JPH036508A - Five-element zoom lens - Google Patents
Five-element zoom lensInfo
- Publication number
- JPH036508A JPH036508A JP1141377A JP14137789A JPH036508A JP H036508 A JPH036508 A JP H036508A JP 1141377 A JP1141377 A JP 1141377A JP 14137789 A JP14137789 A JP 14137789A JP H036508 A JPH036508 A JP H036508A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- lens component
- refractive power
- zooming
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 18
- 230000004075 alteration Effects 0.000 abstract description 22
- 230000004304 visual acuity Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000004907 flux Effects 0.000 description 2
- 206010010071 Coma Diseases 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/16—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
- G02B15/163—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
- G02B15/167—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
- G02B15/173—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/145—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
- G02B15/1451—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Lenses (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明はズームレンズに関し、特にTTLパッシブタイ
プのAF(オートフォーカス)を有するビデオカメラ等
の小型カメラに応用可能な5成分ズームレンズに関する
。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a zoom lens, and more particularly to a five-component zoom lens applicable to small cameras such as video cameras having a TTL passive type AF (autofocus).
従来夏技玉
近年、ビデオカメラ等の小型カメラでは、電子部品のコ
ストダウン・コンパクト化が相当なスピードで達成され
ているが、これに応ずるレンズ系としでは、電子部品は
どコストダウン・コンパクト化が進展しているとは言い
難く、コスト面9重量面、大きさ等でカメラ本体に占め
るレンズ系の割合は年々増加している。また、最近では
非常に高解像度の撮像素子が用いられるようになり、レ
ンズ系の光学性能は従来よりも高いものが要求されるよ
うになっている。このため、一部にはコンパクト化、軽
量化と逆行するズームレンズも見られる。In recent years, cost reductions and miniaturization of electronic components for small cameras such as video cameras have been achieved at a considerable speed. It is difficult to say that there has been any progress in the field of camera lenses, and the proportion of lenses in the camera body is increasing year by year due to cost, weight, size, etc. Furthermore, in recent years, very high-resolution imaging devices have come into use, and the optical performance of lens systems is now required to be higher than before. For this reason, there are some zoom lenses that go against the trend of becoming more compact and lightweight.
従来のレンズでは、近接物体へのフォーカシングに際し
て第ルンズ成分を繰り出す方式が多く採用されている。In conventional lenses, a method is often adopted in which the first lens component is extended when focusing on a nearby object.
この第ルンズ成分繰り出し方式では、ズーム全域で一定
距離の物体に対するレンズ繰り出し量が同一なので、フ
ォーカシング機構が簡単である等の利点があるが、反面
筒ルンズ成分の有効径を大きくする必要が生じ、十分に
軽量化が達成できない。また、近接時における収差変動
が大きく、特にテレ端では球面収差がアンダー側へ、像
面がオーバー側へ倒れてしまい良好な画像を得ることが
難しく、さらに、フォーカシングレンズの電動繰り出し
機構を有するものでは、消費電力が大きくなる等の問題
がある。In this method of extending the lens component, the amount of lens extension for an object at a constant distance is the same throughout the entire zoom range, so there are advantages such as a simple focusing mechanism, but on the other hand, it is necessary to increase the effective diameter of the cylindrical lens component. Sufficient weight reduction cannot be achieved. In addition, the aberration fluctuations are large at close-up, and especially at the telephoto end, the spherical aberration falls to the under side and the image plane falls to the over side, making it difficult to obtain a good image.Furthermore, it is difficult to obtain a good image with a focusing lens that has an electric focusing lens mechanism. However, there are problems such as increased power consumption.
上記問題を解決するために、ズーミングによる像点移動
を補正するコンペンセーターでフォーカシングを行うも
のや、結像を行うマスターレンズ系の後群で、フォーカ
シングを行うものが知られている。例えば、特開昭55
−40447号公報には、コンペンセーターによりフォ
ーカシングを行うズームレンズが開示されている。しか
しながら、上記公報に示されているものは、ズーミング
中一定距離の物体に対して常に合焦しているようにフォ
ーカシング成分(コンペンセーター)を追従させる(以
下、「トラッキング」という)時の軌跡(以下、「トラ
ッキングカーブ」という)が極値を持つ。従って、この
極値の付近ではコンペンセーターの移動方向が変化する
ために、トラッキングが行きすぎてしまったり、また、
この付近でズーミングを中止して再びズーミングを行う
時には、ズーミングの方向によりコンペンセーターの移
動方向が異なる等の理由により、コンペンセーターの制
御が、かなり困難となり、APの精度を高くすることが
困難である。この様子を第12図(a) (b) (C
)に示す。同図において、バリエータ−(V)の動きは
直線的であるが、コンペンセーター(C(F) ’)の
動きは極値を有する。そして、コンペンセーター (C
(F) )は直線部分では点線で示す正しいトラッキン
グ軌跡に従うが、極値のところでは実線で示す如く、行
き過ぎてしまい、正しいトラッキングカーブからずれる
。In order to solve the above problem, there are known methods in which focusing is performed using a compensator that corrects image point movement due to zooming, and methods in which focusing is performed in a rear group of a master lens system that performs image formation. For example, JP-A-55
Japanese Patent No. 40447 discloses a zoom lens that performs focusing using a compensator. However, what is shown in the above publication is a trajectory (hereinafter referred to as "tracking") when the focusing component (compensator) is made to follow (hereinafter referred to as "tracking") so that an object at a certain distance is always in focus during zooming. (hereinafter referred to as a "tracking curve") has an extreme value. Therefore, near this extreme value, the direction of movement of the compensator changes, resulting in excessive tracking or
When you stop zooming and start zooming again near this point, it becomes quite difficult to control the compensator because the direction of movement of the compensator differs depending on the direction of zooming, making it difficult to increase the accuracy of AP. be. This situation is shown in Figure 12 (a) (b) (C
). In the figure, the movement of the variator (V) is linear, but the movement of the compensator (C(F)') has an extreme value. And the compensator (C
(F) ) follows the correct tracking trajectory shown by the dotted line in the straight line portion, but at the extreme value it goes too far and deviates from the correct tracking curve, as shown by the solid line.
また、特開昭59−28120号公報、特開昭59−2
8121号公報には、マスターレンズ系の後群を使って
フォーカシングを行うものが開示されている。これらの
例では、トラッキングカーブが極値を持たないという利
点があるが、絞りよりも像側のレンズによりフォーカシ
ングを行っているため、絞りの前方に光路分割用の分光
プリズムあるいはミラーを配置してAFを行うTTLパ
ッシブタイプのカメラには用いることが不可能であった
。Also, JP-A-59-28120, JP-A-59-2
Japanese Patent Application No. 8121 discloses a lens that performs focusing using the rear group of a master lens system. These examples have the advantage that the tracking curves do not have extreme values, but since focusing is performed by a lens on the image side of the aperture, a spectroscopic prism or mirror for optical path splitting is placed in front of the aperture. It was impossible to use it for a TTL passive type camera that performs AF.
さらに、これらの例とは別に、特開昭53−10734
7号公報には、トラッキングカーブが極値を持たないよ
うに、ズーミング時に変倍を行うバリエータ−の倍率が
一1倍を含まないズーム解を用いるものが開示されてい
る。しかしながら、このようなズーム解を有するものは
、各レンズ成分間の屈折カバランスが悪くなり、ズーム
全域にわたって諸収差を良好に補正することが困難な上
、バリエータ−の移動量が増大してズームレンズが大型
化してしまう。Furthermore, apart from these examples, Japanese Patent Application Laid-Open No. 53-10734
Publication No. 7 discloses a zoom solution in which the magnification of a variator that changes magnification during zooming does not include 11 times so that the tracking curve does not have an extreme value. However, with such a zoom solution, the refractive coverage between each lens component deteriorates, making it difficult to properly correct various aberrations over the entire zoom range, and the amount of movement of the variator increases, making it difficult to zoom. The lens becomes larger.
尚、5成分ズームレンズとしては、特公昭60−400
10号公報、特開昭60−243622号公報等に開示
されたものがある。しかしながら、前者の場合には第ル
ンズ成分でフォーカシングを行うように構成されている
ので、前述の如く第ルンズ成分の有効径が大きくなって
しまい、重量面等からみてコンパクト性を欠いている。In addition, as a 5-component zoom lens, the
There are those disclosed in Japanese Patent Application Laid-open No. 10, Japanese Patent Application Laid-Open No. 60-243622, and the like. However, in the former case, since focusing is performed using the first lens component, the effective diameter of the first lens component becomes large as described above, resulting in a lack of compactness in terms of weight and the like.
後者の場合には絞りよりも像側のレンズを使ってフォー
カシングを行っているので、やはり前述の如<TTLパ
ッシブタイプのAFを有する小型カメラには用いること
ができない。In the latter case, since focusing is performed using a lens closer to the image than the aperture, it cannot be used in a small camera having TTL passive type AF as described above.
■が”ンしよ°とする云・
そこで、本発明の目的は、第2レンズ成分以外のレンズ
成分によりフォーカシングを行うズームレンズにおいて
、ズーミング時のトラッキングカーブがAFに最適な軌
跡を描くことによってズーミングの全域で高精度のAF
を実現することができるズームレンズを提供することに
ある。Therefore, an object of the present invention is to enable the tracking curve during zooming to draw an optimal trajectory for AF in a zoom lens that performs focusing using a lens component other than the second lens component. High-precision AF throughout the zooming range
Our goal is to provide a zoom lens that can achieve this goal.
特に、TTLパッシブタイプのAFを可能とするズーム
レンズを提供することにある。In particular, it is an object of the present invention to provide a zoom lens that enables TTL passive type AF.
さらに、本発明の目的は、上記した目的を達成し、かつ
、良好に収差が補正された軽量・コンパクトな高変倍率
ズームレンズを提供することにある。A further object of the present invention is to provide a lightweight, compact, high-power zoom lens that achieves the above-mentioned objects and has aberrations well corrected.
課題を”決するための手段
上記の目的を達成するために、本発明の5成分ズームレ
ンズは物体側より順に、正の屈折力を存しズーミング中
固定の第ルンズ成分(■)、負の屈折力を有しズーミン
グ時変倍のために光軸上を前後に可動な第2レンズ成分
(■)、負の屈折力を有しズーミング時光軸上を前後に
可動な第3レンズ成分(■)、正の屈折力を有しズーミ
ング時光軸上を前後に可動な第4レンズ成分(rV)、
及び正の屈折力を有しズーミング中固定の第5レンズ成
分(V)から成り、前記第2レンズ成分(■)及び第3
レンズ成分(II[)は互いに平行でない軌跡を描いて
テレ端からワイド端にかけて単調に像側から物体側へ移
動する構成としている。Means for Solving the Problems In order to achieve the above object, the five-component zoom lens of the present invention has, in order from the object side, a first lens component (■) which has positive refractive power and is fixed during zooming, and a negative refractive power component (■). The second lens component (■) has a strong power and can be moved back and forth on the optical axis for variable magnification during zooming, and the third lens component (■) has negative refractive power and can be moved back and forth on the optical axis during zooming. , a fourth lens component (rV) having positive refractive power and movable back and forth on the optical axis during zooming;
and a fifth lens component (V) that has positive refractive power and is fixed during zooming;
The lens component (II[) is configured to move monotonically from the image side to the object side from the telephoto end to the wide end, drawing trajectories that are not parallel to each other.
また、第3レンズ成分(lI[)が光軸上を前後に移動
することによってフォーカシングを行うのが好ましく、
第2レンズ成分(II)及び第3レンズ成分(II[)
はテレ端よりもワイド端の方が物体側の位置にあるのが
好ましい。Further, it is preferable that focusing is performed by moving the third lens component (lI[) back and forth on the optical axis,
Second lens component (II) and third lens component (II[)
is preferably located closer to the object side at the wide end than at the telephoto end.
第2レンズ成分(II)は−1倍の結像倍率を含んでい
るが、第4レンズ成分(IV)を非線型に移動させるこ
とによって、第3レンズ成分(III)はテレ端からワ
イド端にかけて単調に物体側へ移動するような解をつく
ることができる。この場合、バリエータ−である第2レ
ンズ成分(II)の結像倍率が一1倍を含まない解を用
いるときとは異なり、収差を良好に補正しうるパワーバ
ランスを実現することが可能であり、しかもバリエータ
−の移動量は4枚分正負負正タイプのズームレンズとほ
ぼ同程度である。第9図に示すように、第3レンズ成分
(Iff)のトラッキングカーブがこのような極値を持
たない軌跡を描くことにより、ズーミング時における第
3レンズ成分(II[)の速度は常に同一方向となり、
また加速度も常に同一方向となるため、AFによるレン
ズ駆動系の制御が容易となる。これに伴ってズーミング
の全域で高精度のAFを実現することができる。また第
2レンズ成分(II)と第4レンズ成分(IV)との相
対的な位置関係は物点の位置にかかわらず常に定まって
いるため、第ルンズ成分でフォーカシングを行う従来の
ズームレンズと同様に、簡単なカム機構でズーミング制
御を行うことができるという利点もある。第3レンズ成
分(I[[)は近接物点に対しては無限遠物点に対する
ときよりも前へ繰り出されてフォーカシングが行われる
ので、第3レンズ成分(I[[)と第4レンズ成分(I
V)との間に余分な空気間隔が必要とされず、また繰り
出し量も小さいので、全長が短くかつ第ルンズ成分(1
)の有効径が小さいコンパクトなズームレンズを実現す
ることが可能である。The second lens component (II) includes an imaging magnification of -1x, but by moving the fourth lens component (IV) non-linearly, the third lens component (III) is shifted from the telephoto end to the wide end. It is possible to create a solution that moves monotonically toward the object. In this case, unlike when using a solution that does not include the imaging magnification of the second lens component (II) which is a variator, it is possible to realize a power balance that can satisfactorily correct aberrations. Moreover, the amount of movement of the variator is approximately the same as that of a four-lens positive-negative-positive type zoom lens. As shown in Figure 9, the tracking curve of the third lens component (Iff) draws a trajectory without such extreme values, so that the speed of the third lens component (II[) during zooming is always in the same direction. Then,
Furthermore, since the acceleration is always in the same direction, the lens drive system can be easily controlled by AF. Accordingly, highly accurate AF can be achieved over the entire zooming range. Furthermore, since the relative positional relationship between the second lens component (II) and the fourth lens component (IV) is always fixed regardless of the position of the object point, it is similar to conventional zoom lenses that perform focusing using the lens component. Another advantage is that zooming can be controlled using a simple cam mechanism. The third lens component (I[[) is moved forward for focusing on a nearby object point than when focusing on an object point at infinity, so the third lens component (I[[) and the fourth lens component (I
Since no extra air space is required between V) and the amount of feeding is small, the overall length is short and the lunz component (1
) It is possible to realize a compact zoom lens with a small effective diameter.
さらに、良好に収差が補正された軽量・コンパクトなズ
ームレンズを得るためには、第ルンズ成分(I)乃至第
4レンズ成分(rV)が以下のように構成されているこ
とが望ましい。Furthermore, in order to obtain a lightweight and compact zoom lens with well-corrected aberrations, it is desirable that the lens component (I) to the fourth lens component (rV) be configured as follows.
例えばレンズ構成として、第ルンズ成分(I)は1枚の
負レンズ及び2枚の正レンズの合計3枚、第2レンズ成
分(II)は2枚の負レンズ及び1枚の正レンズの合計
3枚、第3レンズ成分(■)は1つの負レンズ成分、並
びに第4レンズ成分(IV)は1つ又は2つの正レンズ
成分から構成されるのが望ましい。このような簡単なレ
ンズ構成にすることにより、コンパクトで、かつ高性能
なズームレンズが得られる。For example, as a lens configuration, the first lens component (I) has one negative lens and two positive lenses, a total of three lenses, and the second lens component (II) has two negative lenses and one positive lens, a total of three lenses. Preferably, the third lens component (■) is composed of one negative lens component, and the fourth lens component (IV) is composed of one or two positive lens components. By adopting such a simple lens configuration, a compact and high-performance zoom lens can be obtained.
またさらに第ルンズ成分(1)乃至第4レンズ成分(I
V)は、以下の条件を満足することが望ましい。Furthermore, the fourth lens component (1) to the fourth lens component (I
V) desirably satisfies the following conditions.
2.10< 19’、 l /ψi<6.oo、 9
)、<O・・・・・・■1.60<?、/鵠<4.80
・・・・・・■0.80< %/
乞<2.00 −・・・−■但し、乞
:第ルンズ成分(I)の屈折力乞:第2レンズ成分(n
)の屈折力
へ=第3レンズ成分(I[I)の屈折力光:第4レンズ
成分(IV)の屈折力
である。2.10<19', l/ψi<6. oo, 9
), <O...■1.60<? ,/mouse<4.80
・・・・・・■0.80<%/
<2.00 -...-■ However, the refractive power of the second lens component (I) is the second lens component (n
) = refractive power of the third lens component (I[I): refractive power of the fourth lens component (IV).
■の条件は、第ルンズ成分(1)と第2レンズ成分(I
I)との屈折力の比に関するものである。Condition (2) is the first lens component (1) and the second lens component (I
It concerns the ratio of refractive power with I).
条件■の上限を越えて第2レンズ成分の屈折力が強くな
るとペッツバール和が大きな負の値となり、特にワイド
端で像面が大きくアンダー側に倒れてしまい、一方テレ
端ではコマ収差が発生してしまうので、高性能な画質を
全画面にわたって得ることができない、また、条件■の
下限を越えて第2レンズ成分(II)の屈折力が弱くな
ると、第2レンズ成分(n)が変倍のために必要とする
移動量が増大し、レンズ全長が著しく長くなってしまい
、コンパクトなズームレンズを得ることが困難になる。If the refractive power of the second lens component becomes strong beyond the upper limit of condition (2), the Petzval sum will become a large negative value, and the image plane will be significantly tilted toward the underside, especially at the wide end, while coma aberration will occur at the tele end. In addition, if the lower limit of condition (2) is exceeded and the refractive power of the second lens component (II) weakens, the second lens component (n) becomes The amount of movement required for this purpose increases, and the overall length of the lens becomes significantly longer, making it difficult to obtain a compact zoom lens.
更に、テレ端とワイド端における球面収差の差が大きく
なり、ズーム全域で高性能な画質を得ることかできなく
なる。Furthermore, the difference in spherical aberration between the telephoto end and the wide end becomes large, making it impossible to obtain high-performance image quality over the entire zoom range.
■の条件は、第2レンズ成分(I[)と第3レンズ成分
(I[l)との屈折力の比に関する条件である。Condition (2) is a condition regarding the ratio of refractive power between the second lens component (I[) and the third lens component (I[l)].
条件■の上限を越えて第3レンズ成分(III)の屈折
力が弱くなるとズーミングの際にコンペンセーターとし
て移動する量が増大し、テレ端からワイド端にかけての
収差変動量が大きくなり、ズーム全域で高性能な画質を
得ることができない。また、条件■の下限を越えて第3
レンズ成分(III)の屈折力が強くなると、テレ端に
おける像面が大きくアンダー側に倒れてしまい、全画面
にわたって高性能な画質を得ることができない。If the refractive power of the third lens component (III) becomes weaker by exceeding the upper limit of condition (2), the amount of movement as a compensator during zooming will increase, and the amount of aberration fluctuation from the telephoto end to the wide end will increase, resulting in cannot obtain high-performance image quality. In addition, the third condition exceeds the lower limit of condition ■.
If the refractive power of the lens component (III) becomes strong, the image plane at the telephoto end will be significantly tilted to the underside, making it impossible to obtain high-performance image quality over the entire screen.
■の条件は、第ルンズ成分(1)と第4レンズ成分(I
V)との屈折力の比に関するものである。Condition (2) is the fourth lens component (1) and the fourth lens component (I
V) and the refractive power ratio.
条件■の上限を越えて第4レンズ成分(IV)の屈折力
が強くなると全体の球面収差がアンダー側に大きく倒れ
てしまい、良好な軸上性能が得られない。また条件■の
下限を越えて第4レンズ成分(■)の屈折力が弱くなる
と像点補正のための移動量が大きくなり、中間焦点距離
(ミドル)付近の収差が太き(くずれてズーム全域で高
性能な画質を得ることができなくなる。If the refractive power of the fourth lens component (IV) becomes strong beyond the upper limit of condition (2), the overall spherical aberration will be significantly tilted to the underside, making it impossible to obtain good axial performance. In addition, when the lower limit of condition (■) is exceeded and the refractive power of the fourth lens component (■) becomes weak, the amount of movement for image point correction becomes large, and the aberrations near the intermediate focal length (middle) become thick (collapsed and the entire zoom range You will not be able to obtain high-performance image quality.
また、さらに諸収差を良好に補正するためには第5レン
ズ成分(V)は物体側より順に正レンズ。Furthermore, in order to better correct various aberrations, the fifth lens component (V) is a positive lens in order from the object side.
負レンズ、大きな空気間隔をあけて1枚または2枚の正
レンズ、負レンズ、及び1枚または2枚の正レンズで構
成され、以下の条件を満足することが望ましい。It is desirable that the lens be composed of a negative lens, one or two positive lenses separated by a large air gap, a negative lens, and one or two positive lenses, and that the following conditions be satisfied.
−0,150<ψ口/ψsm<0.320 ・・
・・・・■但し、9’SA:第5レンズ成分(V)の物
体側より2枚のレンズの合
底屈折力
ψsl:第5レンズ成分(V)の物
体側より3枚目以降のレン
ズの合成屈折力
である。-0,150<ψmouth/ψsm<0.320...
...■ However, 9'SA: The combined refractive power of the two lenses from the object side of the fifth lens component (V) ψsl: The third and subsequent lenses from the object side of the fifth lens component (V) is the composite refractive power of
■の条件は第5レンズ成分(V)の前群と後群との屈折
力の比に関するものである0条件■の上限を越えて前群
の屈折力の方が強くなると、全体の球面収差が大きくア
ンダー側へ倒れてしまう。Condition (2) concerns the ratio of the refractive power between the front group and the rear group of the fifth lens component (V).If the upper limit of the 0 condition (■) is exceeded and the refractive power of the front group becomes stronger, the overall spherical aberration falls to the under side.
一方条件■の下限を越えて前群の屈折力の方が弱くなる
と、球面収差がオーバー側へ倒れてしまう。On the other hand, if the lower limit of condition (2) is exceeded and the refractive power of the front group becomes weaker, the spherical aberration will shift to the over side.
いずれの場合にも高性能のズームレンズを実現するのは
困難となる。In either case, it is difficult to realize a high-performance zoom lens.
また、本発明のズームレンズに第5レンズ成分(V)の
物体側末端に光路分割用のプリズム又はミラーが挿入さ
れているのが好ましい。更にプリズム又はミラーと共に
絞りが設けられていてもよく、この場合フォーカシング
レンズ群である第3レンズ成分(I[l)は、絞りより
も物体側に配置されることとなり、また絞りの物体側に
光路分割用のプリズムが配置されると、分割された光束
を用いて焦点検出を行うTTLパッシブタイプのAFを
行うカメラに最適なズームレンズを実現することが可能
となる。Further, it is preferable that a prism or a mirror for splitting the optical path is inserted into the object-side end of the fifth lens component (V) in the zoom lens of the present invention. Furthermore, an aperture may be provided together with the prism or mirror, and in this case, the third lens component (I[l), which is a focusing lens group, will be placed closer to the object side than the aperture, and the third lens component (I[l), which is the focusing lens group, will be placed on the object side of the aperture. When a prism for optical path division is arranged, it becomes possible to realize a zoom lens that is optimal for a camera that performs TTL passive type AF that performs focus detection using the divided light flux.
また、本発明では主レンズの途中に設けた光路分割手段
により得られた光束によって自動焦点検出を行ってもよ
く、この場合これらによって得られた測距信号又はフォ
ーカス信号に従って第3レンズ成分を移動させるシステ
ムを有しているのが好ましい。第11図はこのシステム
の1つの例を示している。プリズム(又はミラー)(1
)により分割された光束を用いて焦点検出装置(4)が
焦点検出を行い、検出された信号によって演算及び制御
回路(5)がデフォーカス量に応じた第3レンズ成分(
III)の移動量を算出して、フォーカス群駆動モータ
ー(3)を駆動させる。第3レンズ成分の玉砕(7)の
一部は、ネジ山を刻んだシャフト(8)と連結しており
、ギヤを通じて伝達されたモーター(3)の回転に応じ
て光軸上を前後に移動する。尚モーター(3)の回転は
ギヤのみによって第3レンズ成分(III)に伝達され
てもよい。Furthermore, in the present invention, automatic focus detection may be performed using the light beam obtained by the optical path splitting means provided in the middle of the main lens, and in this case, the third lens component is moved according to the distance measurement signal or focus signal obtained by these. It is preferable to have a system that allows FIG. 11 shows one example of this system. Prism (or mirror) (1
) The focus detection device (4) performs focus detection using the luminous flux divided by
The amount of movement in III) is calculated and the focus group drive motor (3) is driven. A part of the third lens component's ball crusher (7) is connected to a threaded shaft (8), and moves back and forth on the optical axis according to the rotation of the motor (3) transmitted through the gear. do. Note that the rotation of the motor (3) may be transmitted to the third lens component (III) only by a gear.
犬」L勇
以下、本発明に基づく5成分ズームレンズの実施例を示
す。Examples of the five-component zoom lens according to the present invention will be described below.
但し、各実施例において、r、〜r3□は曲率半径、d
、〜dffl は軸上面間隔を示し、N1〜N12、シ
、〜ν1.はd線に対する屈折率、アツベ数を示す、尚
、各実施例とも第5レンズ成分(V)の物体側に配置さ
れている平板は、焦点検出光学系へ光束を導く光路分割
用のプリズムであり、第5レンズ成分(V)の像側に配
置されている平板は、グイクロイックプリズム、ローパ
スフィルタ等に相当する平板である。However, in each example, r, ~r3□ is the radius of curvature, d
, ~dffl indicate the axial surface spacing, N1 to N12, ~v1. indicates the refractive index and Atsube number for the d-line. In each example, the flat plate placed on the object side of the fifth lens component (V) is a prism for splitting the optical path to guide the light beam to the focus detection optical system. The flat plate arranged on the image side of the fifth lens component (V) is a flat plate corresponding to a guichroic prism, a low-pass filter, or the like.
〈実施例1〉
F、、−1,865〜1.486〜1.485〜1.4
80F=66.3〜32.0〜19.0〜8.7536
Σd =121.355〜121.355〜121.3
55〈実施例2〉
F No = 1.866〜1.529〜1.526〜
1.480F=66.3〜32.0〜19.0〜8.7
5d+
1.800 N+
1.84tjbti
ν、 za、hz
Z4
−J4.jU9
r3゜
Σd =124.224〜124.224〜124.2
24〜124.224〈実施例3〉
F、、=1.829〜1.413〜1.409〜1.4
40F=66.3〜32.0〜19.0〜8.751l
−5UU、188
〈実施例4〉
FNO=1.870〜1.471〜1.466〜1.4
60F =66.3〜32.0〜19.0〜8.751
9
:3’/、’108
Σd =119.160〜119.160〜119.1
60Σd =117.122〜117.122〜117
.122次に第1図〜第4図は前記実施例1〜4のテレ
端における概略構成を示している。第5レンズ成分(V
)の物体側にはプリズム(又はミラー)(1)及び絞り
(10)が示されており、像側にはグイクロイックプリ
ズム、ローパスフィルタ等に相当する平板(11)が示
されている。<Example 1> F, -1,865 to 1.486 to 1.485 to 1.4
80F=66.3~32.0~19.0~8.7536 Σd=121.355~121.355~121.3
55 <Example 2> F No = 1.866 ~ 1.529 ~ 1.526 ~
1.480F=66.3~32.0~19.0~8.7
5d+ 1.800 N+ 1.84tjbti ν, za, hz Z4 -J4. jU9 r3゜Σd =124.224~124.224~124.2
24-124.224 <Example 3> F,, = 1.829-1.413-1.409-1.4
40F=66.3-32.0-19.0-8.751l -5UU, 188 <Example 4> FNO=1.870-1.471-1.466-1.4
60F = 66.3~32.0~19.0~8.751
9:3'/,'108Σd=119.160~119.160~119.1
60Σd = 117.122~117.122~117
.. 122 Next, FIGS. 1 to 4 show schematic configurations at the telephoto end of Examples 1 to 4. Fifth lens component (V
) A prism (or mirror) (1) and a diaphragm (10) are shown on the object side, and a flat plate (11) corresponding to a guichroic prism, a low-pass filter, etc. is shown on the image side.
第5図〜第8図は各実施例1〜4に対応する収左図で、
それぞれ<L>はテレ端、<旧〉及びくM2>は中間焦
点距離(ミドル)、<S>はワイド端での収差を表わす
。また、実線(d)はd線に対する収差、1点鎖線(g
)はg線に対する収差、2点鎖線(c)はg線に対する
収差を表わし、点線(SC)は正弦条件を表わす。更に
点線(DM)と実線(DS>はメリジオナル面とサジタ
ル面での非点収差をそれぞれ表わしている。FIGS. 5 to 8 are diagrams corresponding to each of Examples 1 to 4,
<L> represents the aberration at the telephoto end, <old> and M2> represent the intermediate focal length (middle), and <S> represents the aberration at the wide end. In addition, the solid line (d) is the aberration for the d-line, and the dashed line (g
) represents the aberration for the g-line, the two-dot chain line (c) represents the aberration for the g-line, and the dotted line (SC) represents the sine condition. Furthermore, the dotted line (DM) and the solid line (DS> represent astigmatism on the meridional plane and sagittal plane, respectively).
第9図は第2〜4レンズ成分(II) (I[[)
(rV)のテレ端<T>からワイド端<W>にかけて
の移動を模式的に示しており、第10図は第3レンズ成
分(III)の無限遠物体フォーカシング状態及び最近
接物体(S1=1.5m)フォーカシング状態における
テレ端<T>からワイド端<W>にかけての移動を模式
的に示している。尚、第3レンズ成分(In)は、近接
時には矢印で示すように物体側へ移動する。Figure 9 shows the second to fourth lens components (II) (I[[)
(rV) from the tele end <T> to the wide end <W>, and FIG. 10 shows the infinity object focusing state of the third lens component (III) and the closest object (S1= 1.5m) Schematically shows the movement from the telephoto end <T> to the wide end <W> in the focusing state. Note that the third lens component (In) moves toward the object side as shown by the arrow when approaching.
第11図は本発明のズームレンズを適用したシステムの
一実施例を示す模式図である。FIG. 11 is a schematic diagram showing an embodiment of a system to which the zoom lens of the present invention is applied.
第12図は従来例のバリエータ−(V)及びフォーカシ
ングを行うコンペンセーター(C(F))のテレ端<T
>からワイド端<W>にかけての移動を示しており、実
線は実際のトラッキングを示しており、点線は正しいト
ランキングを示している。Figure 12 shows the telephoto end of the conventional variator (V) and compensator (C (F)) that performs focusing.
> to the wide end <W>, the solid line shows actual tracking, and the dotted line shows correct trunking.
光肌夏塾来
本発明によれば、ズーミングの全域で高精度で制御の容
易なAFを実現することができ、特にTTLパッシブタ
イプのAFを可能とする。更に、良好に収差が補正され
ており、高解像力、高画質であり、軽量・コンパクトな
高変倍率ズームレンズを実現することができる。According to the present invention, highly accurate and easily controllable AF can be realized over the entire zooming range, and in particular, TTL passive type AF can be achieved. Furthermore, aberrations are well corrected, high resolution, high image quality, and a lightweight and compact high-power zoom lens can be realized.
第1図5第2図、第3図及び第4図は本発明の各実施例
に対応するレンズ構成図、第5図、第6図、第7図及び
第8図はその収差図であり、第9図は本発明における第
2〜4レンズ成分(■)(III) (TV)のテレ
端からワイド端にかけての移動を示す模式図、第10図
は本発明における第3レンズ成分(I[[)のテレ端か
らワイド端にかけての移動を示す模式図であり、第11
図は本発明のズームレンズを適用したシステムの一実施
例を示す模式図であり、第12図は従来例のバリエータ
−及びコンペンセーターのテレ端からワイド端にかけて
の移動を示す模式図である。Fig. 1, Fig. 5, Fig. 2, Fig. 3, and Fig. 4 are lens configuration diagrams corresponding to each embodiment of the present invention, and Fig. 5, Fig. 6, Fig. 7, and Fig. 8 are their aberration diagrams. , FIG. 9 is a schematic diagram showing the movement of the second to fourth lens components (■) (III) (TV) in the present invention from the tele end to the wide end, and FIG. 10 is a schematic diagram showing the movement of the third lens component (I) in the present invention. [[] is a schematic diagram showing the movement from the tele end to the wide end, and the 11th
This figure is a schematic diagram showing an embodiment of a system to which the zoom lens of the present invention is applied, and FIG. 12 is a schematic diagram showing the movement of a conventional variator and compensator from a telephoto end to a wide end.
Claims (1)
固定の第1レンズ成分、負の屈折力を有しズーミング時
変倍のために光軸上を前後に可動な第2レンズ成分、負
の屈折力を有しズーミング時光軸上を前後に可動な第3
レンズ成分、正の屈折力を有しズーミング時光軸上を前
後に可動な第4レンズ成分、及び正の屈折力を有しズー
ミング中固定の第5レンズ成分から成り、前記第2レン
ズ成分及び第3レンズ成分は互いに平行でない軌跡を描
いてテレ端からワイド端にかけて単調に像側から物体側
へ移動することを特徴とするズームレンズ。 (2)前記第3レンズ成分はフォーカシングの為に光軸
上を前後に可動であることを特徴とする第1請求項に記
載のズームレンズ。 (3)前記第1レンズ成分乃至第4レンズ成分は以下の
条件を満足することを特徴とする第1請求項又は第2請
求項に記載のズームレンズ; 2.10<|ψ_II|/ψ_ I <6.00、ψ_II<
01.60<ψ_II/ψ_III<4.80 0.80<ψ_IV/ψ_ I <2.00 但し、ψ_ I :第1レンズ成分の屈折力 ψ_II:第2レンズ成分の屈折力 ψ_III:第3レンズ成分の屈折力 ψ_IV:第4レンズ成分の屈折力 である。[Claims] (1) In order from the object side, the first lens component has a positive refractive power and is fixed during zooming, and the first lens component has a negative refractive power and moves back and forth on the optical axis for variable magnification during zooming. A movable second lens component, a third lens component that has negative refractive power and is movable back and forth on the optical axis during zooming.
a fourth lens component that has a positive refractive power and is movable back and forth on the optical axis during zooming; and a fifth lens component that has a positive refractive power and is fixed during zooming; A zoom lens characterized in that the three lens components move monotonically from the image side to the object side from the telephoto end to the wide end, drawing trajectories that are not parallel to each other. (2) The zoom lens according to claim 1, wherein the third lens component is movable back and forth on the optical axis for focusing. (3) The zoom lens according to claim 1 or claim 2, wherein the first to fourth lens components satisfy the following conditions; 2.10<|ψ_II|/ψ_I <6.00, ψ_II<
01.60<ψ_II/ψ_III<4.80 0.80<ψ_IV/ψ_ I <2.00 However, ψ_ I: Refractive power of the first lens component ψ_II: Refractive power of the second lens component ψ_III: Third lens component refractive power ψ_IV: refractive power of the fourth lens component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1141377A JPH036508A (en) | 1989-06-02 | 1989-06-02 | Five-element zoom lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1141377A JPH036508A (en) | 1989-06-02 | 1989-06-02 | Five-element zoom lens |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH036508A true JPH036508A (en) | 1991-01-14 |
Family
ID=15290584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1141377A Pending JPH036508A (en) | 1989-06-02 | 1989-06-02 | Five-element zoom lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH036508A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009251118A (en) * | 2008-04-02 | 2009-10-29 | Panasonic Corp | Zoom lens system, interchangeable lens device and camera system |
JP2009251117A (en) * | 2008-04-02 | 2009-10-29 | Panasonic Corp | Zoom lens system, interchangeable lens device and camera system |
WO2013191296A1 (en) * | 2012-06-22 | 2013-12-27 | 株式会社タムロン | Zoom lens, and imaging apparatus equipped with same |
JP2018146869A (en) * | 2017-03-08 | 2018-09-20 | 富士フイルム株式会社 | Zoom lens and image capturing device |
-
1989
- 1989-06-02 JP JP1141377A patent/JPH036508A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009251118A (en) * | 2008-04-02 | 2009-10-29 | Panasonic Corp | Zoom lens system, interchangeable lens device and camera system |
JP2009251117A (en) * | 2008-04-02 | 2009-10-29 | Panasonic Corp | Zoom lens system, interchangeable lens device and camera system |
US8472123B2 (en) | 2008-04-02 | 2013-06-25 | Panasonic Corporation | Zoom lens system, interchangeable lens apparatus and camera system |
WO2013191296A1 (en) * | 2012-06-22 | 2013-12-27 | 株式会社タムロン | Zoom lens, and imaging apparatus equipped with same |
US9329370B2 (en) | 2012-06-22 | 2016-05-03 | Tamron Co., Ltd. | Zoom lens, and imaging apparatus equipped with same |
JP2018146869A (en) * | 2017-03-08 | 2018-09-20 | 富士フイルム株式会社 | Zoom lens and image capturing device |
CN108572435A (en) * | 2017-03-08 | 2018-09-25 | 富士胶片株式会社 | Zoom lens and photographic device |
CN108572435B (en) * | 2017-03-08 | 2021-10-29 | 富士胶片株式会社 | Zoom lens and image pickup apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109143556B (en) | Zoom lens and image pickup apparatus | |
US9684155B2 (en) | Optical system and image pickup apparatus including the same | |
JP6347590B2 (en) | Zoom lens and imaging apparatus having the same | |
CN104919355B (en) | Zoom lens and image capturing device | |
JP6223105B2 (en) | Zoom lens and imaging apparatus having the same | |
CN111474692B (en) | Zoom lens, imaging device, and lens device | |
JP4478247B2 (en) | Zoom lens | |
CN103901591B (en) | Zoom lens and photographic device | |
JP3962481B2 (en) | Zoom lens and optical apparatus using the same | |
JP5930895B2 (en) | Zoom lens and imaging apparatus having the same | |
JP2015230449A (en) | Zoom lens and imaging apparatus including the same | |
JP2001033703A (en) | Rear focus type zoom lens | |
CN107121768B (en) | Zoom lens and image pickup apparatus including the same | |
JP2014021258A5 (en) | ||
JP3619117B2 (en) | Zoom lens and optical apparatus using the same | |
JP2007212537A (en) | Zoom lens and imaging apparatus having same | |
JPWO2013031188A1 (en) | Zoom lens and imaging device | |
JP2017083782A (en) | Zoom lens and image capturing device having the same | |
JP2012042792A (en) | Zoom lens and image pickup device having the same | |
JP2016136174A (en) | Zoom lens and image capturing device having the same | |
JP2017215409A (en) | Zoom lens and imaging apparatus having the same | |
JPH036510A (en) | Five-element zoom lens | |
JP2012220901A (en) | Zoom lens and imaging apparatus with the same | |
JP6707987B2 (en) | Large-diameter anti-vibration zoom lens | |
JPH036508A (en) | Five-element zoom lens |