:減圧弁、1
2ニブランジャーポンプ入りロ用圧力計、13ニブラン
ジヤーポンプ吐出圧用圧力計(振動計測兼用)、14:
記録計、15ニブランジヤ一式高圧ポンプ、16二流量
調節弁Jl 7 : 原料液タンク、18:送液ポンプ
、19:熱交換機、20:窒素ガスボンベ、21:減圧
弁、22:ガス流量計、23:ガス流量調節弁、24:
ガス吹込み部、25:昇圧撹拌遠心ポンプ、26:定量
ポンプ、27:定量ポンプ出口圧調節弁、28:撹拌専
用シェアリング装置、29:W料液体の流れを示す矢印
、30:*料液体供給口、31:管、32:閉止板、3
3:ガス供給口、34:接続口、35:ユニオン、36
:原料液体の流れを示す矢印、37:原料液体供給口、
38:管、39:ガス吹込み専用管、40:接続口、4
1ガス供給口、42:多孔質部材、43:整流器、44
ニユニオン、45:縮小部、46:拡大部、47:閉止
板。
FIG. 1 is a layout diagram of a foam spray drying device according to an embodiment of the present invention, FIG. 2 is a layout diagram of a foam spray drying device according to another embodiment of the present invention, and FIG. Furthermore, a layout diagram of a foam spray drying apparatus according to another embodiment; FIG. 4 is a schematic sectional view of a conventional gas-liquid connection piping; FIG. 5 is a schematic sectional view of a gas-liquid connection piping according to the present invention; FIG. 6 is a layout diagram of a conventional foam spray drying device, FIG. 7 is a layout diagram of another conventional foam spray drying device, and FIG. 8 is a layout diagram of an experimental device imitating a conventional foam spray drying device. FIG. 9 is a layout diagram of a conventional foam spray drying device. Explanation of symbols 1: High pressure pump, 2: High pressure compressor, 3: Pressure reducing valve,
4: Drying tower, 5: Plunger pump (high pressure pump),
6: Centrifugal pump, 7: Pressure adjustment valve, 8: Water flow needle, 9:
Air flow control valve, lO: air flow meter, l: pressure reducing valve, 1
2. Pressure gauge for Ni lunger pump, 13. Pressure gauge for Ni lunger pump discharge pressure (also used for vibration measurement), 14:
Recorder, 15 Ni lunge set high pressure pump, 16 Two flow control valves Jl 7: Raw material liquid tank, 18: Liquid feed pump, 19: Heat exchanger, 20: Nitrogen gas cylinder, 21: Pressure reducing valve, 22: Gas flow meter, 23: Gas flow rate control valve, 24:
Gas blowing part, 25: Pressure-boosting stirring centrifugal pump, 26: Metering pump, 27: Metering pump outlet pressure control valve, 28: Sharing device for stirring only, 29: Arrow indicating flow of W feed liquid, 30: *Feed liquid Supply port, 31: Pipe, 32: Closing plate, 3
3: Gas supply port, 34: Connection port, 35: Union, 36
: Arrow indicating flow of raw material liquid, 37: Raw material liquid supply port,
38: Pipe, 39: Gas injection pipe, 40: Connection port, 4
1 gas supply port, 42: porous member, 43: rectifier, 44
2 union, 45: Reducing portion, 46: Expanding portion, 47: Closing plate.

Claims (3)

【特許請求の範囲】[Claims] (1)ガスが吹き込まれた原料液体を高圧ポンプで圧送
して噴霧ノズルより噴霧する泡沫噴霧乾燥法において、 標準状態体積に換算されたガスの流量が原料液体の流量
の2.5%(体積)を越える流量で原料液体中にガスを
吹き込み、かつ微細気泡化して均一に分散させ、更に上
記高圧ポンプの上流側の流路を昇圧することを特徴とす
る泡沫噴霧乾燥法。
(1) In the foam spray drying method, in which a raw material liquid into which gas is blown is pumped with a high-pressure pump and sprayed from a spray nozzle, the flow rate of the gas converted to the standard state volume is 2.5% (by volume) of the flow rate of the raw material liquid. ) A foam spray drying method characterized in that gas is blown into a raw material liquid at a flow rate exceeding 100%, the gas is made into fine bubbles and uniformly dispersed, and the pressure of the flow path upstream of the high-pressure pump is increased.
(2)上記原料液体を粉末クリーム用濃縮乳とし、上記
吹き込みガスを空気、不活性ガス、炭酸ガス、窒素ガス
よりなる群から選択された少なくとも1種類のガスとす
ることを特徴とする請求項1記載の泡沫噴霧乾燥法によ
り噴霧乾燥することを特徴とする粉末クリームの新規な
製造法。
(2) A claim characterized in that the raw material liquid is concentrated milk for powdered cream, and the blown gas is at least one type of gas selected from the group consisting of air, inert gas, carbon dioxide gas, and nitrogen gas. 1. A novel method for producing a powdered cream, which comprises spray-drying using the foam spray-drying method described in 1.
(3)ガスが吹き込まれた原料液体を高圧ポンプで圧送
して噴霧ノズルより噴霧する泡沫噴霧乾燥装置において
、 上記高圧ポンプの上流側においてガスを微細気泡化して
原料液体中に均一に分散させる手段と、上記高圧ポンプ
の上流側の流路を昇圧させる昇圧手段とを設けたことを
特徴とする、泡沫噴霧乾燥装置。
(3) In a foam spray drying device in which a raw material liquid into which gas is blown is pumped by a high-pressure pump and sprayed from a spray nozzle, a means for making the gas into fine bubbles and uniformly dispersing it in the raw material liquid on the upstream side of the high-pressure pump. and a pressure increasing means for increasing the pressure of the flow path on the upstream side of the high pressure pump.
JP19976989A 1989-07-31 1989-07-31 Foam spray-drying method, apparatus and method for producing powdered cream Expired - Lifetime JP2808016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19976989A JP2808016B2 (en) 1989-07-31 1989-07-31 Foam spray-drying method, apparatus and method for producing powdered cream

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19976989A JP2808016B2 (en) 1989-07-31 1989-07-31 Foam spray-drying method, apparatus and method for producing powdered cream

Publications (2)

Publication Number Publication Date
JPH0365136A true JPH0365136A (en) 1991-03-20
JP2808016B2 JP2808016B2 (en) 1998-10-08

Family

ID=16413312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19976989A Expired - Lifetime JP2808016B2 (en) 1989-07-31 1989-07-31 Foam spray-drying method, apparatus and method for producing powdered cream

Country Status (1)

Country Link
JP (1) JP2808016B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073724A1 (en) * 2008-12-26 2010-07-01 Meiji Dairies Corporation Method for manufacturing solid milk
WO2010073715A1 (en) * 2008-12-26 2010-07-01 Meiji Dairies Corporation Solid milk and method for manufacture thereof
JP4741305B2 (en) * 2005-07-20 2011-08-03 槌屋ティスコ株式会社 Sealing material for image forming apparatus and manufacturing method thereof
CN112368059A (en) * 2018-05-10 2021-02-12 生物质能技术有限公司 Method and apparatus for manufacturing dry powder
KR102393320B1 (en) * 2020-12-22 2022-05-03 한국에너지기술연구원 Method for Spray drying and Controlling particle shape using nanobubble

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116271891B (en) * 2023-05-24 2023-08-04 泸州聚购科技发展有限公司 Atomizing device for barium titanate production

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4741305B2 (en) * 2005-07-20 2011-08-03 槌屋ティスコ株式会社 Sealing material for image forming apparatus and manufacturing method thereof
WO2010073724A1 (en) * 2008-12-26 2010-07-01 Meiji Dairies Corporation Method for manufacturing solid milk
WO2010073715A1 (en) * 2008-12-26 2010-07-01 Meiji Dairies Corporation Solid milk and method for manufacture thereof
JP2012513741A (en) * 2008-12-26 2012-06-21 株式会社明治 Solid milk production method and solid milk
AU2009332212B2 (en) * 2008-12-26 2013-09-19 Meiji Co., Ltd. Solid milk and method for manufacture thereof
JP2015070859A (en) * 2008-12-26 2015-04-16 株式会社明治 Production method of solid milk, and improvement method of compression moldability and solubility of solid milk
CN112368059A (en) * 2018-05-10 2021-02-12 生物质能技术有限公司 Method and apparatus for manufacturing dry powder
KR102393320B1 (en) * 2020-12-22 2022-05-03 한국에너지기술연구원 Method for Spray drying and Controlling particle shape using nanobubble

Also Published As

Publication number Publication date
JP2808016B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
CA2050624C (en) Method and device for acting upon fluids by means of a shock wave
US3937445A (en) Process and apparatus for obtaining the emulsification of nonmiscible liquids
US5720551A (en) Forming emulsions
US4689237A (en) Process for the thermal treatment of fluids
JP2014213208A (en) Process and device for production of dairy products, especially milk foam
US6749329B2 (en) Processing product components
US2020719A (en) Process and apparatus for solidifying material in finely subdivided form
US8047702B1 (en) Continuous high shear mixing process
SA96170485B1 (en) Apparatus and method for emulsifying a pressurized, multi-component liquid
JP3583605B2 (en) Method and apparatus for homogenizing dairy products
US2846150A (en) Fluid energy grinding
GB2036534A (en) Sterilising and/or homogenising fluid products
CN110604206A (en) Machine and method for making food products
JPH0365136A (en) Foaming and spray-drying process, apparatus therefor and production of powdery cream
Köhler et al. Design of a microstructured system for homogenization of dairy products with high fat content
PL149224B1 (en) Bitumen foaming method and apparatus
JPH0234594B2 (en)
CN110898760A (en) Instant powder hollow granulation device and granulation process
US20120291338A1 (en) Apparatus and method for producing an emulsion of a fuel and an emulsifiable component
US20030199595A1 (en) Device and method of creating hydrodynamic cavitation in fluids
SU1669519A1 (en) A method for preparing emulsion and device therefor
CN209073403U (en) Stir compression type instant tea powder hollow granulation device
JP2733781B2 (en) Method and apparatus for dissolving carbon dioxide
KR20220070540A (en) Method and apparatus for manufacturing carbonated beverages
Ochowiak et al. Analysis of Liquid Jet Breakup in One‐and Two‐Phase Flows

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

EXPY Cancellation because of completion of term