JPH0365048B2 - - Google Patents

Info

Publication number
JPH0365048B2
JPH0365048B2 JP6026483A JP6026483A JPH0365048B2 JP H0365048 B2 JPH0365048 B2 JP H0365048B2 JP 6026483 A JP6026483 A JP 6026483A JP 6026483 A JP6026483 A JP 6026483A JP H0365048 B2 JPH0365048 B2 JP H0365048B2
Authority
JP
Japan
Prior art keywords
signal
equation
output
smoothing
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6026483A
Other languages
Japanese (ja)
Other versions
JPS59185422A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6026483A priority Critical patent/JPS59185422A/en
Publication of JPS59185422A publication Critical patent/JPS59185422A/en
Publication of JPH0365048B2 publication Critical patent/JPH0365048B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/64Digital differential analysers, i.e. computing devices for differentiation, integration or solving differential or integral equations, using pulses representing increments; Other incremental computing devices for solving difference equations

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Complex Calculations (AREA)

Description

【発明の詳細な説明】 本発明はデイジタル信号処理装置に関する。[Detailed description of the invention] The present invention relates to a digital signal processing device.

デイジタル信号の微分フイルタリング操作、平
滑操作は波形自動計測、デイジタル画像処理など
の分野において基本的な演算処理の一つである。
一般に離散的な時系列信号のデイジタルフイルタ
リング処理においては、乗除算処理が必要とされ
ている。例えばミニコンピユータやマイクロコン
ピユータによつてソフトウエアで、上記フイルタ
を実現し、しかも良好な低域周波数特性を得るた
めには、精度が要求される小数点データの係数お
よび、その乗除算の繰り返し演算が必要とされ、
処理時間がかかり、実用に供しにくいという問題
があつた。他方、上記フイルタをハードウエアで
実現した場合でも乗除算回路が必要とされるた
め、複雑な回路構成となり、さらに、フイルタの
演算速度が、データの長さに影響されるという欠
点があつた。
Differential filtering and smoothing operations of digital signals are one of the basic calculation processes in fields such as automatic waveform measurement and digital image processing.
Multiplication and division processing is generally required in digital filtering processing of discrete time-series signals. For example, in order to realize the above filter using software on a minicomputer or microcomputer and obtain good low frequency characteristics, it is necessary to calculate coefficients of decimal point data, which require precision, and to repeatedly calculate their multiplication and division. needed,
There was a problem that the processing time was long and it was difficult to put it into practical use. On the other hand, even when the above filter is implemented in hardware, a multiplication/division circuit is required, resulting in a complicated circuit configuration, and furthermore, there is a drawback that the calculation speed of the filter is affected by the length of data.

また、平滑化操作と微分操作の両操作をソフト
ウエアで実現する場合には異なるソフトウエア構
成となるため、それだけメモリ占有し、ソフトウ
エアの実行効率も落ちていた。さらに、上記両操
作をハードウエアで実現する場合には2つの異な
つた回路構成が必要となり、素子数が多くなると
いう欠点がある。
Furthermore, when both the smoothing operation and the differential operation are implemented using software, different software configurations are required, which occupies memory and reduces software execution efficiency. Furthermore, if both of the above operations are implemented using hardware, two different circuit configurations are required, which has the disadvantage of increasing the number of elements.

さらに上記のような時系列信号には、通常、広
帯域雑音が重畳しており、そのフイルタリング操
作、特に多段(高次)フイルタリングは難かしい
とされていた。
Furthermore, broadband noise is usually superimposed on the above-mentioned time-series signals, and filtering thereof, especially multi-stage (high-order) filtering, has been considered difficult.

本発明の目的は、従来の微分フイルタリング平
滑化に関する信号処理方式に比較して、単純な手
段で構成でき、さらに低域特性の良好な高速デイ
ジタル微分、平滑化処理の2つの機能が同一構成
で実現できる信号処理装置を提供することであ
る。
An object of the present invention is to provide two functions of high-speed digital differentiation and smoothing processing in the same structure, which can be configured using simpler means than the conventional signal processing method related to differential filtering smoothing, and which also has good low-frequency characteristics. The object of the present invention is to provide a signal processing device that can be realized using the following methods.

本発明によれば、時系列中にサンプリングされ
たデイジタル信号を遅延して、第1の信号を中心
として時系列的に前後に等間隔である第2と第3
の信号を一対として予め定めた数の対の信号を出
力する遅延手段と、前記第1の信号と、0又は1
の値をとる第1の係数信号とを乗算する第1の乗
算手段と、前記第2の信号と、+1又は−1の値
をとる第2の係数信号とを乗算する第2の乗算手
段と、前記第3の信号と前記第2の乗算手段の出
力とを加算する第1の加算手段と、前記第1の加
算手段の出力と、前記第2又は第3の信号の時
間々隔に対応して0又は1の値をとる第2の係数
信号とを乗算する第3の乗算手段とを有する基本
回路を前記予め定めた数だけ設けるとともに、こ
れら基本回路の出力を加算する第2の加算手段
と、前記第1の乗算手段の出力と前記第2の加算
手段の出力とを加算する第3の加算手段とを具備
し、低域微分特性と、平滑化特性が同一の構成で
実現できる信号処理装置が得られる。
According to the present invention, a digital signal sampled in a time series is delayed, and a second and a third signal, which are equally spaced before and after the first signal, are generated in the time series.
a delay means for outputting a predetermined number of pairs of signals, the first signal and 0 or 1;
a first multiplier that multiplies the second signal by a first coefficient signal that takes a value of +1 or -1; and a second multiplier that multiplies the second signal by a second coefficient signal that takes a value of +1 or -1. , a first addition means for adding the third signal and the output of the second multiplication means, corresponding to a time interval between the output of the first addition means and the second or third signal. a predetermined number of basic circuits each having a third multiplication means for multiplying by a second coefficient signal taking a value of 0 or 1; and a second addition for adding the outputs of these basic circuits. and a third addition means for adding the output of the first multiplication means and the output of the second addition means, and the low-frequency differential characteristic and the smoothing characteristic can be realized with the same configuration. A signal processing device is obtained.

次に本発明を詳細に説明してゆく。低域微分処
理における理想周波数特性は式(1)で与えられる。
Next, the present invention will be explained in detail. The ideal frequency characteristic in low-frequency differential processing is given by equation (1).

H〓(1)(ω)=jω |ω|≦απ 0 απ<|ω|<π (1) ここでαπ(0<α<1)はカツトオフ周波数を
示し、サンプリング周期はT=1と仮定してい
る。
H〓 (1) (ω)=jω |ω|≦απ 0 απ<|ω|<π (1) Here, απ (0<α<1) indicates the cutoff frequency, and the sampling period is assumed to be T=1. are doing.

この周波数特性を図1に示す。式(1)で表現され
た特性を非巡回対称型FIRフイルタで近似した場
合、その周波数特性は、式(2)で与えられる。
This frequency characteristic is shown in FIG. When the characteristic expressed by equation (1) is approximated by an acyclic symmetric FIR filter, its frequency characteristic is given by equation (2).

F(1)(ω)=jPn=1 o sinω (2) 式(2)を時間域で表現すると、1次微分フイルタ
リングの出力信号系列yk (1)は式(3)の如く、入力信
号系列xkの中心差分の線形和として表現される。
F (1) (ω)=j Pn=1 o sinω (2) Expressing equation (2) in the time domain, the output signal sequence y k (1) of first-order differential filtering is It is expressed as a linear sum of central differences of the input signal sequence x k .

yk (1)=d/2Pn=1 ho(xk+o−xk-o) (3) ここでhh=d・ho、d=1/Pn=1 (n・ho)T
を示す。式(3)においてはdはスケールフアクタ
(定数)であつて、式(3)の差分演算には無関係で
あるので、実際の演算では考慮する必要がない。
さらに、式(3)において、hoを“0”ないしは
“1”と設定すれば式(3)は、差分演算のみで1次
微分特性が実現できることを示している。
y k (1) = d/2 Pn=1 h o (x k+o −x ko ) (3) where h h = d・ho , d=1/ Pn=1 (n・h o )T
shows. In equation (3), d is a scale factor (constant) and is unrelated to the difference calculation in equation (3), so there is no need to take it into account in actual calculation.
Furthermore, in equation (3), if ho is set to "0" or "1", equation (3) shows that the first-order differential characteristic can be realized only by difference calculation.

次に平滑処理における周波数特性を、式(4)で表
現する。
Next, the frequency characteristics in smoothing processing are expressed by equation (4).

F(m)(ω)=h0 (m)+2Pn=1 o (m) cos(nω) (4) 式(4)を時間域で表現すると平滑化処理出力信号
yk (m)は式(5)の如く、入力信号系列xk-とxkを中心
とした時間的に対称な信号系列の線形和として表
現される。
F (m) (ω)=h 0 (m) +2 Pn=1 o (m) cos (nω) (4) Expressing equation (4) in the time domain, the smoothing processing output signal
As shown in Equation (5), y k (m) is expressed as a linear sum of the input signal sequence x k- and a temporally symmetric signal sequence centered on x k .

y(m) k=h0 (m)xkPn=1 ho (m)(xk+o+xk-o) (5) ここでh(o) (m)=d・ho (m)、d=1/Pn=-P ho (m)
示す。式(5)において、dはスケールフアクタ(定
数)であり、ho (m)を“0”ないしは“1”とする
と、式(5)は単純な線形和のみで、平滑特性が実現
できることを示している。
y (m) k = h 0 (m) x k + Pn=1 h o (m) (x k+o + x ko ) (5) where h (o) (m) = d・h o ( m) , d=1/ Pn=-P ho (m) . In equation (5), d is a scale factor (constant), and if h o (m) is “0” or “1”, equation (5) can achieve smooth characteristics with only a simple linear sum. It shows.

ここで、式(3)の差分の項(xk+o−xk-o)に注目
すると式(5)の線形和の項(xk+o+xk-o)は式(3)中
の第2項の時系列信号xk-oの符号を変換すること
に相当している。これは式(5)に基づく平滑化操作
が式(3)で表わされる微分操作のうち、減算操作加
算操作に置換し、h0に相当する項を加算すること
で実現することを示している。この減算操作と加
算操作との選択を外部信号により切り換え、選択
できる構成を図2に示す。図2に示された構成
に、加算装置および信号遅延装置を接続すること
で、式(3)および式(5)で示された微分および平滑処
理に併用できる信号処理装置が実現できる。
Here, if we pay attention to the difference term (x k+o −x ko ) in equation (3), the linear sum term (x k+o + x ko ) in equation (5) is the second term in equation (3). This corresponds to converting the sign of the time series signal x ko . This shows that the smoothing operation based on equation (5) can be achieved by substituting the subtraction and addition operations among the differential operations expressed in equation (3) and adding the term corresponding to h 0 . . FIG. 2 shows a configuration in which the selection between the subtraction operation and the addition operation can be switched and selected by an external signal. By connecting an addition device and a signal delay device to the configuration shown in FIG. 2, a signal processing device that can be used in conjunction with the differentiation and smoothing processing shown in equations (3) and (5) can be realized.

本信号処理装置は、式(3)および式(5)により一般
的に式(6)で表現される。
This signal processing device is generally expressed by equation (6) using equation (3) and equation (5).

yk=h0xkPn=1 ho(xk+o+j・xk-o) (6) ここでho h0=0ないしは1 j=±1である 上述した原理に基づき、式(6)においてp=4の
場合の実施例を図3に示す。図3において、信号
遅延装置(シフトレジスタ)1からは、時系列デ
イジタル信号をクロツクに従つて、一定時刻遅延
された信号が出力として得られる。動作について
説明してゆくと、クロツク信号CKに依つて、信
号遅延装置1から出力された時刻k−nの信号
xk-oは、排他的論理演算装置2に入力される。
y k = h 0 x k + Pn=1 h o (x k+o + j・x ko ) (6) Here, h o h 0 = 0 or 1 j = ±1 Based on the above principle, FIG. 3 shows an example in which p=4 in equation (6). In FIG. 3, a signal delay device (shift register) 1 outputs a signal obtained by delaying a time-series digital signal by a predetermined time according to a clock. To explain the operation, the signal at time k-n output from the signal delay device 1 depends on the clock signal CK.
x ko is input to exclusive logic unit 2 .

一方、信号Jが排他的論理演算装置2に入力さ
れることにより、時刻k+nの信号xk+oとxk-o
信号との加算ないしは減算動作が決定される。す
なわち、Jの信号によつて微分特性あるいは平滑
化特性の選択が行われる。加算装置3で排他的論
理演算装置2からの出力信号と信号遅延装置1か
らの出力信号が加算され、論理積演算装置4にお
いて、係数ho(“0”ないしは“1”)との論理積
演算が行われる。
On the other hand, by inputting the signal J to the exclusive logic operation device 2, an addition or subtraction operation between the signal x k+o at time k+n and the signal x ko is determined. In other words, the differential characteristic or the smoothing characteristic is selected depending on the J signal. In the adder 3, the output signal from the exclusive logic operation device 2 and the output signal from the signal delay device 1 are added, and in the AND operation device 4, the output signal is ANDed with the coefficient ho (“0” or “1”). An operation is performed.

加算装置5,6,7は論理積演算装置4からの
出力信号を式(6)における第2項目の線形和に相当
する、繰り返し演算を行う。ここで、各入力端子
5a,5b,6a,6bには、それぞれシフトレ
ジスタから出力される時間的対称位置にある2つ
の信号が入力される。加算装置8には時刻kに相
当する信号xkに係数h0を乗じた信号を加算装置7
からの出力信号に加算するものであり、本信号処
理方式で平滑特性が要求される場合に必要な加算
装置である。
The adders 5, 6, and 7 repeatedly perform an operation on the output signal from the AND operation device 4, which corresponds to the linear sum of the second term in equation (6). Here, two signals outputted from the shift register and located at temporally symmetrical positions are input to each input terminal 5a, 5b, 6a, and 6b. The adder 8 receives a signal obtained by multiplying the signal x k corresponding to time k by a coefficient h 0 .
This addition device is necessary when smoothing characteristics are required in this signal processing method.

こうして加算装置8で加算された出力信号yk
微分フイルタリング出力あるいは、平滑化フイル
タリング出力信号となる。
The output signal yk thus added by the adder 8 becomes a differential filtering output or a smoothing filtering output signal.

以上、本発明に依ると、従来の方式に比べて次
の様な効果が得られる。(1)公知のデイジタルフイ
ルタに比較して、本方式は乗除算演算処理を必要
としないため、高速な信号処理が可能で、殆んど
実時間で、フイルタリング出力を得ることが可能
である。(2)本方式は、加減算、論理演算のみで構
成されるので、集積回路化が容易に実現できる。
(3)時系列信号の微分操作と平滑操作を同一の構成
で処理することが可能である。(4)外部からのパラ
メータ指定のみで、同一構成素子を微分フイルタ
と平滑化フイルタとして利用できるので信号処理
装置全体としての素子数を減らすことが可能であ
る。(5)係数を適宜選択することで同一構成のまま
多種に亘る特性を持つた微分フイルタ、平滑化フ
イルタが実現できる。(6)処理対象時系列信号のビ
ツト数を増加する場合、本方式を並列に接続する
ことで実現できる。また、データ長が長くなるこ
とによる演算速度の遅れを生じない。
As described above, according to the present invention, the following effects can be obtained compared to the conventional system. (1) Compared to known digital filters, this method does not require multiplication/division calculation processing, so high-speed signal processing is possible, and filtering output can be obtained almost in real time. . (2) Since this method consists only of addition/subtraction and logical operations, it can be easily integrated into an integrated circuit.
(3) Differentiation and smoothing of time-series signals can be processed with the same configuration. (4) Since the same component can be used as a differential filter and a smoothing filter just by specifying parameters from the outside, it is possible to reduce the number of elements in the entire signal processing device. (5) By appropriately selecting the coefficients, differential filters and smoothing filters with a wide variety of characteristics can be realized with the same configuration. (6) When increasing the number of bits of the time-series signal to be processed, this can be achieved by connecting this method in parallel. Furthermore, there is no delay in calculation speed due to an increase in data length.

【図面の簡単な説明】[Brief explanation of drawings]

図1は理想低域微分周波数特性を示す図、図2
は外部信号による切り換えにより減算操作と加算
操作とを選択つきる構成例を示す図、図3は本発
明の一実施例を示す図。
Figure 1 shows the ideal low-frequency differential frequency characteristics, Figure 2
3 is a diagram showing an example of a configuration in which a subtraction operation and an addition operation can be selected by switching using an external signal, and FIG. 3 is a diagram showing an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 時系列的にサンプリングされたデイジタル信
号を遅延して、第1の信号を中心として時系列的
に前後に等間隔である第2と第3の信号を一対と
して予め定めた数の対の信号を出力する遅延手段
と、前記第1の信号と、0又は1の値をとる第1
の係数信号とを乗算する第1の乗算手段と、前記
第2の信号と、+1又は−1の値をとる第2の係
数信号とを乗算する第2の乗算手段と、前記第3
の信号と前記第2の乗算手段の出力とを加算する
第1の加算手段と、前記第1の加算手段の出力
と、前記第2又は第3の信号の時間々隔に対応し
て0又は1の値をとる第2の係数信号とを乗算す
る第3の乗算手段とを有する基本回路を前記予め
定めた数だけ設けるとともに、これら基本回路の
出力を加算する第2の加算手段と、前記第1の乗
算手段の出力と前記第2の加算手段の出力とを加
算する第3の加算手段とを備えて成り、前記第2
の係数信号の値に応じて前記デイジタル信号の微
分処理および平滑処理のいずれか一方を選択的に
実行することを特徴とする信号処理装置。
1 A predetermined number of pairs of signals are obtained by delaying a digital signal sampled in time series and forming a pair of second and third signals that are equally spaced in time series with the first signal as the center. a delay means for outputting the first signal; a first signal having a value of 0 or 1;
a first multiplication means for multiplying the coefficient signal by the second signal, a second multiplication means for multiplying the second signal by a second coefficient signal having a value of +1 or -1,
a first addition means for adding the signal of 0 and the output of the second multiplication means; A predetermined number of basic circuits each having a third multiplication means for multiplying by a second coefficient signal having a value of 1 are provided, and a second addition means for adding the outputs of these basic circuits; a third addition means for adding the output of the first multiplication means and the output of the second addition means;
1. A signal processing device that selectively performs either differentiation processing or smoothing processing of the digital signal according to the value of a coefficient signal.
JP6026483A 1983-04-06 1983-04-06 Signal processor Granted JPS59185422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6026483A JPS59185422A (en) 1983-04-06 1983-04-06 Signal processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6026483A JPS59185422A (en) 1983-04-06 1983-04-06 Signal processor

Publications (2)

Publication Number Publication Date
JPS59185422A JPS59185422A (en) 1984-10-22
JPH0365048B2 true JPH0365048B2 (en) 1991-10-09

Family

ID=13137114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6026483A Granted JPS59185422A (en) 1983-04-06 1983-04-06 Signal processor

Country Status (1)

Country Link
JP (1) JPS59185422A (en)

Also Published As

Publication number Publication date
JPS59185422A (en) 1984-10-22

Similar Documents

Publication Publication Date Title
US5475628A (en) Asynchronous digital sample rate converter
JPH0340972B2 (en)
JPH09200042A (en) Composite phase filter, timing error compensation device using it and its method
JPH01144732A (en) Sub-range band digital filter and method of contraction and expansion of data rate
JPH0828649B2 (en) Digital filter
US6486813B1 (en) Oversampling circuit digital/analog converter
US6938063B2 (en) Programmable filter architecture
JPH0365048B2 (en)
US6486814B2 (en) Digital-to-analog converter using different multiplicators between first and second portions of a data holding period
JP2005020554A (en) Digital filter
US6448918B1 (en) Digital/analog converter
JPH0590897A (en) Oversampling filter circuit
EP1195691A1 (en) Interpolation circuit
JPS6118212A (en) Digital filter
JP3258938B2 (en) Decimation filter
KR100195220B1 (en) Design method of low pass iir filter and low pass iir filter
US20020049799A1 (en) Parallel implementation for digital infinite impulse response filter
SU1056208A1 (en) Pulse-width function generator
KR0133403B1 (en) An 1-dimension fir filter having symmetric coefficients
JPH0334246B2 (en)
JP2590291B2 (en) Switching IIR filter
JPS63276910A (en) Constant delay filter
JPS6242609A (en) Thinning and interpolating device
KR0133402B1 (en) An 1-dimension finite impulse response filter having symmetric
SU1647587A1 (en) Device for computing coefficients of nonrecursive filters