JPH0364891A - Light emitter - Google Patents

Light emitter

Info

Publication number
JPH0364891A
JPH0364891A JP20030889A JP20030889A JPH0364891A JP H0364891 A JPH0364891 A JP H0364891A JP 20030889 A JP20030889 A JP 20030889A JP 20030889 A JP20030889 A JP 20030889A JP H0364891 A JPH0364891 A JP H0364891A
Authority
JP
Japan
Prior art keywords
light emitter
electric field
tesla coil
frequency
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20030889A
Other languages
Japanese (ja)
Inventor
Yasutaka Sakamoto
泰孝 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO INF CENTER KK
Original Assignee
TOKYO INF CENTER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO INF CENTER KK filed Critical TOKYO INF CENTER KK
Priority to JP20030889A priority Critical patent/JPH0364891A/en
Publication of JPH0364891A publication Critical patent/JPH0364891A/en
Pending legal-status Critical Current

Links

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

PURPOSE:To emit an electrodeless gas charger without exerting any adverse effect to the exterior by generating a high electric field with the high voltage of a frequency induced in the secondary coil 1 wire of a Tesla coil via a dielectric together with the resonance of a resonant circuit, and emitting an electrodeless gas charged light emitter in the electric field. CONSTITUTION:A voltage supplied to the primary coil wire 4a of a Tesla coil 4 is switched by a switching element 8, and the primary side of the Tesla coil is resonated with the switching frequency of the switching element. A high electric field is generated by the high voltage of a high frequency induced by the secondary coil wire 4b of the Tesla coil 4 via a dielectric 6 together with the resonance, and in this high electric field, an electrodeless gas charged light emitter 7 is emitted. Therefore, the electrodeless gas charged light emitter 7 can be operated without causing any noise damage to the exterior. Moreover, an electric connecting means between the light emitter 7 and an exciting means is not necessary at all because the light emitter 7 is electrodeless. thereby decreasing the cost of the light emitter 7.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、高周波の高電界を励起源として発光する無
電極構造の気体封入体を備えた発光装置に関する。
The present invention relates to a light-emitting device including a gas-filled body with an electrodeless structure that emits light using a high-frequency electric field as an excitation source.

【従来の技術】[Conventional technology]

照明などに使用される電力をエネルギ源とする発光体に
は、白熱電球、放電灯などがあるが、このうち、放電現
象を利用して発光させる放電灯では、ガスを封入したガ
ラス球又はガラス管内に一対の電極を設け、この電極管
に直流又は交流の電圧を印加することで生じるガス中の
放電により発光させるものである。
Luminous bodies that use electric power as an energy source and are used for lighting include incandescent bulbs and discharge lamps. Of these, discharge lamps that emit light using an electric discharge phenomenon use glass bulbs or glass bulbs filled with gas. A pair of electrodes is provided inside the tube, and when a DC or AC voltage is applied to the electrode tube, a discharge in the gas is generated to emit light.

【5@明が解決しようとする課ll[]しかしながら、
上述のようなガス入り放電発光体は、ガラス容器内に封
入された電極を有するため、電極を外部電源などと接続
するためのリード端子、あるいは口金が必要になって発
光体自体の構造が複雑になり、かつ高価になる問題があ
った。 また、従来においては、数10MHz以上の高周波の電
界又は磁界内に放電管を挿入すれば、電極の有無に関係
なくグロー放電を発生し得ることが知られている。 しかし、このような高周波放電は、数10MH2という
極めて高い周波数を用いなければならないという関係上
、一種のノイズ発生源となってしまい、照明などの発光
装置への実用化;よほとんどなされていないのが現状で
あった。 この発明は、上記の点に鑑みなされたもので、無電極の
ガス封入体を外部に悪影響を及ぼすことなく発光でき、
低コストで実用化の容易な発光装置を提供することを目
的とする。 【課題を解決するための手段】 この発明に係る発光装置は、空心のテスラコイルと、前
記テスラコイルの1次巻線に供給される電流を断続させ
るスイッチング素子と、このスイッチング素子を所定周
波数の信号によりスイッチングする発振器と、前記テス
ラコイルの1次巻線を前記スイッチング素子のスイッチ
ングに伴い前記発振器の周波数に同調させる共振用のコ
ンデンサと、前記1次@線の共振に伴い、前記テスラコ
イルの2次巻線に誘起される高周波の高電圧が印加され
る電界導出用の誘電体と、前記誘電体からの電界により
発光する無電極のガス封入発光体とを備えてなるもので
ある。
[5@The problem that Akira is trying to solve []However,
Since the gas-filled discharge light emitters described above have electrodes sealed in a glass container, lead terminals or caps are required to connect the electrodes to an external power source, making the structure of the light emitter itself complicated. There was a problem that it became expensive and expensive. Furthermore, it has been known in the past that if a discharge tube is inserted into an electric or magnetic field with a high frequency of several tens of MHz or higher, glow discharge can be generated regardless of the presence or absence of electrodes. However, since such high-frequency discharge requires the use of an extremely high frequency of several tens of MH2, it becomes a kind of noise generation source, and has not been put to practical use in light-emitting devices such as lighting. was the current situation. This invention was made in view of the above points, and allows an electrodeless gas-filled body to emit light without adversely affecting the outside.
The purpose is to provide a light emitting device that is low cost and easy to put into practical use. [Means for Solving the Problems] A light-emitting device according to the present invention includes an air-core Tesla coil, a switching element that connects and disconnects the current supplied to the primary winding of the Tesla coil, and a switching element that connects the switching element with a signal of a predetermined frequency. a switching oscillator, a resonance capacitor that tunes the primary winding of the Tesla coil to the frequency of the oscillator as the switching element switches, and a secondary winding of the Tesla coil that tunes the primary winding to the frequency of the oscillator as the primary @ wire resonates. The device is equipped with a dielectric body for deriving an electric field to which a high-frequency high voltage induced by is applied, and an electrodeless gas-filled light emitter that emits light by the electric field from the dielectric body.

【作用】[Effect]

スイッチング素子が発振器からの信号によりスイッチン
グされると、テスラコイルの1 次巻fi +C流れる
電流が、発振器の周波数に応じて断続されると、1次巻
線とコンデンサとの共振周波数が発振器のスイッチング
周波数に同調する。これに伴い、テスラコイルの2次巻
線に両者の巻線比に応じた高周波の高電圧が誘起され、
この高電圧が誘電体に印加されることにより誘電体は発
光体に対し、高電界を発生する。これにより、発光体内
のガス分子の励起・電離現象によって発光することにな
る。 したがって、この発明にあっては、無電極のガス封入発
光体を、外部にノイズ障害を与えることなく容易に発光
させ得ると共に、低コストで実用化の容易な発光装置に
し得る。
When the switching element is switched by a signal from the oscillator, the current flowing through the primary winding fi +C of the Tesla coil is intermittent according to the frequency of the oscillator, and the resonance frequency between the primary winding and the capacitor changes to the switching frequency of the oscillator. Attune to. Along with this, a high frequency high voltage is induced in the secondary winding of the Tesla coil according to the winding ratio of both,
When this high voltage is applied to the dielectric, the dielectric generates a high electric field toward the light emitter. As a result, light is emitted by the excitation and ionization phenomenon of gas molecules within the luminous body. Therefore, according to the present invention, an electrodeless gas-filled light emitter can be easily caused to emit light without causing external noise interference, and can be made into a low-cost light-emitting device that is easy to put into practical use.

【実施例】【Example】

以下、この発明の実施例を図面に基づいて説明する。 第1図は、この発明による発光装置の一実施例を示す構
成図である。 第1図において、■はAClooVなどの交流電源、2
は交流M源1を直流に変換する整流回路であり、その直
流出力は定電圧・定電流回路3に入力される。定電圧・
定電流回路3は、整流回路2から供給される直流電圧及
び電流を安定化するものである。4は空心のテスラコイ
ルで、例えば10〜15ターンの1次巻線4aと、例え
ば1000〜2000ターンの2次巻114bとから構
成され、1次巻線4aの一端は、前記定電圧・定電流回
路3の(+)出力端子に接続され、その他端はコンデン
サ5を介して接地されている。コンデンサ5と1次コイ
ル4aは直列共振回路を構成する。また、テスラコイル
4の2次巻線4bの一端には、電界導出用のM電体6に
接続され、その他端は接地されている。 前記電界導出用の誘電体6は、無電極ガス封入発光体7
を設置するためのもので、合成IIj脂材等から成形さ
れる。また、前記無電極のガス封入発光体7は球状ある
いは管状などのガラス容器から成形され、その内部に(
よNe、A、Nなどのガスが所望の圧力で封入されてい
る。 8は前記テスラコイル4の1次巻線4aに直列に接続し
たコンデンサ5にソース・ドレイン間を並列に接続した
スイッチング素子で、このスイッチング素子8を所望の
周波数でスイッチングすることにより、定電圧・定電流
同格3から1次巻線4aに加えられ直流電圧をチョップ
する。これにより、1次側をスイッチング周波数に共振
させると共に、この共振により生じる大きな電流によっ
て2次側に巻線比に応じた高圧の電圧を誘起させるよう
になっている。 9は前記スイッチング素子8をスイッチング動作させる
ためのゲート信号を発生させるスイッチング用の発振器
で、その動作電圧は整流回路2から供給されると共に、
発振器9から出力されるパルス信号は増幅Mloを介し
てスイッチング素子8のゲートに供給される。11は発
振器9から出力されるパルス信号とテスラコイル4の2
次巻線4aから取出される出力周波数との差を検出する
周波数差検出回路であり、この周波数差検出回路11で
検出された差信号(m圧)を発振器9にフィードバック
することにより発振器9のパルス信号の周波数をテスラ
コイル4の1次側の共振周波数に自動的に同調させるよ
うに制御する。 第2図Zよテスラコイル4とガス封入発光体7の等価回
路図を示す。 同図において、R1は1次巻1j14 a側のインピー
ダンス抵抗分、R2は2次巻線4b側のインピーダンス
抵抗分、R3は発光体のインピーダンス抵抗分、R4ば
装置と接地間のインピーダンス抵抗分、coは電界導出
用誘電体6の浮遊容量、C1は1次巻ii!4a側の浮
遊容量、C2は2次巻線4b側の浮遊容量、C3は1欠
場i4aと2次巻線4b間の結合容量、C4は発光体の
体積浮遊容量、C5は装置と接地間の浮遊容量である。 また、破線により示された抵抗分R5は人間の手等の物
体が発光体に接触又は近接した時の外乱抵抗分であり、
また、コンデンサCは物体が発光体に接触又は近接した
時の外乱容量である。 次に、動作について説明する。 先ず、電源スイツチ12をONすると、商用の交流電源
1が整流回路2に供給される。ここで、交流電力は全波
整流され、さらに図示しない平滑手段により平滑されて
定電圧・定電流回路3に入力される。定電圧・定電流回
路3では、f4源の変動分及び負荷の変動分を補償して
安定した一定の電圧及び電流にする。 一方、整流回路2からの直流出力電圧が発振器9に加え
られると、該発振器9は発振動作を開始して、その出力
に所定周波数、例えば150KI(Zのパルス信号を送
出する。このパルス信号は増幅@ioにより増幅された
後、スイッチング素子8のゲートに供給される。これに
より、スイッチング素子8がオン/オフされると、その
動作でテスラコイル4の1次@1i14aに断続する電
流Iが流れる。すなわち、スイッチング素子8がON時
に、1次巻線4aに電流Iが流れると、これにより1次
巻線4aにエネルギーが蓄積され、その蓄積エネルギは
スイッチング素子8のオフ時にコンデンサ5を通して放
出される。これにより、テスラコイル4の1次側が自由
減衰振動する。この減衰振動周波数に発振器9からスイ
ッチング素子8に加えられる入力周波数が一致するよう
に周波数差検出回路11により制御されるテスラコイル
4の1次側は入力周波数に同調し、1次巻線4aに流れ
る電流Iが最大になる。これによって、テスラコイル4
の2次巻線4aには両者の@線化
Embodiments of the present invention will be described below based on the drawings. FIG. 1 is a configuration diagram showing an embodiment of a light emitting device according to the present invention. In Figure 1, ■ is an AC power source such as AClooV,
is a rectifier circuit that converts the AC M source 1 into DC, and its DC output is input to the constant voltage/constant current circuit 3. Constant voltage/
The constant current circuit 3 stabilizes the DC voltage and current supplied from the rectifier circuit 2. Reference numeral 4 denotes an air-core Tesla coil, which is composed of a primary winding 4a of, for example, 10 to 15 turns, and a secondary winding 114b of, for example, 1000 to 2000 turns, and one end of the primary winding 4a is connected to the constant voltage/constant current. It is connected to the (+) output terminal of the circuit 3, and the other end is grounded via the capacitor 5. Capacitor 5 and primary coil 4a constitute a series resonant circuit. Further, one end of the secondary winding 4b of the Tesla coil 4 is connected to an M electric body 6 for deriving an electric field, and the other end is grounded. The dielectric body 6 for deriving the electric field is an electrodeless gas-filled light emitter 7
It is used to install a treadmill, and is molded from synthetic IIJ resin or the like. Further, the electrodeless gas-filled light emitter 7 is formed from a spherical or tubular glass container, and inside thereof (
Gases such as Ne, A, and N are sealed at the desired pressure. Reference numeral 8 denotes a switching element whose source and drain are connected in parallel to a capacitor 5 which is connected in series to the primary winding 4a of the Tesla coil 4. By switching this switching element 8 at a desired frequency, constant voltage and constant voltage can be achieved. A current is applied from the apposition 3 to the primary winding 4a to chop the DC voltage. This causes the primary side to resonate with the switching frequency, and a large current generated by this resonance induces a high voltage on the secondary side in accordance with the winding ratio. Reference numeral 9 denotes a switching oscillator that generates a gate signal for causing the switching element 8 to perform a switching operation, and its operating voltage is supplied from the rectifier circuit 2.
The pulse signal output from the oscillator 9 is supplied to the gate of the switching element 8 via the amplifier Mlo. 11 is the pulse signal output from the oscillator 9 and the Tesla coil 4.
This is a frequency difference detection circuit that detects the difference between the output frequency taken out from the next winding 4a, and the difference signal (m pressure) detected by this frequency difference detection circuit 11 is fed back to the oscillator 9. The frequency of the pulse signal is controlled to be automatically tuned to the resonance frequency of the primary side of the Tesla coil 4. FIG. 2 Z shows an equivalent circuit diagram of the Tesla coil 4 and the gas-filled light emitter 7. In the figure, R1 is the impedance resistance on the primary winding 1j14a side, R2 is the impedance resistance on the secondary winding 4b side, R3 is the impedance resistance of the light emitter, R4 is the impedance resistance between the device and the ground, co is the stray capacitance of the electric field deriving dielectric 6, and C1 is the primary winding ii! 4a side stray capacitance, C2 is the stray capacitance on the secondary winding 4b side, C3 is the coupling capacitance between 1 missing i4a and the secondary winding 4b, C4 is the volume stray capacitance of the light emitter, and C5 is the stray capacitance between the device and the ground. It is floating capacitance. In addition, the resistance R5 indicated by the broken line is the disturbance resistance when an object such as a human hand touches or approaches the light emitting body,
Further, the capacitor C is a disturbance capacitance when an object comes into contact with or comes close to the light emitter. Next, the operation will be explained. First, when the power switch 12 is turned on, the commercial AC power source 1 is supplied to the rectifier circuit 2. Here, the AC power is full-wave rectified, further smoothed by a smoothing means (not shown), and input to the constant voltage/constant current circuit 3. The constant voltage/constant current circuit 3 compensates for fluctuations in the f4 source and fluctuations in the load to maintain a stable constant voltage and current. On the other hand, when the DC output voltage from the rectifier circuit 2 is applied to the oscillator 9, the oscillator 9 starts oscillating and sends out a pulse signal of a predetermined frequency, for example, 150 KI (Z). After being amplified by the amplifier @io, it is supplied to the gate of the switching element 8.Therefore, when the switching element 8 is turned on/off, an intermittent current I flows through the primary @1i14a of the Tesla coil 4 due to its operation. That is, when a current I flows through the primary winding 4a when the switching element 8 is ON, energy is stored in the primary winding 4a, and the stored energy is released through the capacitor 5 when the switching element 8 is OFF. As a result, the primary side of the Tesla coil 4 undergoes free damped oscillation.The first side of the Tesla coil 4 is controlled by the frequency difference detection circuit 11 so that the input frequency applied from the oscillator 9 to the switching element 8 matches this damped oscillation frequency. The next side is tuned to the input frequency, and the current I flowing through the primary winding 4a becomes maximum.
The secondary winding 4a has both @ wires.

【ζ応じた高周波の高
電圧が誘起され、この高周波の高電圧を誘電体6に加え
ることにより、誘電体6から大地に向けてエネルギレベ
ルの大きい電界が導出される。 しtコがって、上記電界中にガス封入発光体7が配置さ
れると、第2図に示すような等価回路が構成されるため
、発光体7中の気体分子は励起され、且つ電離現象によ
りグロー放電が生じ、封入ガス固有の色で発光すること
になる。 この時、テスラコイル4の2次巻1i 4 aは充分に
高いインピーダンスを持っていると共に、高いQを有し
ているため、直列共振時には発光体7を励起するのに充
分なエネルギの電界を発生し得る。 また、ガス封入発光体7の交換などにより、電界中に手
等が侵入すると、第2図に示すように破線で示す抵抗R
5及び浮遊容量C6が発光体7の等価回路に並列に接続
されたと等価になり、この等価回路の導電率は空間を介
して発光体7と大地間のそれよりも高いため、発光体7
の発光レベルは低下し、あるいは手を触れた点に発光が
集中することになる。これと同時にテスラコイル4の共
振点が大幅にずれ、電界エネルギレベルは低下する。 この時、装置と大地間の静電容量が変化するため、スイ
ッチング素子8は大きな電力を流すように制御されるが
、定電圧・定電流回路3により制限されているため、要
求される電力は供給できなくなり)その結果、テスラコ
イル4から供給される電界のエネルギレベルは極端に低
下することになる。従って、発光体7の交換時に発光体
7に手を触れたり、あるいは電界中に手を侵入しても感
電するなどの危険性はない。 このような本実施例にあっては、テスラコイル4の1次
巻線に供給される電圧をスイッチング素子8によりスイ
ッチングさせ、これによりテスラコイルの1次側をスイ
ッチング素子のスイッチング周波数に共振させると共に
、この共振に伴いテスラコイル4の2次巻線4bに誘起
される高周波の高電圧により誘電体6を介して高電界を
発生させ、この高電界で無電極のガス封入発光体を発光
させるよう構成したものであるから、無電極のガス封入
発光体を外部にノイズ障害を与えることなく発光できる
と共に、発光体7は無MNであるため、発光体7とその
励起手段間の電気的接続手段が全く不要になり、発光体
7のコストを大幅に低減し得る。しかも、発光体7は電
界導出用の誘電体6に接触又は近接するだけで良いため
、テスラコイル4を含む励起手段と発光体7との配置関
係の自由度が拡大し、発光体の交換も容易になるほか、
インテリア照明などに好適となる。また、高周波の高電
界はテスラコイルの共振動作で発生させるものであるな
め、その電界中に発光体以外の物体が侵入すれば、共振
点がずれてテスラコイルの発生電圧は極端に低下するか
ら、発光体の交換時に感電するなどの問題は全く生じる
ことがない。 なお、上記実施例ではスイッチング用発振!s9の発振
周波数をテスラコイル4の共振周波数に自動的に同調さ
せる方式にした場合について述べたが、これに限らず発
振器9は固定の周波数のものでも良い。また、発光体7
の形状は第1図に示す球状のものに限らず、管状あるい
は複雑に変形する形状のものでも良いことは勿論である
。 【発明の効果】 以上説明したように、この発明によればテスラコイルの
1次側に、これに供給される電圧(又は電流)を断続す
るスイッチング素子のスイッチング周波数に同調する共
振回路を形成し、この共振回路の共振に伴いテスラコイ
ルの2次巻線に誘起される高周波の高電圧により誘電体
を介して高電界を発生させ、電界中の無電極ガス封入発
光体を発光させるようにしたので、無電極のガス封入発
光体を低コストで発光でき、インテリアなどの照明装置
としての実用化を容易に実現できると共に、外部へのノ
イズ障害もなくすることができる。
[A high voltage with a high frequency corresponding to ζ is induced, and by applying this high voltage with a high frequency to the dielectric 6, an electric field with a large energy level is derived from the dielectric 6 toward the ground. Therefore, when the gas-filled light emitter 7 is placed in the above electric field, an equivalent circuit as shown in FIG. 2 is constructed, so that the gas molecules in the light emitter 7 are excited and ionized. This phenomenon causes a glow discharge, which emits light in a color unique to the filled gas. At this time, since the secondary winding 1i4a of the Tesla coil 4 has sufficiently high impedance and high Q, it generates an electric field with sufficient energy to excite the light emitter 7 during series resonance. It is possible. In addition, if a hand or the like enters the electric field due to replacement of the gas-filled light emitter 7, etc., the resistance R shown by the broken line as shown in FIG.
5 and stray capacitance C6 are connected in parallel to the equivalent circuit of the light emitter 7, and the conductivity of this equivalent circuit is higher than that between the light emitter 7 and the ground through space, so the light emitter 7
The luminescence level of the object will decrease, or the luminescence will be concentrated at the point touched by the hand. At the same time, the resonance point of the Tesla coil 4 shifts significantly, and the electric field energy level decreases. At this time, since the capacitance between the device and the ground changes, the switching element 8 is controlled to flow a large amount of power, but since it is limited by the constant voltage/constant current circuit 3, the required power is As a result, the energy level of the electric field supplied from the Tesla coil 4 is extremely reduced. Therefore, even if you touch the light emitter 7 when replacing the light emitter 7 or insert your hand into the electric field, there is no risk of electric shock. In this embodiment, the voltage supplied to the primary winding of the Tesla coil 4 is switched by the switching element 8, thereby causing the primary side of the Tesla coil to resonate with the switching frequency of the switching element. A high electric field is generated through the dielectric body 6 by a high frequency high voltage induced in the secondary winding 4b of the Tesla coil 4 due to resonance, and the electrodeless gas-filled light emitter is configured to emit light using this high electric field. Therefore, the electrodeless gas-filled light emitter can emit light without causing noise interference to the outside, and since the light emitter 7 is MN-free, there is no need for electrical connection between the light emitter 7 and its excitation means. Therefore, the cost of the light emitter 7 can be significantly reduced. Furthermore, since the light emitting body 7 only needs to be in contact with or close to the dielectric body 6 for deriving the electric field, the degree of freedom in the arrangement relationship between the excitation means including the Tesla coil 4 and the light emitting body 7 is expanded, and the light emitting body can be easily replaced. In addition to becoming
Suitable for interior lighting, etc. In addition, the high-frequency electric field is generated by the resonance operation of the Tesla coil, so if an object other than the light-emitting object enters the electric field, the resonance point will shift and the voltage generated by the Tesla coil will drop dramatically. There are no problems such as electric shock when changing the body. In addition, in the above embodiment, switching oscillation! Although a case has been described in which the oscillation frequency of s9 is automatically tuned to the resonant frequency of the Tesla coil 4, the oscillator 9 is not limited to this, and the oscillator 9 may have a fixed frequency. In addition, the light emitter 7
Of course, the shape is not limited to the spherical shape shown in FIG. 1, but may also be tubular or complexly deformable. [Effects of the Invention] As explained above, according to the present invention, a resonant circuit is formed on the primary side of the Tesla coil, which is tuned to the switching frequency of the switching element that intermittents the voltage (or current) supplied to the Tesla coil. Due to the resonance of this resonant circuit, the high frequency and high voltage induced in the secondary winding of the Tesla coil generates a high electric field through the dielectric material, causing the electrodeless gas-filled light emitter in the electric field to emit light. The electrodeless gas-filled light emitter can emit light at low cost, and can be easily put to practical use as an interior lighting device, while also eliminating noise interference to the outside.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発振器による発光装置の一例を示す全体の
構成図、第2図は本実施例におけるテスラコイルと発光
体との等価回路図である。 1 ・交流電源、2 整流回路、3 定電圧・定M?I
E@N、4・テスラコイル、4a・・・1 欠場1+l
!、4b ・2次巻線、5−コンデンサ、6°電界導出
用誘電体、7 ガス封入発光体、8 スイッチング素子
、9 スイッチング用発振畳、11−周波数差検出回路
FIG. 1 is an overall configuration diagram showing an example of a light emitting device using this oscillator, and FIG. 2 is an equivalent circuit diagram of a Tesla coil and a light emitter in this embodiment. 1. AC power supply, 2. Rectifier circuit, 3. Constant voltage/constant M? I
E@N, 4・Tesla coil, 4a...1 absent 1+l
! , 4b - Secondary winding, 5 - capacitor, 6 - dielectric for deriving electric field, 7 - gas-filled light emitter, 8 - switching element, 9 - oscillation mat for switching, 11 - frequency difference detection circuit.

Claims (1)

【特許請求の範囲】[Claims] 空心のテスラコイルと、前記テスラコイルの1次巻線に
供給される電流を断続させるスイッチング素子と、この
スイッチング素子を所定周波数の信号によりスイッチン
グする発振器と、前記テスラコイルの1次巻線を前記ス
イッチング素子のスイッチングに伴い前記発振器の周波
数に同調させる共振用のコンデンサと、前記1次巻線の
共振に伴い前記テスラコイルの2次巻線に誘起される高
周波の高電圧が印加される電界導出用の誘電体と、前記
誘電体からの電界により発光する無電極のガス封入発光
体とからなる発光装置。
an air-core Tesla coil; a switching element that connects and disconnects the current supplied to the primary winding of the Tesla coil; an oscillator that switches the switching element using a signal of a predetermined frequency; A resonance capacitor tuned to the frequency of the oscillator during switching, and a dielectric for electric field derivation to which a high frequency and high voltage induced in the secondary winding of the Tesla coil due to resonance of the primary winding is applied. and an electrodeless gas-filled light emitter that emits light by an electric field from the dielectric.
JP20030889A 1989-08-03 1989-08-03 Light emitter Pending JPH0364891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20030889A JPH0364891A (en) 1989-08-03 1989-08-03 Light emitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20030889A JPH0364891A (en) 1989-08-03 1989-08-03 Light emitter

Publications (1)

Publication Number Publication Date
JPH0364891A true JPH0364891A (en) 1991-03-20

Family

ID=16422159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20030889A Pending JPH0364891A (en) 1989-08-03 1989-08-03 Light emitter

Country Status (1)

Country Link
JP (1) JPH0364891A (en)

Similar Documents

Publication Publication Date Title
US4010400A (en) Light generation by an electrodeless fluorescent lamp
US4245178A (en) High-frequency electrodeless discharge device energized by compact RF oscillator operating in class E mode
KR940008049B1 (en) Starting circuit for an electrodeless high intensity discharge lamp
US3500118A (en) Electrodeless gaseous electric discharge devices utilizing ferrite cores
US4748383A (en) DC-AC converter for igniting and supplying a discharge lamp
JP2011120450A (en) Wireless power feeder, wireless power transmission system, and table and table lamp using the same
TW586334B (en) Self-ballasted fluorescent lamp
WO2003105541A1 (en) Electrodeless light bulb type fluorescent lamp and discharge lamp lighting device
US3997816A (en) Starting assist device for an electrodeless light source
US3368107A (en) Oscillator circuit
US5118996A (en) Starting circuit for an electrodeless high intensity discharge lamp
JPH0364891A (en) Light emitter
GB2110890A (en) Frequency controlled excitation of a gas discharge lamp
JP2003077691A (en) High pressure discharge lamp lighting device and floodlight device
JP2010123522A (en) Electrodeless discharge lamp lighting device and luminaire
EP1046322A1 (en) Circuit arrangement
CA2805153C (en) A magnetron powered lamp
JP3465758B2 (en) Electrodeless discharge lamp lighting device and device using the same
KR800001141B1 (en) Light generation by an electrodeless fluorescent lamp
JP2003173890A (en) Discharge lamp lighting device and luminaire
JP2833028B2 (en) Electrodeless discharge lamp lighting device
JPH0765976A (en) Electrodeless discharge lamp lighting device and light fixture
JP2005135619A (en) Electrode-less discharge lamp lighting device and lighting system
JPH0896978A (en) Electrodeless discharge lamp lighting device
JPS632241A (en) Fluorescent lamp device