JPH036463A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPH036463A
JPH036463A JP14050989A JP14050989A JPH036463A JP H036463 A JPH036463 A JP H036463A JP 14050989 A JP14050989 A JP 14050989A JP 14050989 A JP14050989 A JP 14050989A JP H036463 A JPH036463 A JP H036463A
Authority
JP
Japan
Prior art keywords
backing material
linear expansion
coefficient
circuit
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14050989A
Other languages
Japanese (ja)
Inventor
Tomonobu Tomita
冨田 知伸
Fumio Ota
文夫 太田
Kazuo Yorihiro
頼広 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP14050989A priority Critical patent/JPH036463A/en
Priority to US07/530,162 priority patent/US5130600A/en
Priority to EP90110303A priority patent/EP0401669B1/en
Priority to DE69012429T priority patent/DE69012429T2/en
Publication of JPH036463A publication Critical patent/JPH036463A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PURPOSE:To make temp. dependence constant by bonding a backing material low in the coefficient of linear expansion to one surface of a piezoelectric body having electrodes provided to both surfaces thereof and bonding a support equal to or less than the backing material in the coefficient of linear expansion to the peripheral part of the backing material. CONSTITUTION:Electrodes 2 - 4 are provided to both surfaces of a piezoelectric body 1 and a backing material 5 low in the coefficient of linear expansion is bonded to one surface thereof and a support 34 equal to or less than the backing material 5 in the coefficient of linear expansion is bonded to the peripheral part of the backing material 5 to constitute a piezoelectric vibrator 6 which is, in turn, bonded to one surface of a printed circuit board 7 low in the coefficient of linear expansion. A signal processing electronic circuit is formed to the other surface of the board 7 and the whole of them is covered with three layers of an internal and external conductive layers or the like. By this method, the drift of output due to pyroelectric properties is reduced and output stable to a temp. change is obtained. At this time, the backing material 5 is bonded to one surface of the piezoelectric body 1 by an adhesive and the participation of the backing material 5 becomes large in relation to vibration and the vibrator 6 made constant in a temp. gradient of sensitivity is obtained. The support 34 is bonded to the backing material 5 by a adhesive and the spaces of both surfaces of the vibrator 6 for the rectilinearity of output are obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は圧電振動子を用いて加速度を検出する加速度セ
ンサに係り、特に、温度変化や電圧変動、電磁ノイズな
どの影響を受けに<<、車両搭載用として優れた低周波
用の加速度センサに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an acceleration sensor that detects acceleration using a piezoelectric vibrator, and is particularly sensitive to the effects of temperature changes, voltage fluctuations, electromagnetic noise, etc. , relates to a low-frequency acceleration sensor that is excellent for use in vehicles.

〔先行技術〕[Prior art]

加速度は変位の2重機分で得られるので、低周波になる
ほど大きな変位でも実際の加速度は小さくなってくる。
Since acceleration is obtained by double displacement, the lower the frequency, the smaller the actual acceleration even for a large displacement.

例えば160 Hz  、 10μmの変位で加速度は
I G 、 0.16Hzでは10mの変位量でIGと
なる。低周波の振動測定を行う場合、実際の変位はせい
ぜい1m以下であり、例えば1.6 Hzでは、0.1
Gで、l cmの変位となる。
For example, at 160 Hz and a displacement of 10 μm, the acceleration is I G , and at 0.16 Hz, the acceleration is I G for a displacement of 10 m. When making low-frequency vibration measurements, the actual displacement is at most 1 m or less; for example, at 1.6 Hz, the displacement is 0.1 m or less.
G, resulting in a displacement of l cm.

従って、0.1〜10Hzの振動を測定するためには0
.1〜0.0IGの小さな加速度を測定できるものでな
ければならない。
Therefore, in order to measure vibrations of 0.1 to 10Hz,
.. It must be able to measure small accelerations of 1 to 0.0 IG.

本発明者等は低周波用の加速度センサを実願昭63−1
03602号として既に提案した。この加速度センサは
、圧電振動子を導電性樹脂、断熱体及び熱伝導体により
順次被覆し、これを絶縁性基台に取付けると共に、導電
性樹脂と導電性の熱伝導体との間に、外部誘導障害防止
用コンデンサを接続してなるもので、このように構成す
ることにより、圧電振動子を導電性樹脂により電磁シー
ルドしているので、電気的ノイズに影響されず、また断
熱体と熱伝導体により外部からの加熱あるいは冷却によ
る温度変化を大幅に緩和できるばかりでなく、絶縁性基
台により圧電振動子を被測定物から電気的に絶縁してい
るので、静電誘導やアース間電位などの誘導障害を受け
にくいと共に、導電性樹脂と導電性の熱伝導体との間に
外部誘導障害防止用コンデンサを接続しているので、外
部高周波ノイズをバイパスさせることができるため、低
周波。
The inventors of the present invention applied for a low-frequency acceleration sensor in 1983-1.
It has already been proposed as No. 03602. In this acceleration sensor, a piezoelectric vibrator is sequentially coated with a conductive resin, a heat insulator, and a heat conductor, and this is mounted on an insulating base. It is made by connecting a capacitor to prevent inductive disturbances. By configuring it in this way, the piezoelectric vibrator is electromagnetically shielded by conductive resin, so it is not affected by electrical noise, and it also has excellent insulation and thermal conductivity. Not only can the body significantly reduce temperature changes caused by external heating or cooling, but the insulating base electrically isolates the piezoelectric vibrator from the object being measured, reducing electrostatic induction, ground potential, etc. In addition to being less susceptible to induction interference, an external induction interference prevention capacitor is connected between the conductive resin and the conductive heat conductor, allowing external high-frequency noise to be bypassed.

低加速度の計測もより一層高精度に行うことができると
いう作用効果を奏する。
This has the effect that low acceleration measurements can be performed with even higher precision.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上記先行例にあっては、外部高周波ノイズ
をバイパスさせるため、導電性樹脂と導電性の熱伝導体
との間に外部誘導障害防止用コンデンサを接続する必要
があり、それだけ構造が煩雑になるという課題があるば
かりでなく、圧電振動子の出力を別設した信号処理電子
回路にケーブルにより接続することになり、構造が小形
、コンパクトにできず、圧電振動子と電子回路間で外部
誘導障害を受けるおそれがあり、また、圧電体がこれよ
りも線膨張率率さい材料によって保持されていないので
、センサ感度の温度依存性を一定にできないという課題
もある。
However, in the above precedent example, in order to bypass external high-frequency noise, it is necessary to connect an external inductive failure prevention capacitor between the conductive resin and the conductive thermal conductor, which makes the structure more complicated. In addition to this problem, the output of the piezoelectric vibrator must be connected to a separate signal processing electronic circuit using a cable, which prevents the structure from being made smaller and more compact, and may cause external induction interference between the piezoelectric vibrator and the electronic circuit. Furthermore, since the piezoelectric body is not supported by a material with a coefficient of linear expansion smaller than this, there is also the problem that the temperature dependence of sensor sensitivity cannot be made constant.

〔発明の概要〕[Summary of the invention]

本発明センサは上記の課題を解決するため、図示のよう
に圧電体1の両面に電極を設け、その一面に線膨張率の
小さな裏打材5を接着し、この裏打材5の周部に線膨張
率が同等以下の支持体34を接着して圧電振動子6を構
成し、この圧電振動子6を線膨張率の小さな回路基板7
の一面に接着し、この回路基板7の他面に信号処理電子
回路8を形成せしめ、全体を、内部導電層10.断熱層
9及び外部導電層11の3層で被覆してなる構成とした
ものである。
In order to solve the above problems, the sensor of the present invention provides electrodes on both sides of a piezoelectric body 1 as shown in the figure, adheres a backing material 5 with a small coefficient of linear expansion to one surface, and wires are attached to the periphery of the backing material 5. A piezoelectric vibrator 6 is constructed by adhering a support 34 with an expansion coefficient of the same or lower, and this piezoelectric vibrator 6 is attached to a circuit board 7 with a small coefficient of linear expansion.
A signal processing electronic circuit 8 is formed on the other side of the circuit board 7, and the entire internal conductive layer 10. It has a structure in which it is coated with three layers: a heat insulating layer 9 and an external conductive layer 11.

本発明では電子回路8中に外部誘導障害防止用コンデン
サを組込むことによりそれだけ構造が簡便になり、該コ
ンデンサの設置に苦慮することがないばかりでなく、圧
電振動子6の出力を信号処理電子回路8に接続するに際
してケーブルを別設する必要もないので、構造が小形、
コンパクトにでき、圧電振動子6と電子回路8間で外部
誘導障害を受けるおそれがないし、また圧電体1がこれ
より線膨張率の小さい材料によって保持されているので
、センサ感度の温度依存性を一定にできることになる。
In the present invention, by incorporating an external induction interference prevention capacitor into the electronic circuit 8, the structure is simplified and there is no need to worry about installing the capacitor. There is no need to install a separate cable when connecting to 8, so the structure is compact and
It can be made compact, there is no risk of external induction interference occurring between the piezoelectric vibrator 6 and the electronic circuit 8, and since the piezoelectric body 1 is held by a material with a smaller linear expansion coefficient, the temperature dependence of the sensor sensitivity can be reduced. This will be possible to a certain extent.

〔発明の詳細な説明〕[Detailed description of the invention]

以下図面に基いて本発明の詳細な説明する。 The present invention will be described in detail below based on the drawings.

第1図は本発明センサの一実施例の構成を示す概略断面
図、第2図は本実施例の外観を示す斜視図、第3図は本
実施例における構成の説明用斜視図である。
FIG. 1 is a schematic sectional view showing the structure of an embodiment of the sensor of the present invention, FIG. 2 is a perspective view showing the appearance of this embodiment, and FIG. 3 is a perspective view for explaining the structure of this embodiment.

第3図(a+ 、 (b) 、第4図中、1は圧電体で
ある。
In FIG. 3 (a+, (b)) and FIG. 4, 1 is a piezoelectric material.

圧電体1としては体積固有抵抗が20℃で1012〜1
016Ωcmの範囲にある、厚さ10〜500μmの圧
電樹脂シートである。
The piezoelectric material 1 has a volume resistivity of 1012 to 1 at 20°C.
It is a piezoelectric resin sheet with a thickness of 10 to 500 μm and in the range of 0.016 Ωcm.

例えば、高分子圧電体では、PVDF−ポリフッカビニ
リデン樹脂やP (VDCN/VCA)=ポリ (ビニ
リデンシアナイド/酢酸ビニル)共重合樹脂などであり
、高分子複合系では、PZT−チタン酸ジルコン酸鉛・
POM=ポリアセクール樹脂・NBR−アクリルニトリ
ル・ブタジェン共重合ゴム・カーボンからなる組成物の
圧電体である。ゴムは加硫することで耐久性を向上でき
る。
For example, polymer piezoelectric materials include PVDF-polyvinylidene resin and P (VDCN/VCA) = poly (vinylidene cyanide/vinyl acetate) copolymer resin, and polymer composite systems include PZT-zirconate titanate resin. lead·
POM is a piezoelectric body made of a composition consisting of polyacecool resin, NBR-acrylonitrile-butadiene copolymer rubber, and carbon. The durability of rubber can be improved by vulcanizing it.

PCT=カルシウム置換型チタン酸鉛・u−POM−ウ
レタン変性ポリアセタール樹脂からなる組成物の圧電体
でもよい。
It may be a piezoelectric body composed of PCT=calcium-substituted lead titanate/u-POM-urethane-modified polyacetal resin.

圧電体の両面には、蒸着、スパッタ、導電塗料の印刷等
の手段に依って電極が設けられ、その一面に裏打材5が
接着され、この裏打材5の周部に支持体34が固定され
て圧電振動子6が構成されるが、例えば、圧電体1の一
面に一対の正、負電極2.3を設け、他面に中立電極4
を設け、これに裏打材5及びこれに支持体34を設けた
構造の圧電振動子6(第3図参照)にすると、焦電性を
減じるのに効果がある。この効果は、正、負電極2゜3
の面積を等しくすると更に高められる。
Electrodes are provided on both sides of the piezoelectric body by means of vapor deposition, sputtering, printing with conductive paint, etc., a backing material 5 is adhered to one surface, and a support 34 is fixed to the periphery of this backing material 5. For example, a pair of positive and negative electrodes 2.3 are provided on one surface of the piezoelectric body 1, and a neutral electrode 4 is provided on the other surface.
A piezoelectric vibrator 6 (see FIG. 3) having a structure in which a backing material 5 and a support 34 are provided thereon is effective in reducing pyroelectricity. This effect occurs when the positive and negative electrodes are 2°3
This can be further increased by making the areas of

また、圧電体1の一面の中心側に正電極2を。In addition, a positive electrode 2 is placed on the center side of one surface of the piezoelectric body 1.

外側に負電極3を配置すると、電気ノイズ低減に効果が
ある。
Placing the negative electrode 3 on the outside is effective in reducing electrical noise.

尚、内側正電極2と外側負電極3の間には、電気的絶縁
帯が設けられることは勿論である。
It goes without saying that an electrically insulating band is provided between the inner positive electrode 2 and the outer negative electrode 3.

裏打材5としては線膨張率の小さい(5X10−5/℃
以下)ガラスエポキシ樹脂、ポリイミド、ポリエステル
等が用いられる。
The backing material 5 has a small coefficient of linear expansion (5X10-5/℃
Below) Glass epoxy resin, polyimide, polyester, etc. are used.

線膨張率は圧電体〉裏打材≧基板の順に小さくなるよう
に選択される。
The coefficient of linear expansion is selected to decrease in the order of piezoelectric material>backing material>substrate.

厚さは0.01〜1.6鰭、好ましくは、0.03〜0
.5鶴が用いられる。特に、圧電体厚さに対して1/3
から10倍の範囲が選択される。
The thickness is 0.01-1.6 fins, preferably 0.03-0
.. Five cranes are used. In particular, 1/3 of the piezoelectric thickness
A range of 10 times is selected.

裏打材5は接着剤を用いて圧電体1の一面に接着される
。このようにすることで、振動に関して裏打材5の寄与
が大きくなるため、感度の温度勾配が一定した振動子6
を得ることができる。
The backing material 5 is adhered to one surface of the piezoelectric body 1 using an adhesive. By doing this, the contribution of the backing material 5 to vibration increases, so the vibrator 6 has a constant temperature gradient of sensitivity.
can be obtained.

支持体34としては線膨張率が裏打材5に近似、もしく
は小さいガラスエポキシ樹脂、セラミック。
The support 34 is made of glass epoxy resin or ceramic whose coefficient of linear expansion is similar to or smaller than that of the backing material 5.

金属などが用いられる。Metal etc. are used.

形状としては、中央部に窪みもしくは、穴のある皿状、
リング状等が適する。
The shape is dish-shaped with a depression or hole in the center,
A ring shape etc. is suitable.

穴径については、圧電体1の内側正電極2の外径をA、
外側負電極3の外径をB、支持体34の内径をC1外寸
をDとすると、各々の関係は次式で定義される。
Regarding the hole diameter, the outer diameter of the inner positive electrode 2 of the piezoelectric body 1 is A,
Assuming that the outer diameter of the outer negative electrode 3 is B, the inner diameter of the support body 34 is C1, and the outer dimension is D, each relationship is defined by the following equation.

A/2≦C<B≦D 好ましくは A≦C≦(B−A)*3/4+A<B≦D支持体34は
接着剤を用いて前記裏打材5と接着され、振動子6が構
成される。
A/2≦C<B≦D Preferably A≦C≦(B-A)*3/4+A<B≦D The support body 34 is adhered to the backing material 5 using an adhesive, and the vibrator 6 is configured. be done.

加振力に対する出力の直線性を得るために、振動子6の
両面は連続した空間が形成される。
In order to obtain linearity of the output with respect to the excitation force, continuous spaces are formed on both sides of the vibrator 6.

この圧電振動子6は線膨張率の小さい回路基板7の一面
に接着されており、この回路基板7の他面には信号処理
電子回路8が形成されている。
This piezoelectric vibrator 6 is bonded to one side of a circuit board 7 having a small coefficient of linear expansion, and a signal processing electronic circuit 8 is formed on the other side of this circuit board 7.

回路基板7としては、線膨張率が5X10−5/’C以
下で厚さ0.2〜5 mm程度の、きょう体31との線
膨張率差による歪に抗せる高い剛性を有するガラスエポ
キシ樹脂、セラミック(アルミナ、シリコンウェハーな
ど)、金属等が用いられる。
The circuit board 7 is made of a glass epoxy resin having a coefficient of linear expansion of 5×10-5/'C or less and a thickness of approximately 0.2 to 5 mm, and having high rigidity that can withstand distortion due to the difference in coefficient of linear expansion with the housing 31. , ceramics (alumina, silicon wafers, etc.), metals, etc. are used.

圧電体1上の正、負電極2.3を回路基板7上の電子回
路8に接続するために、接続回路が形成される。接続回
路は、ワイヤーボンデングによるリード線の接続、蒸着
やスパッタ等による薄膜形成、厚膜回路印刷、導電塗装
等の方法で形成される。
A connecting circuit is formed to connect the positive and negative electrodes 2.3 on the piezoelectric body 1 to the electronic circuit 8 on the circuit board 7. The connection circuit is formed by connecting lead wires by wire bonding, forming a thin film by vapor deposition, sputtering, etc., thick film circuit printing, conductive coating, or the like.

回路形成に先立って、圧電体lの端面に露出している中
立電極4と電気的に短絡するのを避けるため、当該部分
は絶縁体12でコートされる。そして圧電振動子6の正
、負電極2.3は、それぞれ回路基板7の一面に形成さ
れた正、負電極用パターン15 、16に、正、負電極
用リードパターン13゜14で接続され(第3図参照)
、更にこれらの正。
Prior to circuit formation, this portion is coated with an insulator 12 in order to avoid electrical short-circuiting with the neutral electrode 4 exposed on the end face of the piezoelectric body 1. The positive and negative electrodes 2.3 of the piezoelectric vibrator 6 are connected to positive and negative electrode patterns 15 and 16 formed on one surface of the circuit board 7, respectively, through positive and negative electrode lead patterns 13 and 14 ( (See Figure 3)
, further these positive.

負電極用パターン15 、16はスルーホール17 、
18で回路基板7の他面に形成された信号処理電子回路
8に接続されている。24は負電極用パターン16と一
体に形成された回路基準電位電極である。
Negative electrode patterns 15 and 16 are through holes 17,
At 18, it is connected to a signal processing electronic circuit 8 formed on the other side of the circuit board 7. 24 is a circuit reference potential electrode formed integrally with the negative electrode pattern 16.

信号処理電子回路8ば、例えば第1図示のように回路基
板7,7aに分けて形成してもよ<、19は当該電子回
路8を構成する部品である。
The signal processing electronic circuit 8 may be formed separately on the circuit boards 7 and 7a, for example, as shown in the first diagram. Reference numeral 19 denotes a component constituting the electronic circuit 8.

信号処理電子回路8は例えば第4図示のようにインピー
ダンス変換部20.フィルタ部21.ミューティング部
22、増幅部23および電源回路30より構成されてい
る。
The signal processing electronic circuit 8 includes, for example, an impedance conversion section 20 .as shown in FIG. 4 . Filter section 21. It is composed of a muting section 22, an amplification section 23, and a power supply circuit 30.

インピーダンス変換部20の電界効果トランジスタQ、
に1〜100GΩのゲート抵抗Rを挿入することで、焦
電性による出力のドリフトが低減され、温度変化に対し
て安定した出力が得られる。
A field effect transistor Q of the impedance conversion section 20,
By inserting a gate resistor R of 1 to 100 GΩ in , output drift due to pyroelectricity is reduced, and stable output can be obtained against temperature changes.

フィルタ部21の定数は、最低測定周波数によって決定
されるバイパス・フィルタのカットオフ周波数から算出
される。
The constant of the filter section 21 is calculated from the cutoff frequency of the bypass filter determined by the lowest measured frequency.

0 フィルタ部21の後段にはミューティング部22を接続
し、電源投入直後の出力立ち上がりを早くする。
0. A muting section 22 is connected after the filter section 21 to speed up the output rise immediately after the power is turned on.

回路基板7の振動子6側には回路基準電位電極24を設
け、高インピーダンスの圧電体1を電磁ノイズから保護
する。
A circuit reference potential electrode 24 is provided on the vibrator 6 side of the circuit board 7 to protect the high impedance piezoelectric body 1 from electromagnetic noise.

センサ外との接続線(電源線、信号線など)には貫通コ
ンデンサ25 、26 、27を挿入し、外部高周波ノ
イズが回路部に入らないように保護する。
Feedthrough capacitors 25, 26, and 27 are inserted into the connection lines (power supply lines, signal lines, etc.) to the outside of the sensor to protect the circuit from external high-frequency noise.

増幅部23には温度補償回路28が組み合わせられ、環
境温度の変化に対して安定な感度が得られると共に利得
調整回路29も設けられ、これにより出力信号■。の大
きさが調整される。
The amplifier section 23 is combined with a temperature compensation circuit 28 to obtain stable sensitivity to changes in environmental temperature, and is also provided with a gain adjustment circuit 29, thereby producing an output signal (2). The size of is adjusted.

電源回路30は耐逆電圧用素子を挿入、異常な逆方向電
圧に対して回路を保護する。
A reverse voltage withstand element is inserted into the power supply circuit 30 to protect the circuit against abnormal reverse voltage.

また、瞬低・瞬断対策用回路を挿入し、異常な電圧の低
下や切断に対して回路の動作を保護する。
In addition, a voltage drop/interruption countermeasure circuit is inserted to protect circuit operation against abnormal voltage drops or disconnections.

32 、33は、それぞれケーブルおよびコネクタであ
る。
32 and 33 are a cable and a connector, respectively.

以上の構成によると、圧電体lが、自身よりも線膨張率
の小さい材料の回路基板7によって保持されるので、セ
ンサ感度の温度依存性を一定にすることができる。
According to the above configuration, since the piezoelectric body 1 is held by the circuit board 7 made of a material having a coefficient of linear expansion smaller than that of the piezoelectric body 1, the temperature dependence of the sensor sensitivity can be made constant.

回路基板7上には、振動子6を固定しない側に部品19
を実装するなど、ハイブリッド化した電子回路8を形成
することができる。
A component 19 is placed on the circuit board 7 on the side where the vibrator 6 is not fixed.
It is possible to form a hybrid electronic circuit 8 by, for example, mounting the following.

回路基板7,7aは更にきょう体と固定される。The circuit boards 7, 7a are further fixed to the housing.

固定に際して、シリコン樹脂、ウレタン樹脂などの軟質
接着剤を用いると、両者の線膨張率差による歪を吸収で
きる利点がある。
When fixing, using a soft adhesive such as silicone resin or urethane resin has the advantage of being able to absorb distortion due to the difference in linear expansion coefficient between the two.

第5図は本発明における電子回路30の一例を示す接続
図で、6は圧電振動子、Vcば回路基準電位、R4はソ
ース抵抗、Vccば電圧端、Rはゲ′−ト抵抗、Qlは
インピーダンス変換用電界効果1〜ランジスタ、T1は
直流電圧阻止用コンデンサCIと抵抗R2とよりなる第
1時定数回路、T2は直流電圧阻止用コンデンサC2と
抵抗R9とよりなる第2時定数回路で、これらの第1.
第2時定数回路T、、T2はフィルタ部を構成する。A
1.A2は初段、後段アンプ、R3、R4、Rh  、
R7ば1 2 それぞれ利得調整回路29を構成する初段、後段アンプ
A+、Azのゲイン設定用抵抗で、温度補償回路28は
図示していない。Qz  、 Qsはそれぞれ抵抗Rz
、Rsに並列に接続した第1.第2スイツチング用電界
効果トランジスタ、D、、D2はダイオード、Mcはミ
ューティング回路22である。
FIG. 5 is a connection diagram showing an example of the electronic circuit 30 according to the present invention, where 6 is a piezoelectric vibrator, Vc is a circuit reference potential, R4 is a source resistance, Vcc is a voltage terminal, R is a gate resistance, and Ql is a Field effect 1 for impedance conversion - transistor, T1 is a first time constant circuit consisting of a DC voltage blocking capacitor CI and a resistor R2, T2 is a second time constant circuit consisting of a DC voltage blocking capacitor C2 and a resistor R9, The first of these.
The second time constant circuits T, , T2 constitute a filter section. A
1. A2 is the first stage, second stage amplifier, R3, R4, Rh,
R7ba1 2 Resistors for setting the gains of the first-stage and second-stage amplifiers A+ and Az, respectively, which constitute the gain adjustment circuit 29, and the temperature compensation circuit 28 is not shown. Qz and Qs are each resistance Rz
, Rs connected in parallel. Second switching field effect transistors D, D2 are diodes, and Mc is a muting circuit 22.

ミューティング回路Mcより出力される電界効果トラン
ジスタQ2.Q、のオン、オフ用信号M + 。
Field effect transistor Q2 outputted from muting circuit Mc. Q, on/off signal M + .

M2は第6図示のように電源投入直後同時に出力される
が、停止する時期については先にM、が停止し、一定期
間後M2が停止するように形成される。
As shown in FIG. 6, M2 is output at the same time immediately after the power is turned on, but the timing of stopping is such that M stops first and M2 stops after a certain period of time.

電源投入直後、基準電位Vcより高電圧に設定されたミ
ューティング信号M、、M2がミューティング回路Mc
よりダイオードDI+D2に印加すると、電界効果トラ
ンジスタQ Z 、 Q 3はダイオードリーク電流に
よりゲート、ソース間電圧V(、s−〇■となり、オン
する。一定期間1..12の後ミューティング信号M、
、M2が基準電位Vcより電界効果トランジスタピンチ
オフ電圧以下に低くなると電界効果トランジスタQ、、
Q2ばそれぞれオフする。ここで電界効果トランジスタ
Q2Q3のオン設定時間tl+t2は1.<12に設定
される。
Immediately after the power is turned on, the muting signals M, , M2 set to a higher voltage than the reference potential Vc are applied to the muting circuit Mc.
When the voltage is applied to the diode DI+D2, the field effect transistors Q Z and Q 3 become gate-to-source voltage V(,s-〇■) due to the diode leakage current, and are turned on.After a certain period of time 1...12, the muting signal M,
, M2 becomes lower than the reference potential Vc below the field effect transistor pinch-off voltage, the field effect transistor Q, ,
Q2 is turned off. Here, the ON setting time tl+t2 of the field effect transistor Q2Q3 is 1. <12.

このような構成において電源を投入すると、インピーダ
ンス変換用電界効果トランジスタQ1およびアンプA 
I、 A 2に電源電圧Vccが印加される。同時に、
ミューティング回路Mcが作動し第1時定数回路TIの
抵抗R2に並列に接続されたスイッチング用電界効果ト
ランジスタQ2がダイオードD、を介してミューティン
グ信号M、により設定時間t1オンし、その後オフせし
められる。
When the power is turned on in such a configuration, the impedance conversion field effect transistor Q1 and the amplifier A
A power supply voltage Vcc is applied to I and A2. at the same time,
When the muting circuit Mc is activated, the switching field effect transistor Q2 connected in parallel to the resistor R2 of the first time constant circuit TI is turned on for a set time t1 by the muting signal M via the diode D, and then turned off. It will be done.

また、第2時定数回路T2の抵抗R5に並列に接続され
たスイッチング用電界効果トランジスタQ3もダイオー
ドD2を介してミューティング信号M2により設定時間
t2オンし、その後オフせしめられる。
Furthermore, the switching field effect transistor Q3 connected in parallel to the resistor R5 of the second time constant circuit T2 is also turned on for a set time t2 by the muting signal M2 via the diode D2, and then turned off.

本動作により第1時定数回路T、にて、t1期間尺2#
0Ωとなり直流阻止用コンデンサC8は速やかに所定の
電圧迄充電される。t1期間後第3 4 1時定数回路T、は正規の時定数にてインピーダンス変
換されたセンサ検出信号出力Vsを初段アンプA、へ伝
達する。
With this operation, the first time constant circuit T, has a t1 period length 2#
0Ω, and the DC blocking capacitor C8 is quickly charged to a predetermined voltage. After the t1 period, the 341 time constant circuit T transmits the impedance-converted sensor detection signal output Vs to the first stage amplifier A using a regular time constant.

同様に、第2時定数回路T2にて、t2期間尺6#0Ω
となり、直流阻止用コンデンサC2は基準電位Vcに対
する初段アンプA1の直流オフセット電圧変動に対し速
やかに充電される。t2期間後第2時定数回路T2ば正
規の時定数にて初段アンプA1にて増幅されたセンサ検
出信号出力■1を後段アンプA2へ伝達する。
Similarly, in the second time constant circuit T2, the period t2 is 6#0Ω.
Therefore, the DC blocking capacitor C2 is quickly charged against the DC offset voltage fluctuation of the first stage amplifier A1 with respect to the reference potential Vc. After the period t2, the second time constant circuit T2 transmits the sensor detection signal output (1) amplified by the first stage amplifier A1 to the second stage amplifier A2 using a regular time constant.

上記の動作結果、センサアンプ出力信号Voは、電源投
入後t2期間、基準電位Vcとなり、その後安定したセ
ンサ検出信号増幅出力信号となり、入力応答の七トリン
グ時間送れを短くすることが可能となる。
As a result of the above operation, the sensor amplifier output signal Vo becomes the reference potential Vc for a period t2 after the power is turned on, and then becomes a stable sensor detection signal amplified output signal, making it possible to shorten the seven-tring time delay of the input response.

例えば、低域カットオフ周波数を0.1 Hz程度に設
定した場合、本発明センサアンプでは、出力安定に必要
となる時間は、約6秒となる。
For example, when the low cutoff frequency is set to about 0.1 Hz, the sensor amplifier of the present invention requires about 6 seconds to stabilize its output.

圧電振動子6.及び回路基板7,7aは内部導電層10
.断熱層9及び外部導電層11よりなるきょう体31内
に収納される。32は各貫通コンデンサ25〜27に接
続されたケーブル、33はケーブル32に接続されたコ
ネクタである。
Piezoelectric vibrator6. and the circuit board 7, 7a has an internal conductive layer 10
.. It is housed in a housing 31 consisting of a heat insulating layer 9 and an external conductive layer 11. 32 is a cable connected to each feedthrough capacitor 25 to 27, and 33 is a connector connected to the cable 32.

振動子6および電子回路8を電磁ノイズから保護するた
めに全体は内部導電層10で囲まれ、導電層10は電子
回路8の信号グランドと接続される。
In order to protect the vibrator 6 and the electronic circuit 8 from electromagnetic noise, the whole is surrounded by an internal conductive layer 10, and the conductive layer 10 is connected to the signal ground of the electronic circuit 8.

内部導電層10は、カーボンもしくは/およびカーボン
ファイバーを混合した導電樹脂、樹脂メツキ、導電塗装
などで形成される。
The internal conductive layer 10 is formed of a conductive resin mixed with carbon and/or carbon fiber, resin plating, conductive coating, or the like.

また、フェライト混合により、併せて高周波もシールド
することができる。
Furthermore, by mixing ferrite, high frequencies can also be shielded.

圧電体1の焦電効果によって出力ゼロドリフトの起こる
のを防止するために、断熱層9で全体が囲まれる。断熱
層9は、ヒダのついた樹脂成型体や、発泡樹脂体などで
形成される。
In order to prevent zero output drift from occurring due to the pyroelectric effect of the piezoelectric body 1, the entire piezoelectric body 1 is surrounded by a heat insulating layer 9. The heat insulating layer 9 is formed of a pleated resin molded body, a foamed resin body, or the like.

また、外部高周波ノイズの影響を除去するために、貫通
コンデンサ25〜27の接地端子と接続した、外部導電
層11が金属などで形成され被測定物に接地される。
Further, in order to eliminate the influence of external high frequency noise, an external conductive layer 11 connected to the ground terminals of the feedthrough capacitors 25 to 27 is formed of metal or the like and is grounded to the object to be measured.

本発明を具体的に示すと、圧電体1として、次5 6 の組成を有する高分子複合系を用いた。To specifically illustrate the present invention, the following five piezoelectric bodies 1 are used. 6 A polymer composite system with the composition was used.

PZT    82.3  重量% POM    15.8  重量% NBR1,75重量% カーボン   0.13重量% この圧電体1を、厚さ100μm直径1!1llnの円
板状に形成した。
PZT: 82.3% by weight POM: 15.8% by weight NBR: 1.75% by weight Carbon: 0.13% by weight This piezoelectric body 1 was formed into a disk shape with a thickness of 100 μm and a diameter of 1!1 ln.

圧電体1の一面に直径13.5ψの正電極2、内径14
φ外径19φの負電極3を、他面には全面に中立電極4
を導電塗料の印刷によって設けた。
A positive electrode 2 with a diameter of 13.5ψ and an inner diameter of 14 are placed on one surface of the piezoelectric body 1.
A negative electrode 3 with an outer diameter of 19φ is placed on the other side, and a neutral electrode 4 is placed on the entire surface on the other side.
was provided by printing conductive paint.

厚す200μm直径19φのガラスエポキシ樹脂製裏打
材5を、エポキシ系接着剤を用いて接着層厚さが10μ
以下となるように圧電体1の中立電極4と接着した。
A glass epoxy resin backing material 5 with a thickness of 200 μm and a diameter of 19φ is bonded to an adhesive layer thickness of 10 μm using an epoxy adhesive.
It was bonded to the neutral electrode 4 of the piezoelectric body 1 in the following manner.

厚さ1.2N外径19.5ψ内径15.5φのガラスエ
ポキシ樹脂性リング34を、エポキシ系接着剤を用いて
、前記接着体の裏打材5面と接着し、振動子6を形成し
た。
A glass epoxy resin ring 34 having a thickness of 1.2N and an outer diameter of 19.5φ and an inner diameter of 15.5φ was adhered to the backing material 5 surface of the adhesive body using an epoxy adhesive to form a vibrator 6.

振動子6を、ハイブリッド化された電子回路8を搭載し
た厚さ0.81賞、 23mm角のアルミナ基板にエポ
キシ系接着剤を用いて接着した。
The vibrator 6 was bonded using an epoxy adhesive to a 0.81 mm thick, 23 mm square alumina substrate on which a hybrid electronic circuit 8 was mounted.

ハイブリッド化された電子回路8には、接続回路と、信
号処理回路と、電源回路とを設けた。
The hybridized electronic circuit 8 was provided with a connection circuit, a signal processing circuit, and a power supply circuit.

前記の基板を、導電性樹脂層10と、絶縁性を有する断
熱性樹脂層9と、金属層11の3層からなるきょう体3
1に納め、本発明のセンサを完成させた〔効 果〕 上述の説明より理解されるように本発明によれば、圧電
体1の両面に電極を設け、その一面に線膨張率の小さな
裏打材5を接着し、この裏打材5の周部に線膨張率が同
等以下の支持体34を接着して圧電振動子6を構成し、
この圧電振動子6を線膨張率の小さな回路基板7の一面
に接着し、この回路基板7の他面に信号処理電子回路8
を形成せしめ、全体を、内部導電層10.断熱層9及び
外部導電層11の3層で被覆してなるので、焦電性によ
る出力のドリフトを低減でき、温度変化に対して安定し
た出力Voを得ることができる。また、圧電体1よりも
線膨張率の小さい回路基板7により圧電振動子6を保持
したので、センサ感度の温度7 8 依存性を一定にすることができると共に回路基板7を内
部導電層10.断熱層9及び外部導電層11の3層に固
定するに際し軟質接着剤を用いることにより回路基板7
と3層の線膨張率差による歪を吸収できる。更に圧電振
動子6及び回路基板7の全体が、電子回路8の信号グラ
ンドに接続された内部導電層10により被覆されている
ので、電磁ノイズから保護することができるばかりでな
く、貫通コンデンサ25〜27の接地端子に外部導電層
11を接続することにより高周波電磁波の影響を除去す
ることができる。また、電子回路8中に外部誘導障害防
止用コンデンサを組込むことによりそれだけ構造が簡便
になり、小形、コンパクトにできる等の効果を奏する。
The above-mentioned substrate is formed into a housing 3 consisting of three layers: a conductive resin layer 10, an insulating heat-insulating resin layer 9, and a metal layer 11.
[Effects] As understood from the above explanation, according to the present invention, electrodes are provided on both sides of the piezoelectric body 1, and a backing with a small coefficient of linear expansion is provided on one side. A piezoelectric vibrator 6 is constructed by gluing the material 5 and adhering a support 34 having a linear expansion coefficient of the same or lower to the circumference of the backing material 5,
This piezoelectric vibrator 6 is adhered to one side of a circuit board 7 having a small coefficient of linear expansion, and a signal processing electronic circuit 8 is attached to the other side of this circuit board 7.
, and the entire internal conductive layer 10. Since it is coated with three layers, the heat insulating layer 9 and the external conductive layer 11, output drift due to pyroelectricity can be reduced, and an output Vo that is stable against temperature changes can be obtained. Furthermore, since the piezoelectric vibrator 6 is held by the circuit board 7 which has a coefficient of linear expansion smaller than that of the piezoelectric body 1, the dependence of the sensor sensitivity on the temperature 78 can be made constant, and the circuit board 7 can be connected to the internal conductive layer 10. The circuit board 7 is fixed to the three layers of the heat insulating layer 9 and the external conductive layer 11 by using a soft adhesive.
It can absorb the strain caused by the difference in linear expansion coefficient between the three layers. Furthermore, since the piezoelectric vibrator 6 and the circuit board 7 are entirely covered with an internal conductive layer 10 connected to the signal ground of the electronic circuit 8, they are not only protected from electromagnetic noise but also protected from feedthrough capacitors 25 to 25. By connecting the external conductive layer 11 to the ground terminal 27, the influence of high frequency electromagnetic waves can be removed. Furthermore, by incorporating the external induction interference prevention capacitor into the electronic circuit 8, the structure becomes simpler and more compact.

特に振動に関して裏打材5及び支持体34の関与が大き
くなるため、感度の温度勾配が一定した圧電振動子6を
得ることができる。
In particular, since the backing material 5 and the support body 34 are greatly involved in vibration, it is possible to obtain a piezoelectric vibrator 6 with a constant temperature gradient of sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明センサの一実施例の構成を示す概略断面
図、第2図は本実施例の外観を示す斜視図、第4図は本
実施例における信号処理電子回路の二構成例を示す接続
図、第5図は本発明における電子回路の一例を示す接続
図、第6図はその動作説明図である。 ■・・・・・・圧電体、2.3・・・・・・正、負電極
、4・・・・・・中立電極、5・・・・・・裏打材、6
・・・・・・圧電振動子、77a・・・・・・回路基板
、8・・・・・・信号処理電子回路、9・・・・・・断
熱層、10.11・・・・・・内、外部導電層、34・
・・・・・支持体。 9 0
Fig. 1 is a schematic sectional view showing the configuration of one embodiment of the sensor of the present invention, Fig. 2 is a perspective view showing the external appearance of this embodiment, and Fig. 4 shows two configuration examples of the signal processing electronic circuit in this embodiment. FIG. 5 is a connection diagram showing an example of the electronic circuit according to the present invention, and FIG. 6 is an explanatory diagram of its operation. ■...Piezoelectric body, 2.3...Positive and negative electrodes, 4...Neutral electrode, 5...Backing material, 6
...Piezoelectric vibrator, 77a ... Circuit board, 8 ... Signal processing electronic circuit, 9 ... Heat insulation layer, 10.11 ...・Inner and outer conductive layers, 34・
...Support. 9 0

Claims (3)

【特許請求の範囲】[Claims] (1)圧電体1の両面に電極を設け、その一面に線膨張
率の小さな裏打材5を接着し、この裏打材5の周部に線
膨張率が同等以下の支持体34を接着して圧電振動子6
を構成し、この圧電振動子6を線膨張率の小さな回路基
板7の一面に接着し、この回路基板7の他面に信号処理
電子回路8を形成せしめ、全体を、内部導電層10、断
熱層9及び外部導電層11の3層で被覆してなる加速度
センサ。
(1) Electrodes are provided on both sides of the piezoelectric body 1, a backing material 5 with a small coefficient of linear expansion is adhered to one surface of the electrode, and a support material 34 with a coefficient of linear expansion equal to or lower than the other is adhered to the periphery of this backing material 5. Piezoelectric vibrator 6
The piezoelectric vibrator 6 is bonded to one side of a circuit board 7 having a small coefficient of linear expansion, and the signal processing electronic circuit 8 is formed on the other side of the circuit board 7. An acceleration sensor coated with three layers: layer 9 and outer conductive layer 11.
(2)圧電振動子6は圧電体1の一面に一対の正、負電
極2,3を設け、その他面に中立電極4を設け、この中
立電極4に裏打材5を接着し、この裏打材5の周部に支
持体34を接着してなる請求項第1項記載の加速度セン
サ。
(2) In the piezoelectric vibrator 6, a pair of positive and negative electrodes 2 and 3 are provided on one surface of the piezoelectric body 1, a neutral electrode 4 is provided on the other surface, a backing material 5 is adhered to the neutral electrode 4, and the backing material 2. The acceleration sensor according to claim 1, further comprising a support member 34 adhered to the circumferential portion of the acceleration sensor 5.
(3)信号処理電子回路8は、圧電振動子6の出力に、
インピーダンス変換部20、フィルタ部21、増幅部2
3をこの順に接続し、フィルタ部21と増幅部23間に
、ミューテイング部22を接続すると共に、これら各部
を作動せしめる電源回路30を設け、増幅部23の出力
及び電源回路30の入力、信号グランドにそれぞれ貫通
コンデンサ26,25,27を接続せしめてなる請求項
第1項,第2項のいずれかに記載の加速度センサ。
(3) The signal processing electronic circuit 8 applies the output of the piezoelectric vibrator 6 to
Impedance conversion section 20, filter section 21, amplifier section 2
3 are connected in this order, and the muting section 22 is connected between the filter section 21 and the amplification section 23, and a power supply circuit 30 for operating these sections is provided, and the output of the amplification section 23, the input of the power supply circuit 30, and the signal 3. The acceleration sensor according to claim 1, wherein feedthrough capacitors (26, 25, 27) are connected to the ground, respectively.
JP14050989A 1989-06-02 1989-06-02 Acceleration sensor Pending JPH036463A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP14050989A JPH036463A (en) 1989-06-02 1989-06-02 Acceleration sensor
US07/530,162 US5130600A (en) 1989-06-02 1990-05-29 Acceleration sensor
EP90110303A EP0401669B1 (en) 1989-06-02 1990-05-30 An acceleration sensor
DE69012429T DE69012429T2 (en) 1989-06-02 1990-05-30 Accelerometer.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14050989A JPH036463A (en) 1989-06-02 1989-06-02 Acceleration sensor

Publications (1)

Publication Number Publication Date
JPH036463A true JPH036463A (en) 1991-01-11

Family

ID=15270304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14050989A Pending JPH036463A (en) 1989-06-02 1989-06-02 Acceleration sensor

Country Status (1)

Country Link
JP (1) JPH036463A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5375468A (en) * 1991-07-19 1994-12-27 Mitsubishi Petrochemical Co., Ltd. Acceleration sensor unit having self-checking function
JPH0736063U (en) * 1993-12-15 1995-07-04 ジェイ・アール・シー特機株式会社 Soundproof accelerometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5375468A (en) * 1991-07-19 1994-12-27 Mitsubishi Petrochemical Co., Ltd. Acceleration sensor unit having self-checking function
JPH0736063U (en) * 1993-12-15 1995-07-04 ジェイ・アール・シー特機株式会社 Soundproof accelerometer

Similar Documents

Publication Publication Date Title
US5130600A (en) Acceleration sensor
US5063782A (en) Accelerometers and associated control circuits
US6945118B2 (en) Ceramic on metal pressure transducer
US4467394A (en) Three plate silicon-glass-silicon capacitive pressure transducer
US4149423A (en) High-temperature microphone system
US5263380A (en) Differential AC anemometer
JPH02189435A (en) Pressure sensor
JP5774099B2 (en) Inductively coupled pressure sensor
US6581478B2 (en) Torque measuring apparatus and method employing a crystal oscillator
JP3805576B2 (en) Vibration transducer and acceleration sensor equipped with the vibration transducer
JPH036463A (en) Acceleration sensor
US20190270637A1 (en) Mems assembly
JPH036461A (en) Acceleration sensor
WO1989005199A1 (en) An acoustic emission transducer and an electrical oscillator
JPH036462A (en) Acceleration sensor
US11415474B2 (en) Pressure sensor and system for measuring pressure
US6792123B2 (en) Electroacoustic transducer
KR100486868B1 (en) Condenser microphone using a built-in-gain AMP
WO2003067266A1 (en) Piezoelectric acceleration sensor
JPH05259687A (en) Electronic apparatus provided with measure against radio interference and method of mounting board thereof its substrate
JPH052859Y2 (en)
JP3805577B2 (en) Vibration transducer and acceleration sensor equipped with the vibration transducer
JPH02236431A (en) Piezoelectric pressure sensor
RU1837245C (en) Device for measuring weak magnetic fields
RU1448853C (en) Matrix pressure transducer