JPH036484A - Ground serveying method - Google Patents

Ground serveying method

Info

Publication number
JPH036484A
JPH036484A JP1140968A JP14096889A JPH036484A JP H036484 A JPH036484 A JP H036484A JP 1140968 A JP1140968 A JP 1140968A JP 14096889 A JP14096889 A JP 14096889A JP H036484 A JPH036484 A JP H036484A
Authority
JP
Japan
Prior art keywords
detector
ratio
underground
gamma
nai
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1140968A
Other languages
Japanese (ja)
Other versions
JP2531984B2 (en
Inventor
Michio Tsuchihiro
道夫 土弘
Hiromasa Igarashi
寛昌 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP1140968A priority Critical patent/JP2531984B2/en
Publication of JPH036484A publication Critical patent/JPH036484A/en
Application granted granted Critical
Publication of JP2531984B2 publication Critical patent/JP2531984B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To accurately determine a crack by correcting the data obtained by an NaI detector on the basis of Bi/K calculated by a Ge detector to calculate more accurate Bi/K distribution and further together using an underground radar method. CONSTITUTION:A wide range of many measuring points are measured within a short time while an NaI detector is moved and the intensities of gamma-rays corresponding to the gamma-ray energies inherent to Bi-214 and K-40 are calculated to calculate a Bi/K ratio and the positioning of a point having a high Bi/K ratio is performed. Subsequently, the absolute value of the intensity of gamma-rays at the specified high Bi/K position is measured by a Ge detector high in the resolving power of gamma-ray energy and having good linearity. Then, the energy correction of Bi or K is performed from the data of the NaI detector on the basis of the Bi/K ratio calculated by the Ge detector and more accurate Bi/K distribution is calculated. Further, the relation between the outline structure of a shallow underground stratum read from the fault image of the ground due to an underground radar method and the high Bi/K position and a geological mechanism generating radon are investigated and, by synthesizing these results, the position of a crack can be determined accurately.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、地下空間等の大規模地下掘削工事。[Detailed description of the invention] [Industrial application field] The present invention relates to large-scale underground excavation work such as underground space.

トンネル工事、原子力関連施設建設工事等において必要
とされる地盤調査(特に断層の検知)を正確且つ簡易に
行う方法に関する。
The present invention relates to a method for accurately and easily conducting ground investigation (particularly fault detection) required in tunnel construction, nuclear power related facility construction, etc.

〔従来の技術〕[Conventional technology]

地中断層の調査方法として、従来より、露頭観察法2弾
性波探査法並びにポーリング法が最も普通に行われてい
る。
Conventionally, the most commonly used methods for investigating underground strata are the outcrop observation method, the elastic wave exploration method, and the poling method.

露頭観察法では断層地形(三角末端面)や露頭の地質の
連続性等から断層を判別するが、露頭が無く地形が判別
できない場合には全く採用できない。弾性波探査法は物
理的探査法として実績も多いが、地下水の有無や多寡に
よって検知精度が左右される。ポーリング法は最も確実
な方法であるが、ポーリング位置の選定やコストの面で
問題があり、最終的な確認法として採用されるのが普通
である。
In the outcrop observation method, faults are identified based on the fault topography (triangular terminal surface) and the continuity of the geology of the outcrop, but this method cannot be used at all if there is no outcrop and the topography cannot be determined. The elastic wave exploration method has a good track record as a physical exploration method, but its detection accuracy is affected by the presence and amount of groundwater. Although the polling method is the most reliable method, it has problems in terms of polling position selection and cost, so it is usually adopted as a final confirmation method.

自然放射能を用いる地質調査も大きな進展を見せている
が、そのうち、深層のラドンが断層やきれつを通じて地
表に上昇する現象を利用して2割れ目の位置を決める方
法が着目され、特にラドンの娘核種であるビスマス−2
14とカリ−40の光電ピーク計数率の比を指標とする
方法が実現されるに至っている。例えば農業土木学会誌
第54巻第2号(1986年2月号) P139〜14
4には、このBi/Kの比をNaI検出器によって求め
る方法が記載されている。
Geological surveys using natural radioactivity have also made great progress, but one method that has attracted attention is the method of determining the location of the second crack by utilizing the phenomenon in which radon from deep layers rises to the surface through faults and cracks. Bismuth-2, a daughter nuclide
A method has been realized in which the ratio of the photoelectric peak count rates of No. 14 and Kali-40 is used as an index. For example, Journal of Japan Society of Agricultural and Civil Engineers, Vol. 54, No. 2 (February 1986 issue), P139-14
4 describes a method for determining this Bi/K ratio using a NaI detector.

一方、出願人の申請に係る建設技術評価規定第9条第1
項による建技評第85303号において、舗装路面下又
はモルタル等の吹付面直下の空洞を建造物を破壊せずに
検知する方法として、可搬式地下レーダによって地中に
放射した電磁波パルスの反射波を舗装路面上から測定し
、この反射波形を解析し、これをCRT上に映像として
写し出して浅層の空洞を簡易に検知する方法が提案され
た。
On the other hand, Article 9, Article 1 of the Construction Technology Evaluation Regulations pertaining to the applicant's application
In Kengihyo No. 85303, the method uses reflected waves of electromagnetic pulses radiated into the ground by a portable underground radar as a method for detecting cavities under the paved road surface or directly under the sprayed surface of mortar etc. without destroying the structure. A method was proposed to easily detect cavities in shallow layers by measuring the reflected waveform from the paved road surface, analyzing the reflected waveform, and projecting it as an image on a CRT.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記の自然放射能による方法は割れ目探査に有益な指針
を与えるものであるが ZI4134ハローもしくはB
 i / Kハローから、さらに正確に地層を判別する
には、この方法のみでは確実性になお問題があり、また
、検出器としてNaI検出器を用いるだけでは精度に劣
ることは否めない。また建技評第85303号の方法も
、浅層部分の空洞の検出には効果があるが、地盤調査に
はこれのみではやはり問題がある。
Although the method using natural radioactivity described above provides useful guidance for crack exploration, ZI4134 halo or B
In order to more accurately determine the strata from the i/K halo, there is still a problem with reliability with this method alone, and it cannot be denied that the accuracy is inferior if only a NaI detector is used as a detector. Furthermore, although the method described in Kengihyo No. 85303 is effective in detecting cavities in shallow areas, it is still problematic when used alone for ground investigation.

したがって本発明は、これらの従来技術の水準を超えて
、−層精密に地盤調査ができる簡易且つ正確な地盤調査
システムの開発を目的としたものである。
Therefore, the object of the present invention is to develop a simple and accurate ground investigation system capable of conducting ground investigation with high precision, exceeding the level of these conventional techniques.

〔発明の構成〕[Structure of the invention]

本発明に従う地盤調査法は、地表の測線に沿ってNaI
検出器を移動させながらγ線強度を測定し、このうち!
+413iと”Kの固有のγ線エネルギーに相当するγ
線強度を求めると共にB i / K比が高い地点の位
置を検出する段階と、Ge検出器を用いて前記のB i
 / K比が高い位置におけるγ線強度を再度水める段
階と、後者のGe検出器で − 求めたBi/K比を基に前者のNaI検出器の測定値を
補正して測線上のBi/K比の分布解析を行う段階とか
らなる自然放射能を利用した地盤調査と、そして、地下
レーダ法による断面映像から浅層の概略地下構造を把握
する地盤調査を行い1両調査結果から亀裂位置を決定す
ることに特徴がある。
The ground investigation method according to the present invention includes NaI along the survey line on the ground surface.
Measure the gamma ray intensity while moving the detector, and one of these!
+413i and γ corresponding to the unique γ-ray energy of “K”
a step of determining the line intensity and detecting the position of a point where the B i /K ratio is high;
The step of re-watering the γ-ray intensity at the position where the /K ratio is high, and the step of adjusting the measured value of the former NaI detector based on the Bi/K ratio determined by the latter Ge detector, and adjusting the Bi /K ratio distribution analysis using natural radioactivity, and ground investigation to understand the general underground structure of the shallow layer from cross-sectional images using underground radar method. It is characterized by determining the position.

すなわち本発明は、自然放射能を利用した地盤調査・と
電磁波を利用した地盤調査を組合せるものであり、特に
前者の自然放射能の調査では測定時間が短時間で済むN
aI検出器によって概略調査を行ったうえ、ここで得ら
れた情報からさらに調査範囲を絞りこみ、その絞り込ん
だ範囲においてGe検出器によって1強度の絶対値を求
め、このGe検出器によって求めたB i / Kをも
とに、先のNaI検出器で得られたデータを補正し、よ
り正確なり i / Kの分布を全調査範囲において求
め。
In other words, the present invention combines ground investigation using natural radioactivity and ground investigation using electromagnetic waves, and in particular, the former natural radioactivity investigation requires a short measurement time.
After performing a general survey using the aI detector, we further narrowed down the investigation range based on the information obtained, and in the narrowed range, we determined the absolute value of 1 intensity using the Ge detector, and the B value determined using this Ge detector. Based on i/K, we corrected the data obtained with the previous NaI detector and found a more accurate distribution of i/K over the entire survey range.

更に電磁波を利用した地盤調査によって浅層地下の概略
構造を求め、ラドンの噴出位置(Bi/Kの高い位W)
との関係並びにラドンの発生する地質的機構を検討して
、亀裂位置を決定する点に特徴がある。
Furthermore, we determined the general structure of the shallow underground through ground investigation using electromagnetic waves, and determined the radon eruption location (high W of Bi/K).
The unique feature is that the location of the crack is determined by considering the relationship between the two and the geological mechanism by which radon is generated.

〔発明の詳述〕[Details of the invention]

放射線測定器として知られるNaI検出器(微量のタリ
ウムで活性化したNa I (TI)検出器)は一般に
γ線に対する検出効率が高く取扱が容易で測定時間も短
いという特徴がある。しかし、エネルギー分解能および
直線性の点でGe半導体を用いるGe検出器よりも劣り
、40Kによる自然計数率や温度変化によって発光光量
が変化し、特に計数率依存性はBi/K分布の測定精度
に大きな影響を与える。
NaI detectors (NaI (TI) detectors activated with a trace amount of thallium), which are known as radiation measuring instruments, are generally characterized by high detection efficiency for gamma rays, easy handling, and short measurement time. However, it is inferior to Ge detectors using Ge semiconductors in terms of energy resolution and linearity, and the amount of emitted light changes depending on the natural count rate at 40K and temperature changes, and in particular, count rate dependence affects the measurement accuracy of Bi/K distribution. make a big impact.

これに対して高純度型ゲルマニウム検出器はエネルギー
分解能が高く直線性もよいのでスペクトル分析が容易で
、得られる結果の信頬性も高い。
On the other hand, high-purity germanium detectors have high energy resolution and good linearity, making spectrum analysis easy and the results obtained highly reliable.

しかし、マルチチャンネル分析器として高容量のものを
必要とし、多量のデータ解析を必要とするので時間が掛
かるという問題がある。したがってこれを長い全測線上
に移動させて、自然放射能のうちB 1−214. K
−40の全分布を計測するのは実際的ではない。
However, this method requires a high-capacity multichannel analyzer and requires a large amount of data analysis, which is time-consuming. Therefore, by moving this to a long total survey line, B 1-214. K
It is not practical to measure the entire −40 distribution.

本発明では、このNaI検出器と長所と欠点をGe検出
器の欠点と長所で相おぎなうと共にさらに地下レーダ法
を組み入れて正確な地盤調査を行うようにしたものであ
る。
The present invention combines the advantages and disadvantages of the NaI detector with the disadvantages and advantages of the Ge detector, and further incorporates an underground radar method to perform accurate ground investigation.

第1図は本発明による地盤調査システムの機器配置を示
したものである。図示のように、NaI検出器とGe検
出器はマルチチャンネルアナライザーに接続される。こ
のマルチチャンネルアナライザーは2例えば4096チ
ヤンネル、50旧1zウイルキンソン型ADCの市販の
もの (例えば商品名E−560MC^)を使用するこ
とができ、 4096チヤンネルのデータの人力をはじ
め、放射線の計数機能、データの収録機能を有する。A
MTはデータレコーダであり、オーディオカセットテー
プを利用してマルチチャンネルアナライザーからのデー
タを現場収録する。
FIG. 1 shows the equipment arrangement of the ground investigation system according to the present invention. As shown, the NaI and Ge detectors are connected to a multichannel analyzer. This multi-channel analyzer can use a commercially available 2, for example, 4096 channel, 50 old 1z Wilkinson type ADC (for example, product name E-560MC^), and has a radiation counting function, including manual input of 4096 channel data. It has a data recording function. A
The MT is a data recorder that uses audio cassette tape to record data from the multichannel analyzer in the field.

他方、レーダー側の装置は、建技評第85303号に記
載のものに対応しており、これは電波発射装置(アンテ
ナ部)、電波制御・表示装置(本体制御部)およびAM
T (信号記録部)からなっている。電波発射装置(ア
ンテナ部)は、パルス制御器、送信器、受信器、送受信
切換器、アンテナおよび距離検出器から構成され1本体
制御部からの信号により、電波はパルス制御器、送信器
および送受信切換器を経由してアンテナより送信され。
On the other hand, the equipment on the radar side corresponds to that described in Kengihyo No. 85303, which includes a radio wave emitting device (antenna section), a radio wave control/display device (main body control section), and an AM
It consists of T (signal recording section). The radio wave emitting device (antenna section) consists of a pulse controller, a transmitter, a receiver, a transmission/reception switch, an antenna, and a distance detector.1 Radio waves are transmitted by the pulse controller, transmitter, and transmit/receive by signals from the main body control section. It is transmitted from the antenna via a switching device.

地下空洞が存在すればその表面で生じた反射波はアンテ
ナを経由して、受信器で信号に変換されたうえ本体制御
部に転送される。電波制御・表示装置(本体制御部)は
、操作部、制御処理部および出力表示部から構成され、
前記のアンテナ部に送る信号の制御、受信した信号のA
/D変換、 CRTへの表示、AMTと解析装置へのデ
ータ転送などを行うものである。CRTには反射波の映
像(地中断面映像)が写し出されると共にその映像は半
導体メモリーにより一時的に記録される。またCRTに
は比誘電率、見掛けの深度、移動距離が表示され操作部
のカーソル装置により空洞の位置や深さが数値で表示で
きる。解析装置は、コンピュータとCRT、ディスクド
ライフ゛、プリンターからなり、自熱放射能のデータ解
析と反射波の解析、これら解析結果の出力、データの収
録などの機能を有しており、解析結果はプリントアウト
される。
If an underground cavity exists, the reflected waves generated on the surface of the cave are converted into signals by the receiver via the antenna, and then transferred to the main control unit. The radio wave control/display device (main body control section) consists of an operation section, a control processing section, and an output display section.
Control of the signal sent to the antenna section, A of the received signal
/D conversion, display on CRT, data transfer to AMT and analysis equipment, etc. An image of the reflected waves (ground plane image) is displayed on the CRT, and the image is temporarily recorded in a semiconductor memory. Further, the relative dielectric constant, apparent depth, and travel distance are displayed on the CRT, and the position and depth of the cavity can be displayed numerically using the cursor device on the operation section. The analysis device consists of a computer, CRT, disk drive, and printer, and has functions such as data analysis of self-thermal radioactivity, analysis of reflected waves, output of these analysis results, and data recording.The analysis results can be printed. be outed.

第2図は1本発明に従う地盤調査の調査・解析フローを
示したものである。図示のように先ず測線を設定し、こ
の測線に沿ってNaI検出器を移動させつつ概略測定を
行う。ここでは0〜3000KeVまでのγ線強度を測
線上で計り、このうちx+aBiと40にの固有のγ線
エネルギーに相当するγ線強度を求め、Bi/K比を算
出することによって。
FIG. 2 shows the investigation and analysis flow of ground investigation according to the present invention. As shown in the figure, a measuring line is first set, and a rough measurement is performed while moving the NaI detector along this measuring line. Here, the gamma ray intensity from 0 to 3000 KeV is measured on the measuring line, and the gamma ray intensity corresponding to the specific gamma ray energy of x+aBi and 40 is determined, and the Bi/K ratio is calculated.

B i / K比の高い地点の位置出しを行う。次いで
このBi/Kの値が全体と比べて高(なった位置におい
てGe検出器を用いてγ線強度の絶対値を求める。Ge
検出器はエネルギー分解能が高いが1回の測定時間はN
aI検出器の10倍近く必要とする。本発明によれば測
定時間の短いNaI検出器で広範囲の数多くの測点を短
時間で測定し、その特定された狭い高Bi/Kの位置だ
けをGe検出器で計測する。そして、Ge検出器で求め
たBi/Kをもとに、NaI検出器のデータからBiや
Kのエネルギー補正を行い、より正確なりi/K分布を
求める。一方、地下レーダ法による地中の断面映像から
判読される浅層地下の概略構造とラドンの噴出位置(高
Bi/K位K)との関係並びにラドンの発生する地質的
機構を検討し、これらの結果をもとに亀裂位置を決定す
る。
Locate a point with a high B i / K ratio. Next, use a Ge detector to find the absolute value of the γ-ray intensity at the position where the Bi/K value is higher than the overall value.Ge
The detector has high energy resolution, but the time for one measurement is N
It requires nearly 10 times as much as the aI detector. According to the present invention, a large number of measurement points over a wide range are measured in a short time using a NaI detector having a short measurement time, and only the specified narrow high Bi/K position is measured using a Ge detector. Then, based on the Bi/K obtained with the Ge detector, energy correction of Bi and K is performed from the data of the NaI detector to obtain a more accurate i/K distribution. On the other hand, we investigated the relationship between the general structure of the shallow underground as determined from cross-sectional images of the ground using underground radar methods and the radon eruption location (high Bi/K level K), as well as the geological mechanism by which radon occurs. The crack location is determined based on the results.

第3図の上段は本発明法を実施して得たBi/K比分布
(図の上段)を示したものであり、下段には調査坑によ
って実際に地盤調査した結果を示した。図より2本発明
法によれば、断層解析が正確に行い得ることがわかる。
The upper part of Figure 3 shows the Bi/K ratio distribution (upper part of the figure) obtained by implementing the method of the present invention, and the lower part shows the results of actual ground investigation using a survey pit. From the figure, it can be seen that according to the method of the present invention, tomographic analysis can be performed accurately.

〔効果〕〔effect〕

本発明によると、地下空洞の存否に対して応答性よく簡
易な調査ができる地下レーダ法と、この地下レーダ法で
は判読が困難な亀裂の方位や大きさが自然放射能測定に
よって行い得ると共に、この自然放射能測定もNaI検
出器とGe検出器の組合せによって、短時間且つ精密に
行い得るので地下空間等の大規模地下掘削工事、トンネ
ル工事原子力関連施設建設工事等における地盤調査シス
テムとして多大の貢献をなし得る。
According to the present invention, there is an underground radar method that can easily and responsively investigate the presence or absence of underground cavities, and the direction and size of cracks, which are difficult to decipher with this underground radar method, can be determined by measuring natural radioactivity. This natural radioactivity measurement can also be carried out in a short time and accurately using a combination of a NaI detector and a Ge detector, so it can be used as a ground investigation system for large-scale underground excavation work, tunnel construction, nuclear power related facility construction work, etc. can make a contribution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法を実施する地盤調査機器の配置系統図
、第2図は本発明法の地盤調査・解析フロー図、第3図
は本発明法の実施例結果を示す図である。
FIG. 1 is a layout system diagram of ground investigation equipment for carrying out the method of the present invention, FIG. 2 is a ground investigation/analysis flow diagram of the method of the present invention, and FIG. 3 is a diagram showing the results of an embodiment of the method of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)地表の測線に沿ってNaI検出器を移動させなが
らγ線強度を測定し、このうち^2^1^4Biと^4
^0Kの固有のγ線エネルギーに相当するγ線強度を求
めると共にBi/K比が高い地点の位置を検出する段階
と、Ge検出器を用いて前記のBi/K比が高い位置に
おけるγ線強度を再度求める段階と、後者のGe検出器
で求めたBi/K比を基に前者のNaI検出器の測定値
を補正して測線上のBi/K比の分布解析を行う段階と
、からなる自然放射能を利用した地盤調査と;そして、
地下レーダ法による断面映像から浅層の概路地下構造を
把握する地盤調査;を行い、両調査結果から亀裂位置を
決定する地盤調査法。
(1) Measure the γ-ray intensity while moving the NaI detector along the survey line on the earth's surface, and among these, ^2^1^4Bi and ^4
A step of determining the γ-ray intensity corresponding to the specific γ-ray energy of ^0K and detecting the position of the point where the Bi/K ratio is high, and using a Ge detector to detect the γ-ray intensity at the position where the Bi/K ratio is high. A step of re-calculating the intensity, and a step of correcting the measured value of the former NaI detector based on the Bi/K ratio determined by the latter Ge detector and analyzing the distribution of the Bi/K ratio on the survey line. Ground investigation using natural radioactivity; and
A ground investigation method in which a ground investigation is carried out to understand the rough underground structure of shallow layers from cross-sectional images taken using underground radar, and the location of cracks is determined from the results of both investigations.
(2)地下レーダ法による断面映像から浅層の概路地下
構造を把握する地盤調査は、建設技術評価規定第9条第
1項による建技評第85303号に記載の方法によって
行う請求項1に記載の地盤調査法。
(2) Claim 1: The ground investigation to understand the general underground structure of shallow layers from cross-sectional images obtained by underground radar method is carried out by the method described in Construction Technology Review No. 85303 pursuant to Article 9, Paragraph 1 of the Construction Technology Evaluation Regulations. Ground investigation method described in.
JP1140968A 1989-06-05 1989-06-05 Ground investigation method Expired - Lifetime JP2531984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1140968A JP2531984B2 (en) 1989-06-05 1989-06-05 Ground investigation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1140968A JP2531984B2 (en) 1989-06-05 1989-06-05 Ground investigation method

Publications (2)

Publication Number Publication Date
JPH036484A true JPH036484A (en) 1991-01-11
JP2531984B2 JP2531984B2 (en) 1996-09-04

Family

ID=15281016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1140968A Expired - Lifetime JP2531984B2 (en) 1989-06-05 1989-06-05 Ground investigation method

Country Status (1)

Country Link
JP (1) JP2531984B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240253A (en) * 2006-03-07 2007-09-20 Toshiba Corp Device and method for detecting crack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240253A (en) * 2006-03-07 2007-09-20 Toshiba Corp Device and method for detecting crack

Also Published As

Publication number Publication date
JP2531984B2 (en) 1996-09-04

Similar Documents

Publication Publication Date Title
US3976878A (en) Natural gamma ray spectrum analysis technique
US5440118A (en) Methods and apparatus for determining formation lithology by gamma ray spectroscopy
Pitkin et al. Design parameters for aerial gamma-ray surveys
US20070257189A1 (en) Buried object evaluating method, underground resources evaluating method, underground waste evaluating method, underground preserved object evaluating method, stratum structure evaluating method and building interior monitoring method, all using hard X-rays or y-rays
CA1258321A (en) Method and device for measuring gamma radiation
Hoppie et al. Natural gamma-ray measurements on ODP cores: Introduction to procedures with examples from Leg 150
CN203965630U (en) A kind of emanometer
US4580048A (en) System for measuring the natural gamma radiation of surface and subsurface formations
CA1081865A (en) Method and apparatus for calibrating radioactivity well logging tools
US4085323A (en) Calibrator for radioactivity well logging tools
JPH036484A (en) Ground serveying method
CN111119872A (en) Measurement while drilling device
US5773821A (en) Radiological surveying as a method for mapping fossilized bone sites
Grasty et al. Developments in the standardization and analysis of airborne gamma ray data
Nicaise et al. A single detector method for the determination of PK1 in 133Ba
CN113250686B (en) Method and system for directly measuring uranium by using underground gamma energy spectrum
RU2249836C1 (en) Device for running lithologic-density gamma-ray logging
Grasty et al. The standardisation of airborne gamma-ray surveys in Australia
Tarvainen et al. Geophysical Drillhole Logging and Imaging of Drillholes OL-KR54, OL-KR55 and OL-KR55B at Olkiluoto in 2010 and 2011
CN106761722A (en) Using the high-resolution density logging instrument of position sensitive detector and logging method
Aarnio et al. Gamma spectrometric monitoring of environmental radioactivity using a mobile equipment
KR800000004B1 (en) Radioactivity oil-water well logging utilizing neutron source
YOKOTA et al. Evaluation of geological conditions ahead of a tunnel face using seismic tomography between a tunnel and ground surface
Maučec et al. Detection of radioactive particles offshore by γ-ray spectrometry Part II: Monte Carlo assessment of acquisition times
Zandee et al. Sweepem, a new airborne electromagnetic system