JPH0364861B2 - - Google Patents

Info

Publication number
JPH0364861B2
JPH0364861B2 JP57098090A JP9809082A JPH0364861B2 JP H0364861 B2 JPH0364861 B2 JP H0364861B2 JP 57098090 A JP57098090 A JP 57098090A JP 9809082 A JP9809082 A JP 9809082A JP H0364861 B2 JPH0364861 B2 JP H0364861B2
Authority
JP
Japan
Prior art keywords
resist
film
alkyl group
lower alkyl
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57098090A
Other languages
Japanese (ja)
Other versions
JPS58214148A (en
Inventor
Shigeyoshi Suzuki
Kazuhide Saigo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP57098090A priority Critical patent/JPS58214148A/en
Priority to US06/501,201 priority patent/US4551417A/en
Priority to CA000429834A priority patent/CA1207216A/en
Priority to IE1339/83A priority patent/IE54731B1/en
Priority to EP83303324A priority patent/EP0096596B2/en
Priority to DE8383303324T priority patent/DE3363914D1/en
Publication of JPS58214148A publication Critical patent/JPS58214148A/en
Publication of JPH0364861B2 publication Critical patent/JPH0364861B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks

Description

【発明の詳細な説明】 本発明は、半導体集積回路、磁気バブルメモリ
等の製造に適用される微細なパターンの形成に適
するレジスト材料およびパターンの形成方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a resist material and pattern forming method suitable for forming fine patterns applied to the manufacture of semiconductor integrated circuits, magnetic bubble memories, and the like.

集積回路、バブルメモリ素子などの製造におい
て光学的リングラフイまたは電子ビームリングラ
フイが主要な手段として用いられている。
BACKGROUND OF THE INVENTION Optical linkage or electron beam linkage is used as a main method in the manufacture of integrated circuits, bubble memory devices, and the like.

近年パターンの微細化に伴ない、現像により得
られたレジストパターンを精度よく基板に転写す
るために従来のウエツトエツチングにかわつて、
ガスプラズマ、反応性スパツタリング、イオンミ
リング等を用いたドライエツチングが用いられる
ようになつた。このため高感度、高解像度でかつ
ドライエツチングに対する耐性の強いレジスト材
料が求められていた。この要求に答えるために
種々のレジスト材料が開発されてきたが、これら
の条件を兼ね備えたものは少ない。例えば、クロ
ルメチル化ポリスチレンはドライエツチング耐性
が優れたレジスト材料であるが、高感度と高解像
度を両立させるのは難しい。
In recent years, with the miniaturization of patterns, in order to accurately transfer the resist pattern obtained by development onto the substrate, we have replaced the conventional wet etching.
Dry etching using gas plasma, reactive sputtering, ion milling, etc. has come into use. For this reason, there has been a need for a resist material that has high sensitivity, high resolution, and strong resistance to dry etching. Various resist materials have been developed to meet this requirement, but there are few that meet these requirements. For example, chloromethylated polystyrene is a resist material with excellent dry etching resistance, but it is difficult to achieve both high sensitivity and high resolution.

さらに実際の製造プロセスにおいては、被化合
物が段差を有する場合がある。この段差を平坦化
するためにレジスト層を厚く塗る必要が生じる。
しかしながら、ネガ型レジストにおいては、特に
現像時の膨潤によりパターン精度が悪化するため
膜厚が厚くなると解像度が損われ、厚いレジスト
層を高解像度で形成することは著しく困難であ
る。また、ポジ型レジストにおいても、電子ビー
ム露光においては基板からの後方散乱、光学露光
においては基板からの反射波の悪影響により厚い
レジスト層を高解像度で形成することは困難であ
ることが知られている。特に段差部では、異常な
近接効果のため、同一露光量でもパターン幅が著
しく異なるという不都合さがある。かかる不都合
さを解決するために三層構造がモラン(J.M.
Moran)らによつてジヤーナル・オブ・バキユ
ームサイエンス アンド テクノロジー(J.
Vacuum Scic−ncs and Technology,第16巻第
1620ページ(1979年))に提案されている。
Furthermore, in an actual manufacturing process, the compound may have a step difference. In order to flatten this level difference, it is necessary to apply a thick resist layer.
However, in negative resists, pattern accuracy deteriorates due to swelling, especially during development, so that as the film thickness increases, resolution is impaired, and it is extremely difficult to form a thick resist layer with high resolution. Furthermore, even with positive resists, it is known that it is difficult to form a thick resist layer with high resolution due to the adverse effects of backscattering from the substrate in electron beam exposure and reflected waves from the substrate in optical exposure. There is. Particularly in stepped portions, there is a disadvantage that the pattern width differs significantly even with the same exposure amount due to the abnormal proximity effect. In order to solve this inconvenience, a three-layer structure was developed by Moran (JM
Moran et al. in the Journal of Baquium Science and Technology (J.
Vacuum Sci-ncs and Technology, Volume 16, No.
1620 (1979)).

三層構造においては、第一層に厚い有機層を塗
布したのち中間層としてシリコン酸化膜、窒化
膜、シリコン膜等のように酸素を使用するドライ
エツチングにおいて蝕刻され難い無機物質材料を
形成する。しかる後かかる中間層の上にレジスト
をスピン塗布し、電子ビームや光によりレジスト
を露光、現像する。得られたレジストパターンを
マスクに中間層をドライエツチングし、しかる後
この中間層をマスクに第一層の厚い有機層をO2
を用いた反応性スパツタエツチング法によりエツ
チングする。このように三層構造を用いると、パ
ターン形成用のレジストは薄くてよく、かつ基板
からの電子の後方散乱、基板からの反射波の悪影
響が避けられるので高解像度のパターンが形成で
きる。パターン形成後、エツチングにより、高解
像度のパターンを厚い有機層に転写することがで
きる。
In the three-layer structure, a thick organic layer is applied as the first layer, and then an inorganic material, such as a silicon oxide film, a nitride film, a silicon film, etc., which is difficult to be etched by dry etching using oxygen is formed as an intermediate layer. Thereafter, a resist is spin-coated onto the intermediate layer, and the resist is exposed and developed using an electron beam or light. The intermediate layer is dry-etched using the resulting resist pattern as a mask, and then the first thick organic layer is etched with O 2 using this intermediate layer as a mask.
Etching is performed using a reactive sputter etching method. When a three-layer structure is used in this way, the resist for pattern formation can be thin, and a high-resolution pattern can be formed because the backscattering of electrons from the substrate and the adverse effects of reflected waves from the substrate can be avoided. After patterning, high resolution patterns can be transferred to the thick organic layer by etching.

しかしながら、このような方法においては第一
層を形成したのち、中間層を蒸着法、スパツタ法
あるいはプラズマCVD法により形成し、さらに
パターニング用レジストを塗布するため工程が複
雑かつ長くなるという欠点がある。
However, this method has the disadvantage that after forming the first layer, the intermediate layer is formed by vapor deposition, sputtering, or plasma CVD, and then a patterning resist is applied, making the process complicated and long. .

パターニング用レジストが酸素を用いたドライ
エツチングに対して強ければ、パターニング用レ
ジストをマスクに厚い有機層をエツチングするこ
とができるので、二層構造とすることができ工程
を簡略化することができる。
If the patterning resist is resistant to dry etching using oxygen, a thick organic layer can be etched using the patterning resist as a mask, resulting in a two-layer structure and simplifying the process.

ポリジメチルシロキサンは、O2プラズマによ
るエツチングに対するレートがほとんどゼロであ
ることが知られているが、塗膜形成後も常温で液
状であるためにほこりが付着しやすく、きずがつ
きやすく、流動性があるなど取扱いが困難である
と云う欠点がある。また、ポリジメチルシロキサ
ンはネガ型レジストとなるが感度が十分でなく、
高感度化のための官能基の導入も容易ではないと
いう欠点を有する。
Polydimethylsiloxane is known to have an almost zero etching rate with O 2 plasma, but since it remains liquid at room temperature even after the coating film is formed, it tends to attract dust, scratches, and has poor fluidity. The disadvantage is that it is difficult to handle. In addition, although polydimethylsiloxane is a negative resist, it does not have sufficient sensitivity;
It has the disadvantage that it is not easy to introduce functional groups to increase sensitivity.

本発明者らは、このような点に対処して検討を
進めた結果、 一般式 (ただしRは水素原子または低級アルキル基、
R′は低級アルキル基を表わす)で表わされる単
量体単位を含む高分子化合物が酸素による反応性
スパツタエツチングに対して極めて強く、塗布後
堅く均一な膜ができ取り扱いが容易であり、高感
度の官能基の導入が容易でポジ型のレジストとす
ることもできる等の優れた特性を有することを見
出し、本発明をなすに至つた。
As a result of addressing these points and proceeding with the study, the present inventors determined that the general formula (However, R is a hydrogen atom or a lower alkyl group,
The polymer compound containing the monomer unit represented by (R' represents a lower alkyl group) is extremely resistant to reactive sputter etching caused by oxygen, forms a hard and uniform film after coating, is easy to handle, and has a high The present inventors have discovered that it has excellent properties such as easy introduction of sensitive functional groups and can be used as a positive resist, leading to the completion of the present invention.

すなわち本発明は、感度が高く、微細で高精度
のパターンを容易に形成しうるレジスト材料およ
び該レジスト材料を用いたパターン形成方法を提
供しようとするものである。
That is, the present invention aims to provide a resist material that has high sensitivity and can easily form fine and highly accurate patterns, and a pattern forming method using the resist material.

すなわち本発明は一般式 (Rは水素原子又は低級アルキル基、R′は低級
アルキル基を表わす) で表わされる単量体単位を少なくとも一つ含む高
分子化合物を主成分とすることを特徴とするレジ
スト材料であり、 さらに、被エツチング材上に有機高分子膜を塗
布する工程、 (ただしRは水素原子又は低級アルキル基、
R′は低級アルキル基を表わす。) で表わされる単量体単位を少なくとも一つ含む高
分子化合物を主成分とするレジスト材料を前記有
機高分子膜上に塗布する工程、リングラフイ技術
を用いて該レジスト膜に所定のパターンを形成し
該パターンが形成された前記レジスト膜をマスク
として前記有機高分子膜をドライエツチングする
工程、 エツチングされずに残つた前記有機高分子膜を
マスクとして前記被エツチング材をエツチングす
る工程を有することを特徴とするパターン形成方
法である。
That is, the present invention is based on the general formula (R represents a hydrogen atom or a lower alkyl group, and R' represents a lower alkyl group) is a resist material characterized by having as a main component a polymer compound containing at least one monomer unit represented by: , a step of applying an organic polymer film on the material to be etched; (However, R is a hydrogen atom or a lower alkyl group,
R' represents a lower alkyl group. ) A step of applying a resist material whose main component is a polymer compound containing at least one monomer unit represented by It is characterized by comprising the steps of dry etching the organic polymer film using the resist film on which the pattern is formed as a mask, and etching the material to be etched using the organic polymer film that remains unetched as a mask. This is a pattern forming method.

以下、本発明を詳細に説明すると、本発明は第
一層に厚い有機層をスピン塗布し、蒸発乾固せし
めた後、 一般式 (Rは水素原子または低級アルキル基、R′は低
級アルキル基を表わす) で表わされる単量体単位を少なくとも一つ含む高
分子化合物を主成分とするレジスト材料を厚い有
機層の上に、スピン塗布する。加熱乾燥したのち
所望のパターンを電子ビーム、X線、深紫外線な
どの放射線または光を用いて描画し、適当な現像
液を用いて現像を行なう。得られたパターンをマ
スクとして第一層の厚い有機層をO2を用いた反
応性スパツタエツチング法によりエツチングす
る。しかる後微細パターンが形成された厚い有機
層をマスクに被加工材をエツチングする。
Hereinafter, the present invention will be described in detail. The present invention comprises spin coating a thick organic layer on the first layer, evaporating it to dryness, and then applying the general formula (R represents a hydrogen atom or a lower alkyl group, and R' represents a lower alkyl group) A resist material whose main component is a polymer compound containing at least one monomer unit represented by is spun on a thick organic layer. Apply. After heating and drying, a desired pattern is drawn using radiation or light such as electron beams, X-rays, and deep ultraviolet rays, and development is performed using an appropriate developer. Using the obtained pattern as a mask, the first thick organic layer is etched by reactive sputter etching using O 2 . Thereafter, the workpiece is etched using the thick organic layer with the fine pattern formed thereon as a mask.

本発明におけるレジスト材料は酸素による反応
性スパツタエツチングに対し極めて強いので、
1000Å〜2500Å程の膜厚があれば1.5μm程度の厚
い有機膜をエツチングするためのマスクになり得
る。したがつてパターン形成のためにレジストは
薄くてよいので高解像度のパターンが容易に得ら
れる。また第一層に厚い有機層があるため、基板
からの電子の後方散乱、基板からの反射波などの
悪影響、段差部における異常な近接効果を除くこ
とができる。また工程も三層構造に比べ簡略化さ
れており、より実用的である。
Since the resist material in the present invention is extremely resistant to reactive sputter etching caused by oxygen,
A film thickness of about 1000 Å to 2500 Å can be used as a mask for etching an organic film as thick as about 1.5 μm. Therefore, since the resist needs to be thin for pattern formation, a high-resolution pattern can be easily obtained. Furthermore, since the first layer has a thick organic layer, it is possible to eliminate adverse effects such as backscattering of electrons from the substrate, reflected waves from the substrate, and abnormal proximity effects at stepped portions. Furthermore, the process is simpler than that of the three-layer structure, making it more practical.

また、本発明におけるレジスト材料は常温で固
体であるためジメチルシロキサンが常温で液状で
あるために見られた種々の欠点を解決することが
できる。すなわち本発明におけるレジスト材料は
塗膜乾燥後堅く均一な膜が形成されるので取り扱
いが容易である。また高感度な官能基を有するモ
ノマーと共重合体をつくるため高感度な官能基を
容易に導入できる。
Furthermore, since the resist material of the present invention is solid at room temperature, it can solve various drawbacks that have been seen due to dimethylsiloxane being liquid at room temperature. That is, the resist material in the present invention forms a hard and uniform film after drying, and is therefore easy to handle. Furthermore, since a copolymer is created with a monomer having a highly sensitive functional group, a highly sensitive functional group can be easily introduced.

さらにポジ型レジストとすることもできるなど
多くの利点を有する。
Furthermore, it has many advantages such as being able to be used as a positive resist.

以下実施例をもちいて本発明をさらに詳しく説
明する。
The present invention will be explained in more detail below using Examples.

実施例 1 重量平均分子量Mwが6万、3−トリメトキシ
シリル−プロピルメタクリレート(SiMAと略
す)とグリシジルメタクリレート(GMAと略
す)の共重合比m1:m2が1:4である共重合体
(P(GMA80−SiMA2 0)と略す)0.8gをメチル
セロソルブアセテート15mlに溶解し、5wt%溶液
とし十分撹拌した後0.2μmのフイルターで濾過し
試料溶液とした。この溶液をシリコン基板上にス
ピン塗布し、80℃にて30分間N2気流中で熱処理
したのち、電子線描画装置で電子線照射を行なつ
た。
Example 1 A copolymer with a weight average molecular weight Mw of 60,000 and a copolymerization ratio of 3-trimethoxysilyl-propyl methacrylate (abbreviated as SiMA) and glycidyl methacrylate (abbreviated as GMA) of 1 :4. (abbreviated as P( GMA80 - SiMA20 )) 0.8g was dissolved in 15ml of methyl cellosolve acetate to make a 5wt% solution, thoroughly stirred, and then filtered through a 0.2μm filter to prepare a sample solution. This solution was spin-coated onto a silicon substrate, heat-treated at 80° C. for 30 minutes in a N 2 stream, and then subjected to electron beam irradiation using an electron beam lithography system.

トリクレンとアセトンの体積比3:1の混合溶
剤を用いて1分間現像を行なつたのち、エタノー
ルにより30秒間リンスを行なつた。乾燥したのち
被照射部の膜厚を触針法により測定した。微細な
パターンを解像しているか否かは種々の寸法のラ
インアンドスペースのパターンを電子線描画し、
現像処理によつて得られたレジスト像を光学顕微
鏡、走査型電子顕微鏡で観察することによつて調
べた。
After developing for 1 minute using a mixed solvent of trichlene and acetone in a volume ratio of 3:1, rinsing was performed for 30 seconds with ethanol. After drying, the film thickness of the irradiated area was measured using a stylus method. Whether fine patterns are resolved or not is determined by electron beam drawing of line and space patterns of various dimensions.
The resist image obtained by the development process was examined by observing it with an optical microscope and a scanning electron microscope.

その結果得られた感度曲線(感電子ビーム特
性)を第1図曲線1に示す。図の縦軸は現像前の
膜厚(以下初期膜厚という)を1とした場合の相
対値を示したものであり、横軸は電子線照射量
(マイクロクーロン/cm2)の常用対数である。ネ
ガ型レジストの感度は膜厚が初期膜厚の半分にな
る点の照射量で表わされることが多い。第1図の
感度曲線より、本実施例の場合感度が0.7μc/cm2
であることがわかる。また解像度も初期膜厚の薄
いこと(0.250μm)を反映し、サブミクロンを十
分に解像した。第1図の曲線3は比較のために示
したポリジメチルシロキサンの感度曲線である。
本実施例の場合ポリジメチルシロキサンに比べて
ゲル化を開始する点の照射量において約8倍高感
度であることがわかる。
The sensitivity curve (electron-sensitive beam characteristics) obtained as a result is shown in curve 1 in FIG. The vertical axis of the figure shows the relative value when the film thickness before development (hereinafter referred to as initial film thickness) is set to 1, and the horizontal axis shows the common logarithm of the electron beam irradiation amount (microcoulomb/cm 2 ). be. The sensitivity of a negative resist is often expressed as the irradiation dose at the point where the film thickness becomes half of the initial film thickness. From the sensitivity curve in Figure 1, the sensitivity in this example is 0.7 μc/cm 2
It can be seen that it is. The resolution also reflected the thin initial film thickness (0.250 μm), and was able to sufficiently resolve submicrons. Curve 3 in FIG. 1 is a sensitivity curve of polydimethylsiloxane shown for comparison.
It can be seen that in the case of this example, the sensitivity is about 8 times higher than that of polydimethylsiloxane in terms of the irradiation dose at the point where gelation starts.

また得られたレジスト膜は堅く通常のフオトレ
ジスト、電子ビームレジストと同様に取扱うこと
ができ、ポリジメチルシロキサンで顕著であつた
欠点は全くなかつた。
Furthermore, the obtained resist film was hard and could be handled in the same manner as ordinary photoresists and electron beam resists, and had no defects that were noticeable with polydimethylsiloxane.

第2図の曲線1にP(GMA80−SiMA20)のO2
の反応性スパツタエツチングによる膜減りの様子
を示す。図の縦軸は膜厚(μm)を示し、横軸は
エツチング時間(分)を示す。第一層の有機高分
子膜としてはノボラツク樹脂(商品名AZ−
1350J)を用いた。パターニング用のレジストは
この樹脂と比較してO2のドライエツチングに強
くなければならない。図2の3は比較のために示
したノボラツク樹脂(商品名AZ−1350J)の膜減
りの様子である。P(GMA80−SiMA20)では時
間とともに膜減り量が減少していき、エツチレー
トがゼロに近づいていくこと、ノボラツク樹脂
(商品名AZ−1350J)が1.5μmエツチングされる
間にP(GMA80−SiMA20)は0.22μmしかエツチ
ングされないことが示され、P(GMA80
SiMA20)は前記樹脂をエツチングする際のマス
クになることがわかる。
Curve 1 in Figure 2 shows the O 2 of P(GMA 80 −SiMA 20 ).
This shows how the film decreases due to reactive sputter etching. The vertical axis of the figure shows the film thickness (μm), and the horizontal axis shows the etching time (minutes). The first layer of organic polymer film is a novolac resin (product name: AZ-
1350J) was used. The patterning resist must be more resistant to O 2 dry etching than this resin. 3 in FIG. 2 shows the film thinning of novolac resin (product name AZ-1350J) shown for comparison. For P(GMA 80 - SiMA 20 ), the amount of film loss decreases with time, and the etching rate approaches zero. −SiMA 20 ) was shown to be etched by only 0.22 μm, while P(GMA 80
It can be seen that SiMA 20 ) can be used as a mask when etching the resin.

実施例 2 シリコン基板上にノボラツク樹脂(商品名AZ
−1350J)を1.5μmスピン塗布し、200℃において
1時間加熱した。基板が室温になつた後実施例1
で調製した試料溶液を前記樹脂上にスピン塗布し
た。しかる後80℃にて30分間N2気流中で熱処理
を行なつた。P(GMA80−SiMA20)の膜厚は、
スピン塗布における回転数と膜厚の関係から0.4μ
mと推定できた。
Example 2 Novolak resin (product name: AZ) was deposited on a silicon substrate.
-1350J) was spin-coated to a thickness of 1.5 μm and heated at 200° C. for 1 hour. Example 1 after the substrate reaches room temperature
The sample solution prepared above was spin coated onto the resin. Thereafter, heat treatment was performed at 80° C. for 30 minutes in a N 2 stream. The film thickness of P(GMA 80 −SiMA 20 ) is
0.4μ due to the relationship between rotation speed and film thickness during spin coating
It was estimated that m.

電子線描画装置を用いて0.8μc/cm2の照射量に
おいて電子ビーム露光を行なつた。トリクレンと
アセトンの体積比3:1の混合溶剤を用いて、1
分間現像を行なつたのちエタノールにより30秒間
リンスを行なつた。しかる後酸素ガスにて
4sccm、8mTorr、120Wの条件にて20分間反応性
スパツタエツチングを行なつた。これによりP
(GMA80−SiMA20)に描画されたサブミクロン
のパターンが精度よく1.5μm厚の前記樹脂AZ−
1350Jに転写された。
Electron beam exposure was performed using an electron beam lithography system at a dose of 0.8 μc/cm 2 . Using a mixed solvent of trichlene and acetone in a volume ratio of 3:1,
After developing for a minute, rinsing was performed with ethanol for 30 seconds. After that, with oxygen gas
Reactive sputter etching was performed for 20 minutes under the conditions of 4sccm, 8mTorr, and 120W. This allows P
(GMA 80 -SiMA 20 ) The submicron pattern drawn on the resin AZ-
Transcribed to 1350J.

実施例 3 重量平均分子量Mwが16万、SiMAとGMAの
共重合比m1:m2が1:1である共重合体(P
(GMA50−SiMA50)と略す)1gをメチルセロ
ソルブアセテート19mlに溶解し、5wt%溶液とし
十分撹拌した後、0.2μmのフイルターで濾過し試
料溶液とした。シリコン基板上にノボラツク樹脂
(商品名AZ−1350J)を1.5μmスピン塗布し、200
℃において1時間加熱した。基板が室温になつた
のち上記試料溶液を該樹脂AZ−1350J上にスピン
塗布した。
Example 3 A copolymer ( P
(abbreviated as GMA 50 -SiMA 50 )) was dissolved in 19 ml of methyl cellosolve acetate to form a 5 wt % solution, thoroughly stirred, and then filtered through a 0.2 μm filter to obtain a sample solution. Spin-coat 1.5 μm of novolak resin (product name AZ-1350J) on a silicon substrate,
Heated for 1 hour at <0>C. After the substrate reached room temperature, the above sample solution was spin coated onto the resin AZ-1350J.

しかる後80℃にて30分間N2気流中で熱処理を
行なつた。P(GMA50−SiMA50)の膜厚はスピ
ン塗布における回転数と膜厚の関係から0.22μm
と推定できた。
Thereafter, heat treatment was performed at 80° C. for 30 minutes in a N 2 stream. The film thickness of P (GMA 50 −SiMA 50 ) is 0.22 μm based on the relationship between the rotation speed and film thickness during spin coating.
It was estimated that

電子線描画装置を用いて、0.4μc/cm2の照射量
において電子ビーム露光を行なつた。トリクレン
とアセトンの体積比3:1の混合溶剤を用いて1
分間現像を行なつたのちエタノールにより30秒間
リンスを行なつた。しかる後、実施例2の場合と
同様に酸素ガスにて4sccm、8mTorr、120Wの条
件にて20分間反応性スパツタエツチングを行なつ
た。これによりP(GMA50−SiMA50)に描画さ
れたサブミクロンのパターンが精度よく1.5μm厚
のノボラツク樹脂(表品名AZ−1350J)に転写さ
れた。
Electron beam exposure was performed using an electron beam lithography system at a dose of 0.4 μc/cm 2 . 1 using a mixed solvent of trichlene and acetone in a volume ratio of 3:1.
After developing for a minute, rinsing was performed with ethanol for 30 seconds. Thereafter, as in Example 2, reactive sputter etching was performed using oxygen gas at 4 sccm, 8 mTorr, and 120 W for 20 minutes. As a result, the submicron pattern drawn on P (GMA 50 -SiMA 50 ) was accurately transferred onto a 1.5 μm thick novolac resin (product name: AZ-1350J).

第2図の曲線2にP(GMA50−SiMA50)のO2
の反応性スパツタエツチングによる膜減りの様子
を示す)。P(GMA80−SiMA20)よりも早くエツ
チレートがゼロに近づくこと前記樹脂が1.5μmエ
ツチングされる間にP(GMA50−SiMA50)は620
Åしかエツチングされないことがわかる。
Curve 2 in Figure 2 shows the O 2 of P(GMA 50 −SiMA 50 ).
(This shows the thinning of the film due to reactive sputter etching.) The etching rate approaches zero faster than P(GMA 80 - SiMA 20 ). While the resin is etched by 1.5 μm, P(GMA 50 - SiMA 50 ) is 620
It can be seen that only Å is etched.

また、得られた膜は堅く取扱いが容易であつ
た。
Moreover, the obtained membrane was hard and easy to handle.

実施例 4 重量平均分子量Mw=7.5万、数平均分子量3.1
万、分散(Mw/Mn)2.4トリメトキシシリルプ
ロピルメタクリレート(SiMAと略す)とクロル
メチル化スチレン(CMSと略す)の共重合比
m1:m2が3:7である共重合体(P(CMS70
SiMA80)と略す)0.9gを、9.5mlのキシレンに
溶解し、10wt%の溶液とし十分撹拌したのち
0.2μmのフイルターで濾過し試料溶液とした。
Example 4 Weight average molecular weight Mw = 75,000, number average molecular weight 3.1
10,000, Dispersion (Mw/Mn) 2.4 Copolymerization ratio of trimethoxysilylpropyl methacrylate (abbreviated as SiMA) and chloromethylated styrene (abbreviated as CMS)
Copolymer (P(CMS 70
Dissolve 0.9 g of SiMA 80 ) in 9.5 ml of xylene to make a 10 wt% solution and stir thoroughly.
The sample solution was filtered through a 0.2 μm filter.

この溶液をシリコン基板上にスピン塗布し、65
℃にて40分間真空乾燥を行なつたのち、電子線描
画装置で電子照射を行なつた。ベンジルアセテー
トを用いて1分間現像を行なつたのち、イソプロ
ピルアルコールにより30秒間リンスを行なつた。
実施例1と同様にして、感度、解像度を調べた。
その結果得られた感度曲線を第1図の曲線2に示
す。第1図より本実施例の場合、感度が2.3μc/
cm2であることがわかる。また解像度もサブミクロ
ンを十分に解像した。
This solution was spin-coated onto a silicon substrate and 65
After vacuum drying at ℃ for 40 minutes, electron irradiation was performed using an electron beam lithography device. After developing with benzyl acetate for 1 minute, rinsing was performed with isopropyl alcohol for 30 seconds.
Sensitivity and resolution were examined in the same manner as in Example 1.
The resulting sensitivity curve is shown in curve 2 in FIG. From Figure 1, in the case of this example, the sensitivity is 2.3μc/
It turns out that cm 2 . In addition, the resolution was sufficient to resolve sub-microns.

また、得られた膜は堅く均一でポリジメチルシ
ロキサンで顕著であつた欠点は見られなかつた。
Further, the obtained film was hard and uniform, and no defects that were noticeable with polydimethylsiloxane were observed.

実施例 5 シリコン基板上にノボラツク樹脂(商品名AZ
−1350J)を1.5μmスピン塗布し、200℃において
1時間加熱した。基板が室温になつた後、実施例
4で調製した試料溶液を前記樹脂上にスピン塗布
した。しかる後、65℃にて40分間真空乾燥を行な
つた。スピン塗布における回転数と膜厚の関係か
らP(CMS70−SiMA30)の膜厚は、0.250μmと推
定できた。電子線描画装置を用いて2.5μc/cm2
照射量において電子ビーム露光を行なつた。メチ
ルエチルケトンとイソブロピルアルコールの体積
比1:1の混合溶剤を用いて、1分間現像を行な
つたのちイソブロピルアルコールにより30秒間リ
ンスを行なつた。しかる後酸素ガスにて、
4sccm、8mTorr、120Wの条件にて20分間反応性
スパツタエツチングを行なつた。これによりP
(CMS70−SiMA80)に描画されたサブミクロン
のパターンが精度よく1.5μm厚の前記樹脂上に転
写された。
Example 5 Novolak resin (product name: AZ) was deposited on a silicon substrate.
-1350J) was spin-coated to a thickness of 1.5 μm and heated at 200° C. for 1 hour. After the substrate reached room temperature, the sample solution prepared in Example 4 was spin coated onto the resin. Thereafter, vacuum drying was performed at 65°C for 40 minutes. The film thickness of P (CMS 70 -SiMA 30 ) was estimated to be 0.250 μm from the relationship between the rotation speed and film thickness in spin coating. Electron beam exposure was performed using an electron beam lithography system at a dose of 2.5 μc/cm 2 . Development was performed for 1 minute using a mixed solvent of methyl ethyl ketone and isopropyl alcohol in a volume ratio of 1:1, followed by rinsing for 30 seconds with isopropyl alcohol. After that, with oxygen gas,
Reactive sputter etching was performed for 20 minutes under the conditions of 4sccm, 8mTorr, and 120W. This allows P
The submicron pattern drawn on (CMS 70 - SiMA 80 ) was accurately transferred onto the 1.5 μm thick resin.

実施例 6 重量平均分子量Mwが20万、SiMAとメチルメ
タクリレート(MMAと略す)の共重合比m1
m2が1:4である共重合体(P(MMA80
SiMA20)と略す)0.8gをメチルセロソルブアセ
テート15mlに溶解し、5wt%溶液とし十分撹拌し
た後0.2μmのフイルターで濾過し試料溶液とし
た。シリコン基板上にノボラツク樹脂(商品名
AZ−1350J)を1.5μmスピン塗布し、200℃にお
いて1時間加熱した。基板が室温になつたのち上
記試料溶液を前記樹脂上にスピン塗布した。しか
る後80℃にて30分間N2気流中で熱処理を行なつ
た。
Example 6 Weight average molecular weight Mw is 200,000, copolymerization ratio m 1 of SiMA and methyl methacrylate (abbreviated as MMA):
Copolymer (P(MMA 80
0.8 g of SiMA 20 ) was dissolved in 15 ml of methyl cellosolve acetate to make a 5 wt % solution, thoroughly stirred, and then filtered through a 0.2 μm filter to obtain a sample solution. Novolac resin (product name) on silicon substrate
AZ-1350J) was spin-coated to a thickness of 1.5 μm and heated at 200° C. for 1 hour. After the substrate reached room temperature, the sample solution was spin coated onto the resin. Thereafter, heat treatment was performed at 80° C. for 30 minutes in a N 2 stream.

P(MMA80−SiMA20)の膜厚はスピン塗布に
おける回転数と膜厚の関係から0.32μmと推定で
きた。電子線描画装置を用いて180μc/cm2の照射
量において電子ビーム露光を行なつた。メチルイ
ソブチルケトンとイソプロピルアルコールの体積
比1:3の混合溶剤を用いて1分間現像を行なつ
たのちイソプロピルアルコールにより30秒間リン
スを行なつた。しかる後、実施例2の場合と同様
に酸素ガスにて4sccm、8mTorr、120Wの条件に
て20分間反応性スパツタエツチングを行なつた。
これによりP(MMA80−SiMA20)描画されたポ
ジのサブミクロンのパターンが精度よく1.5μm厚
の前記樹脂上に転写された。
The film thickness of P(MMA 80 −SiMA 20 ) could be estimated to be 0.32 μm from the relationship between the rotation speed and film thickness during spin coating. Electron beam exposure was performed using an electron beam lithography system at a dose of 180 μc/cm 2 . After developing for 1 minute using a mixed solvent of methyl isobutyl ketone and isopropyl alcohol in a volume ratio of 1:3, rinsing was performed for 30 seconds with isopropyl alcohol. Thereafter, as in Example 2, reactive sputter etching was performed using oxygen gas at 4 sccm, 8 mTorr, and 120 W for 20 minutes.
As a result, a positive submicron pattern drawn with P (MMA 80 -SiMA 20 ) was accurately transferred onto the resin having a thickness of 1.5 μm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1,4およびポリジメチルシロ
キサンの感電子ビーム特性を示す図である。 曲線1,2……それぞれ実施例1,4で作製し
たレジスト材料の感度曲線。曲線3……ポリジメ
チルシロキサンの感度曲線。 第2図は実施例1,3およびノボラツク樹脂
(商品名AZ−1350J)の酸素の反応性スパツタエ
ツチングによる膜減りの様子を示す図である。 曲線1,2……それぞれ実施例1,3で作製し
たレジスト材料の特性曲線。曲線3……ノボラツ
ク樹脂(商品名AZ−1350J)の特性曲線。
FIG. 1 is a diagram showing the electron beam characteristics of Examples 1 and 4 and polydimethylsiloxane. Curves 1 and 2: Sensitivity curves of the resist materials produced in Examples 1 and 4, respectively. Curve 3: Sensitivity curve of polydimethylsiloxane. FIG. 2 is a diagram showing how the films of Examples 1 and 3 and the novolak resin (trade name AZ-1350J) were reduced by reactive sputter etching with oxygen. Curves 1 and 2: Characteristic curves of the resist materials produced in Examples 1 and 3, respectively. Curve 3: Characteristic curve of novolac resin (product name AZ-1350J).

Claims (1)

【特許請求の範囲】 1 一般式 (ただしRは水素原子または低級アルキル基、
R′は低級アルキル基を表わす) で表わされる単量体単位を少なくとも一つ含む高
分子化合物を主成分とすることを特徴とするレジ
スト材料。 2 被エツチング材上に有機高分子膜を塗布する
工程、 一般式 (ただしRは水素原子または低級アルキル基、
R′は低級アルキル基を表わす)で表わされる単
量体単位を少なくとも一つ含む高分子化合物を主
成分とするレジスト材料を該有機高分子膜上に塗
布する工程、 リングラフイ技術を用いて前記レジスト膜に所
望のパターンを形成し、該パターンが形成された
前記レジスト膜をマスクとして前記有機高分子膜
をドライエツチングする工程、及びエツチングさ
れずに残つた前記有機高分子膜をマスクとして前
記被エツチング材をエツチングする工程を有する
ことを特徴とするパターン形成方法。
[Claims] 1. General formula (However, R is a hydrogen atom or a lower alkyl group,
A resist material characterized in that its main component is a polymer compound containing at least one monomer unit represented by R' represents a lower alkyl group. 2 Process of coating an organic polymer film on the material to be etched, general formula (However, R is a hydrogen atom or a lower alkyl group,
R′ represents a lower alkyl group) A step of applying a resist material mainly composed of a polymer compound containing at least one monomer unit represented by a lower alkyl group on the organic polymer film; forming a desired pattern on the film, dry etching the organic polymer film using the resist film on which the pattern is formed as a mask; and dry etching the organic polymer film remaining without being etched as a mask. A pattern forming method comprising the step of etching a material.
JP57098090A 1982-06-08 1982-06-08 Resist material and formation of micropattern Granted JPS58214148A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP57098090A JPS58214148A (en) 1982-06-08 1982-06-08 Resist material and formation of micropattern
US06/501,201 US4551417A (en) 1982-06-08 1983-06-06 Method of forming patterns in manufacturing microelectronic devices
CA000429834A CA1207216A (en) 1982-06-08 1983-06-07 Method of forming patterns in manufacturing microelectronic devices
IE1339/83A IE54731B1 (en) 1982-06-08 1983-06-07 Microelectronic device manufacture
EP83303324A EP0096596B2 (en) 1982-06-08 1983-06-08 Microelectronic device manufacture
DE8383303324T DE3363914D1 (en) 1982-06-08 1983-06-08 Microelectronic device manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57098090A JPS58214148A (en) 1982-06-08 1982-06-08 Resist material and formation of micropattern

Publications (2)

Publication Number Publication Date
JPS58214148A JPS58214148A (en) 1983-12-13
JPH0364861B2 true JPH0364861B2 (en) 1991-10-08

Family

ID=14210639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57098090A Granted JPS58214148A (en) 1982-06-08 1982-06-08 Resist material and formation of micropattern

Country Status (1)

Country Link
JP (1) JPS58214148A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020175228A (en) * 2020-07-30 2020-10-29 株式会社大一商会 Game machine
JP2020179253A (en) * 2020-07-30 2020-11-05 株式会社大一商会 Game machine
JP2021010748A (en) * 2020-10-01 2021-02-04 株式会社大一商会 Game machine
JP2021010749A (en) * 2020-10-01 2021-02-04 株式会社大一商会 Game machine
JP2021010750A (en) * 2020-10-01 2021-02-04 株式会社大一商会 Game machine
JP2021010747A (en) * 2020-10-01 2021-02-04 株式会社大一商会 Game machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481049A (en) * 1984-03-02 1984-11-06 At&T Bell Laboratories Bilevel resist

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020175228A (en) * 2020-07-30 2020-10-29 株式会社大一商会 Game machine
JP2020179253A (en) * 2020-07-30 2020-11-05 株式会社大一商会 Game machine
JP2021010748A (en) * 2020-10-01 2021-02-04 株式会社大一商会 Game machine
JP2021010749A (en) * 2020-10-01 2021-02-04 株式会社大一商会 Game machine
JP2021010750A (en) * 2020-10-01 2021-02-04 株式会社大一商会 Game machine
JP2021010747A (en) * 2020-10-01 2021-02-04 株式会社大一商会 Game machine

Also Published As

Publication number Publication date
JPS58214148A (en) 1983-12-13

Similar Documents

Publication Publication Date Title
JP2824350B2 (en) Device manufacturing method
US4464460A (en) Process for making an imaged oxygen-reactive ion etch barrier
JP2693472B2 (en) Resist
JP2582521B2 (en) Novel silicon-containing negative resist for deep-UV, I-ray or E-beam lithography
JPWO2003017002A1 (en) Antireflection film forming composition for lithography
JPS58187926A (en) Method for developing radiation sensitive negative type resist
JPH0364861B2 (en)
US4612270A (en) Two-layer negative resist
US4701342A (en) Negative resist with oxygen plasma resistance
JP2901044B2 (en) Pattern formation method by three-layer resist method
JPH02248952A (en) Photosensitive composition
JPS63292128A (en) Silyl poly (vinyl) phenol photoresist
JPH05249681A (en) Acid decomposable compound and positive radiation sensitive resist composition containing the same
JP3118887B2 (en) Pattern formation method
JP3204465B2 (en) Resist pattern forming material for semiconductor device manufacturing and pattern forming method using the same
JPS6360892B2 (en)
JPH0365545B2 (en)
JPS62258449A (en) Making of two-layer resist image
JPH0330852B2 (en)
JPH0150894B2 (en)
JPH061382B2 (en) Radiation sensitive material
JPH0145610B2 (en)
JPS6091351A (en) Resist material
JP2725351B2 (en) X-ray resist composition
JP3813211B2 (en) Resist composition and pattern forming method