JPH0364303A - Method for removing residual volatile matter from styrenic polymer - Google Patents

Method for removing residual volatile matter from styrenic polymer

Info

Publication number
JPH0364303A
JPH0364303A JP19933189A JP19933189A JPH0364303A JP H0364303 A JPH0364303 A JP H0364303A JP 19933189 A JP19933189 A JP 19933189A JP 19933189 A JP19933189 A JP 19933189A JP H0364303 A JPH0364303 A JP H0364303A
Authority
JP
Japan
Prior art keywords
polymer
styrenic polymer
residual volatile
extruder
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19933189A
Other languages
Japanese (ja)
Other versions
JP2723142B2 (en
Inventor
Koji Yamamoto
浩司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP19933189A priority Critical patent/JP2723142B2/en
Publication of JPH0364303A publication Critical patent/JPH0364303A/en
Application granted granted Critical
Publication of JP2723142B2 publication Critical patent/JP2723142B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To remove residual volatile matters, e.g. unreacted monomers economically and effectively by predrying a powered styrenic polymer mainly having a syndiotactic structure at a specified temp. and passing the predried polymer through an extruder under degassing at specified temp. and pressure. CONSTITUTION:In removing residual volatile matters from a powdered styrenic polymer mainly having a syndiotactic structure, the polymer is passed through an extruder at a temp. in the range of from the glass transition temp. to 400 deg.C under a pressure of 200mmHg or lower under degassing. The volatile matters remaining in the polymer after the completion of polymn. are thus removed effectively in a short time, enabling the qualities of the polymer and molded item thereof to be improved and the machine operation in production to be stabilized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はスチレン系重合体の残留揮発分の除去方法に関
し、詳しくは主としてシンジオタクチック構造を有する
スチレン系重合体粉末から未反応のモノマー等の残留揮
発分を経済的にかつ効率よく低減させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for removing residual volatile matter from a styrenic polymer, and more specifically, the present invention relates to a method for removing residual volatile matter from a styrenic polymer. The present invention relates to a method for economically and efficiently reducing the residual volatile content of.

〔従来の技術及び発明が解決しようとする課題〕従来、
スチレン系重合体として、その立体化学構造がアククチ
ツク構造のもの及びアイソタクチック構造のものがよく
知られているが、最近この立体化学構造が主としてシン
ジオタクチック構造であるスチレン系重合体の開発が行
われつつあり、例えば特開昭62−187708号公報
等に開示されている。このシンジオタクチック構造のス
チレン系重合体は、融点が高く、結晶化速度の大きい樹
脂であり、耐熱性及び耐薬品性に優れているため種々の
用途が期待されている。
[Problems to be solved by conventional techniques and inventions] Conventionally,
Styrenic polymers with active and isotactic stereochemical structures are well known, but recently styrenic polymers with mainly syndiotactic stereochemical structures have been developed. This method is currently being implemented, and is disclosed in, for example, Japanese Patent Laid-Open No. 187708/1983. This styrenic polymer with a syndiotactic structure is a resin with a high melting point and a high crystallization rate, and is expected to have various uses because it has excellent heat resistance and chemical resistance.

このような、主としてシンジオタクチック構造を有する
スチレン系重合体を無溶媒重合法あるいはスラリー法等
により製造する場合、得られる重合体中には未反応のモ
ノマー分が2〜80重量%程度含まれている。従って、
重合後の後処理として、乾燥機や押出機により溶融脱揮
処理を行い、このモノマー分等の残留揮発分を除去する
必要がある。しかしながら、乾燥機のみを用いた場合に
は滞留時間が長くなり経済的ではなく、また押出機のみ
を用いた場合には揮発分の脱揮能力に限界があり、脱揮
不足による吐出不良を招くことがある。
When producing such a styrenic polymer mainly having a syndiotactic structure by a solventless polymerization method or a slurry method, the resulting polymer contains about 2 to 80% by weight of unreacted monomer. ing. Therefore,
As a post-treatment after polymerization, it is necessary to perform a melt devolatilization treatment using a dryer or an extruder to remove residual volatile components such as this monomer component. However, if only a dryer is used, the residence time will be long, making it uneconomical, and if only an extruder is used, there is a limit to the ability to devolatilize volatile matter, resulting in poor discharge due to insufficient devolatilization. Sometimes.

そこで、本発明者らは、上記の問題点を解消し、主とし
てシンジオタクチック構造を有するスチレン系重合体粉
末中に残留するモノマー等の残留揮発分を、経済的にか
つ効率よく低減させ、残留揮発分が少なく、良好な形状
の成形用材料を効率よく安定して製造することができる
方法を開発すべく鋭意研究を重ねた。
Therefore, the present inventors solved the above-mentioned problems and economically and efficiently reduced residual volatile components such as monomers remaining in styrenic polymer powder mainly having a syndiotactic structure. We conducted extensive research to develop a method that can efficiently and stably produce molding materials with low volatile content and good shapes.

〔課題を解決するための手段〕[Means to solve the problem]

その結果、特定の条件下での予備乾燥と押出機内での脱
揮処理とを組み合わせることによって、上記の課題が達
成できることを見出した。本発明はかかる知見に基いて
完成したものである。
As a result, it has been found that the above-mentioned problems can be achieved by combining pre-drying under specific conditions and devolatilization treatment within an extruder. The present invention was completed based on this knowledge.

すなわち本発明は、主としてシンジオタクチック構造を
有するスチレン系重合体粉末から残留揮発分を除去する
にあたり、該重合体を、そのガラス転移温度〜融点の範
囲の温度で予備乾燥し、次いで融点〜400℃の範囲の
温度および200anHg以下の圧力下で脱揮しながら
押出機内を通過させることを特徴とするスチレン系重合
体の残留揮発分の除去方法を提供するものである。
That is, in the present invention, in order to remove residual volatile components from a styrenic polymer powder mainly having a syndiotactic structure, the polymer is pre-dried at a temperature ranging from its glass transition temperature to its melting point, and then the powder is dried at a temperature ranging from its glass transition temperature to its melting point. The object of the present invention is to provide a method for removing residual volatile matter from a styrenic polymer, which comprises passing the polymer through an extruder while devolatilizing it at a temperature in the range of °C and under a pressure of 200 anHg or less.

本発明の対象となるスチレン系重合体は、主としてシン
ジオタクチック構造を有するものである。
The styrenic polymer targeted by the present invention mainly has a syndiotactic structure.

ここで主としてシンジオタクチック構造とは、立体化学
構造が主としてシンジオタクチック構造、即ち炭素−炭
素結合から形成される主鎖に対して側鎖であるフェニル
基や置換フェニル基が交互に反対方向に位置する立体構
造を有するものであり、そのタフティシティ−は同位体
炭素による核磁気共鳴法(13C−NMR法)により定
量される。
Here, a syndiotactic structure is mainly a syndiotactic structure in which the stereochemical structure is mainly a syndiotactic structure, that is, the phenyl groups or substituted phenyl groups that are side chains are arranged in opposite directions alternately with respect to the main chain formed from carbon-carbon bonds. It has a three-dimensional structure, and its toughness is determined by nuclear magnetic resonance method (13C-NMR method) using carbon isotope.

”C−NMR法により測定されるタフティシティ−は、
連続する複数個の構成単位の存在割合、例えば2個の場
合はダイアツド、3個の場合はトリアット、5個の場合
はペンタッドによって示すことができるが、本発明に言
う主としてシンジオタクチック構造を有するスチレン系
重合体とは、通常はラセミダイアツドで75%以上、好
ましくは85%以上、若しくはラセミペンタッドで30
%以上、好ましくは50%以上のシンジオタクテイシテ
イ−を有するポリスチレン、ポリ(アルキルスチレン)
、ポリ(ハロゲン化スチレン)、ポリ(アルコキシスチ
レン)、ポリ(ビニル安息香酸エステル)、これらの水
素化重合体およびこれらの混合物、あるいはこれらの構
造単位を含む共重合体を指称する。なお、ここでポリ(
アルキルスチレン)としては、ポリ(メチルスチレン〉
、ポリ(エチルスチレン)、ポリ(イソプロピルスチレ
ン)、ポリ(ターシャリ−ブチルスチレン)などがあり
、ポリ(ハロゲン化スチレン)としては、ポリ(クロロ
スチレン)、ポリ(ブロモスチレン)。
``Toughness measured by C-NMR method is
The presence ratio of a plurality of consecutive structural units, for example, can be indicated by a diad in the case of two, a triat in the case of three, and a pentad in the case of five, but it mainly has a syndiotactic structure as referred to in the present invention. The styrenic polymer is usually 75% or more in racemic diad, preferably 85% or more in racemic pentad, or 30% or more in racemic pentad.
Polystyrene, poly(alkylstyrene) having a syndiotacticity of % or more, preferably 50% or more
, poly(halogenated styrene), poly(alkoxystyrene), poly(vinyl benzoate), hydrogenated polymers thereof, mixtures thereof, or copolymers containing structural units thereof. In addition, here poly (
As the alkylstyrene), poly(methylstyrene)
, poly(ethylstyrene), poly(isopropylstyrene), poly(tertiary-butylstyrene), etc. Poly(halogenated styrene) includes poly(chlorostyrene) and poly(bromostyrene).

ポリ(フルオロスチレン)などがある。また、ポリ(ア
ルコキシスチレン)としては、ポリ(メトキシスチレン
)、ポリ(エトキシスチレン)などがある。これらのう
ち特に好ましいスチレン系重合体としては、ポリスチレ
ン、ポリ(p−メチルスチレン)、ポリ(m−メチルス
チレン)、ポリ(p−ターシャリ−ブチルスチレン)、
ポリ(p−クロロスチレン)、ポリ(m−クロロスチレ
ン)。
Examples include poly(fluorostyrene). Furthermore, examples of poly(alkoxystyrene) include poly(methoxystyrene) and poly(ethoxystyrene). Among these, particularly preferred styrenic polymers include polystyrene, poly(p-methylstyrene), poly(m-methylstyrene), poly(p-tert-butylstyrene),
Poly(p-chlorostyrene), poly(m-chlorostyrene).

ポリ(p−フルオロスチレン)、またスチレンとp−メ
チルスチレンとの共重合体をあげることができる(特開
昭62−187708号公報)。
Examples include poly(p-fluorostyrene) and a copolymer of styrene and p-methylstyrene (Japanese Unexamined Patent Publication No. 187708/1983).

またこのスチレン系重合体は、分子量について特に制限
はないが、重量平均分子量が10,000以上3.OO
O,OOO以下のものが好ましく、とりわけ50.00
0以上1,500,000以下のものが最適である。さ
らに、分子量分布についてもその広狭は制約がなく、様
々なものを充当することが可能である。なお、この主と
してシンジオタクチック構造を有するスチレン系重合体
は融点が160〜310℃であって、従来のアタクチッ
ク構造のスチレン系重合体に比べて耐熱性が格段に優れ
ている。
In addition, this styrene polymer has a weight average molecular weight of 10,000 or more, although there is no particular restriction on the molecular weight. OO
O, OOO or less is preferred, especially 50.00
The optimum value is 0 or more and 1,500,000 or less. Further, there is no restriction on the width or narrowness of the molecular weight distribution, and various types can be used. This styrenic polymer, which mainly has a syndiotactic structure, has a melting point of 160 to 310°C, and has much better heat resistance than conventional styrene polymers having an atactic structure.

このような主としてシンジオタクチック構造を有するス
チレン系重合体は、例えば不活性炭化水素溶媒中または
溶媒の不存在下に、(A)チタン化合物及び(B)水と
有機アルミニウム化合物、特にトリアルキルアルミニウ
ムとの縮合生成物を触媒として、スチレン系単量体(上
記スチレン系重合体に対応する単量体)を重合すること
により製造することができる(特開昭62−18770
8号公報)。
Such a styrenic polymer having a mainly syndiotactic structure can be prepared by combining (A) a titanium compound and (B) water with an organoaluminum compound, especially a trialkylaluminum, in an inert hydrocarbon solvent or in the absence of a solvent. It can be produced by polymerizing a styrene monomer (monomer corresponding to the above styrene polymer) using a condensation product of
Publication No. 8).

本発明では、上記の如く製造された主としてシンジオタ
クチック構造を有するスチレン系重合体を、まず予備乾
燥し、しかる後に押出機を用いて脱揮処理を行い、該重
合体中に残留する未反応モノマーなとの揮発分を除去す
る。予備乾燥は、重合体を各種の乾燥機にて乾燥し、該
重合体中のモノマーをはじめとする揮発分含量を、好ま
しくは10%以下、さらに好ましくは3%以下とする。
In the present invention, the styrenic polymer mainly having a syndiotactic structure produced as described above is first predried, and then devolatilized using an extruder to remove any unreacted material remaining in the polymer. Remove monomers and volatile components. In the preliminary drying, the polymer is dried in various types of dryers, and the content of volatile components including monomers in the polymer is preferably 10% or less, more preferably 3% or less.

この予備乾燥に用いる乾燥機としては、水平方向に攪拌
軸を有する横型乾燥機、具体的には、玉用機械■製のデ
ィスクドライヤ(SDK−D)や真空撹拌乾燥機(VD
)、奈良機械■製のパドルドライヤやマルチフィンプロ
セッサ、ホソカヮミクロン■製のトーラスディスク(T
D)やソリッドエア(SD)等、さらにキャリアガスと
して窒素等を使用する流動層タイプの乾燥機、具体的に
は、奈良機械■製の流動層乾燥機、栗本鉄工所■製の間
接加熱乾燥機(K I D)等を挙げることができ、そ
のほか、ロータリーキルンタイプ、ナウタミキサー型、
タンブラー型等の各種形式の乾燥機を使用することがで
きる。
The dryer used for this preliminary drying is a horizontal dryer with a stirring shaft in the horizontal direction, specifically, a disk dryer (SDK-D) manufactured by Tamayo Kikai ■ or a vacuum stirring dryer (VD).
), Nara Machine's paddle dryer and multi-fin processor, Hosokawa Micron's torus disk (T
D), solid air (SD), etc., and fluidized bed dryers that use nitrogen as a carrier gas, specifically, fluidized bed dryers manufactured by Nara Kikai ■, indirect heating dryers manufactured by Kurimoto Iron Works ■ In addition, rotary kiln type, Nauta mixer type,
Various types of dryers, such as tumbler types, can be used.

この乾燥処理(予備乾燥)の際の温度は、処理する重合
体のガラス転移温度以上、融点以下の範囲に設定する。
The temperature during this drying treatment (pre-drying) is set within a range of not less than the glass transition temperature and not more than the melting point of the polymer to be treated.

この際の温度がガラス転移温度未満では乾燥効率が悪化
し、融点を超える温度にすると重合体が溶融してしまい
乾燥機の運転が不能となってしまう、また処理時の圧力
は、特に限定されず、通常の乾燥処理と同様に減圧ない
し常圧とすればよい、さらに乾燥効率を考慮すると処理
する重合体粉末としては、平均粒径が1nw+以下のも
のを用いることが好ましい。
If the temperature is below the glass transition temperature, the drying efficiency will deteriorate, and if the temperature exceeds the melting point, the polymer will melt and the dryer will be unable to operate, and the pressure during the process must be particularly limited. First, the pressure may be reduced or normal as in normal drying treatment. Furthermore, in consideration of drying efficiency, it is preferable to use a polymer powder having an average particle size of 1 nw+ or less in consideration of drying efficiency.

次に押出機による脱揮処理は、上記予備乾燥後に重合体
中に残留するモノマー分、溶剤分等の揮発分を除去する
ものである。通常は重合体中に10〜30%程度含有さ
れている溶剤骨等の揮発分を11000pp以下に低減
させる。押出機としては、−軸タイプあるいは二輪タイ
プの押出機を使用することができ、ベントを有している
ものを用いることが好ましい、脱揮処理時の温度は、対
象とするスチレン系重合体の融点〜400℃の範囲とす
る必要がある。温度が400″Cを超えるとスチレン系
重合体が分解するおそれがある。好ましい温度範囲は、
融点〜370℃の範囲である。
Next, the devolatilization treatment using an extruder is to remove volatile components such as monomer components and solvent components remaining in the polymer after the above-mentioned preliminary drying. Volatile components such as solvent bones, which are normally contained in a polymer at about 10 to 30%, are reduced to 11,000 pp or less. As the extruder, a -shaft type or two-wheel type extruder can be used, and it is preferable to use one with a vent. The melting point must be in the range of 400°C. If the temperature exceeds 400″C, there is a risk that the styrenic polymer will decompose.The preferred temperature range is as follows:
The melting point ranges from 370°C.

また脱揮時の圧力は、200mHg以下の減圧下、好ま
しくは10mm11g以下、さらに好ましくは2mm1
1g以下とする。圧力が高いと充分な脱揮を行うのが困
難になる。また脱揮の効率をより高めるために、窒素、
アルゴン、ヘリウム、二酸化炭素などの不活性ガスある
いは水や液化炭酸ガスなどの不活性液体等を注入するこ
とができる。不活性ガスの注入量は、その種類や処理速
度などにより異なるが、通常は重合体1kg当たりll
11乃至101の範囲が適当である。また不活性液体の
注入量も、その種類や処理速度などにより異なるが、通
常は重合体1 kg当たりLg乃至1kgの範囲が適当
である。
The pressure during devolatilization is under reduced pressure of 200 mHg or less, preferably 10 mm 11 g or less, more preferably 2 mm 1 g or less.
It should be 1g or less. If the pressure is high, it becomes difficult to perform sufficient devolatilization. In addition, in order to further increase the efficiency of devolatilization, nitrogen,
An inert gas such as argon, helium, carbon dioxide, or an inert liquid such as water or liquefied carbon dioxide can be injected. The amount of inert gas injected varies depending on the type and processing speed, but it is usually 1 liter per 1 kg of polymer.
A range of 11 to 101 is suitable. The amount of inert liquid to be injected also varies depending on its type, processing speed, etc., but is usually in the range of Lg to 1 kg per 1 kg of polymer.

(実施例〕 次に、本発明を実施例および比較例によりさらに詳しく
説明する。
(Examples) Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1 粘度平均分子量50万、平均粒径300um。Example 1 Viscosity average molecular weight 500,000, average particle size 300um.

残留モノマーとしてスチレンを湿潤基1で50重量%含
む主としてシンジオタクチック構造を有するスチレン系
重合体(以下sPsという)パウダー85kgを、20
o1の有効容積を有するホソヵワミクロン■製トーラス
ディスク型乾燥機(TD−26−5型)を用いて、ジャ
ケット温度150℃2圧力10m*Hgの条件で7時間
乾燥を行った。
85 kg of a styrenic polymer (hereinafter referred to as sPs) powder mainly having a syndiotactic structure containing 50% by weight of styrene as a residual monomer with a wet group of 1 was
Drying was carried out for 7 hours at a jacket temperature of 150 DEG C. and a pressure of 10 m*Hg using a Hosokawa Micron ■ torus disc dryer (model TD-26-5) having an effective volume of 0.1 o.

乾燥処理後のパウダーをサンプリングし、ガスクロマト
グラフィーにて残留揮発分濃度を測定したところ、2%
のスチレンを含んでいた。
When we sampled the powder after drying and measured the residual volatile content concentration using gas chromatography, it was found to be 2%.
Contains styrene.

その後、得られた乾燥パウダーを20 kg/hrの流
量で、東芝機械■製TEM−35B−12/3 V(D
−31m、 ベント有)を用い、温度280″C。
Thereafter, the obtained dry powder was transferred to a Toshiba Machine TEM-35B-12/3 V (D
-31 m, with vent), temperature 280″C.

ベント圧力10mmFIgの減圧下の条件で押出し脱揮
を行った。得られたペレット状のサンプル中の残留揮発
分量は800ppmであった。乾燥、押出し操作に要し
た時間の合計は、10時間であった。
Extrusion and devolatilization were performed under reduced pressure conditions with a vent pressure of 10 mm FIG. The amount of residual volatile matter in the obtained pelleted sample was 800 ppm. The total time required for the drying and extrusion operations was 10 hours.

比較例1 実施例1において、押出機を使用せず、乾燥機のみで脱
揮を行ったところ、800 ppm+の溶剤濃度に到達
するためには、23時間を要した。
Comparative Example 1 In Example 1, when devolatilization was performed using only a dryer without using an extruder, it took 23 hours to reach a solvent concentration of 800 ppm+.

比較例2 実施例1において、乾燥機で乾燥させることなく、サン
プルを最初から押出機に掛けたところ、吐出不良になり
、運転不可能となった。
Comparative Example 2 In Example 1, when the sample was placed in the extruder from the beginning without being dried in a dryer, a discharge failure occurred and operation became impossible.

実施例2 奈良機械製作所■製の回分式気流乾燥機B−FBG型(
内容積200ffi)を用いて、実施例1と同じsps
パウダ、−85kgを100 kg/hrの流量の加熱
窒素(120″C)により、ジャケット温度150℃の
下で6時間乾燥させた。
Example 2 Batch type flash dryer B-FBG type manufactured by Nara Kikai Seisakusho ■
The same sps as in Example 1, using an internal volume of 200ffi)
Powder, -85 kg, was dried with heated nitrogen (120''C) at a flow rate of 100 kg/hr for 6 hours at a jacket temperature of 150<0>C.

乾燥処理後のパウダーをサンプリングし、ガスクロマト
グラフィーにて残留揮発分濃度を測定したところ、3%
のスチレンを含んでいた。
When we sampled the powder after drying and measured the residual volatile content concentration using gas chromatography, it was found to be 3%.
Contains styrene.

その後、得られた乾燥パウダーを20 kg/hrの流
量で、実施例1と同じ押出機を使用して、温度280℃
、ベント圧力2mm1gの減圧下の条件で押出し脱揮を
行った。得られたペレット状のサンプル中の残留揮発分
は500pp+mであった。乾燥。
Thereafter, the obtained dry powder was heated at a flow rate of 20 kg/hr using the same extruder as in Example 1 at a temperature of 280°C.
Extrusion and devolatilization were carried out under reduced pressure conditions with a vent pressure of 2 mm and 1 g. The residual volatile content in the resulting pelleted sample was 500 pp+m. Dry.

押出し操作に要した時間の合計は、9時間であった。The total time required for the extrusion operation was 9 hours.

〔発明の効果〕〔Effect of the invention〕

蒸上の如く、本発明の方法によれば、重合後の重合体中
に残留するモノマー等の揮発分を効率よく短時間で除去
することができ、得られる重合体やその成形品の品質の
向上、製造時の運転の安定化などを図ることができる。
Like steaming, the method of the present invention allows volatile components such as monomers remaining in the polymer after polymerization to be efficiently removed in a short time, thereby improving the quality of the resulting polymer and its molded products. It is possible to improve the quality of the product and stabilize the operation during manufacturing.

したがって、本発明の方法は主としてシンジオタクチッ
ク構造を有するスチレン系重合体の実用的な精製方法と
して、幅広くかつ有効な利用が期待される。
Therefore, the method of the present invention is expected to find wide and effective use mainly as a practical method for purifying styrenic polymers having a syndiotactic structure.

1616

Claims (1)

【特許請求の範囲】[Claims] (1)主としてシンジオタクチック構造を有するスチレ
ン系重合体粉末から残留揮発分を除去するにあたり、該
重合体を、そのガラス転移温度〜融点の範囲の温度で予
備乾燥し、次いで融点〜400℃の範囲の温度および2
00mmHg以下の圧力下で脱揮しながら押出機内を通
過させることを特徴とするスチレン系重合体の残留揮発
分の除去方法。
(1) To remove residual volatile components from a styrenic polymer powder that mainly has a syndiotactic structure, the polymer is pre-dried at a temperature ranging from its glass transition temperature to its melting point, and then at a temperature ranging from its melting point to 400°C. range temperature and 2
A method for removing residual volatile matter from a styrenic polymer, which comprises passing the styrenic polymer through an extruder while devolatilizing it under a pressure of 0.000 mmHg or less.
JP19933189A 1989-08-02 1989-08-02 Method for removing residual volatile matter from styrenic polymer Expired - Fee Related JP2723142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19933189A JP2723142B2 (en) 1989-08-02 1989-08-02 Method for removing residual volatile matter from styrenic polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19933189A JP2723142B2 (en) 1989-08-02 1989-08-02 Method for removing residual volatile matter from styrenic polymer

Publications (2)

Publication Number Publication Date
JPH0364303A true JPH0364303A (en) 1991-03-19
JP2723142B2 JP2723142B2 (en) 1998-03-09

Family

ID=16406020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19933189A Expired - Fee Related JP2723142B2 (en) 1989-08-02 1989-08-02 Method for removing residual volatile matter from styrenic polymer

Country Status (1)

Country Link
JP (1) JP2723142B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037352A1 (en) * 1995-05-26 1996-11-28 Idemitsu Petrochemical Co., Ltd Process for producing styrenic resin
WO1996037353A1 (en) * 1995-05-26 1996-11-28 Idemitsu Petrochemical Co., Ltd. Process for producing styrenic resin
WO1998047930A1 (en) * 1997-04-18 1998-10-29 The Dow Chemical Company Finishing process for syndiotactic vinyl aromatic polymers
US6031070A (en) * 1997-05-23 2000-02-29 The Dow Chemical Company Solid state devolatilization of syndiotactic vinyl aromatic polymers with catalyst deactivation
EP0988957A1 (en) * 1994-11-29 2000-03-29 Idemitsu Petrochemical Co., Ltd. Process for preparing a styrenic resin

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0988957A1 (en) * 1994-11-29 2000-03-29 Idemitsu Petrochemical Co., Ltd. Process for preparing a styrenic resin
JP2009068022A (en) * 1994-11-29 2009-04-02 Idemitsu Kosan Co Ltd Styrene-based polymer and its molded article
WO1996037352A1 (en) * 1995-05-26 1996-11-28 Idemitsu Petrochemical Co., Ltd Process for producing styrenic resin
WO1996037353A1 (en) * 1995-05-26 1996-11-28 Idemitsu Petrochemical Co., Ltd. Process for producing styrenic resin
EP0778113A1 (en) * 1995-05-26 1997-06-11 Idemitsu Petrochemical Co., Ltd. Process for producing styrenic resin
EP0778113A4 (en) * 1995-05-26 1997-11-26 Idemitsu Petrochemical Co Process for producing styrenic resin
WO1998047930A1 (en) * 1997-04-18 1998-10-29 The Dow Chemical Company Finishing process for syndiotactic vinyl aromatic polymers
US5877271A (en) * 1997-04-18 1999-03-02 The Dow Chemical Company Finishing process for syndiotactic vinyl aromatic polymers
US6031070A (en) * 1997-05-23 2000-02-29 The Dow Chemical Company Solid state devolatilization of syndiotactic vinyl aromatic polymers with catalyst deactivation

Also Published As

Publication number Publication date
JP2723142B2 (en) 1998-03-09

Similar Documents

Publication Publication Date Title
JPS5825366B2 (en) Continuous production method and apparatus for acrylonitrile-butadiene-styrene copolymer
TW397841B (en) Styrenic polymer and molded article
US5254647A (en) Process for producing styrene-based polymers
US5756658A (en) Process for preparing styrenic resin
JPH0364303A (en) Method for removing residual volatile matter from styrenic polymer
AU731501B2 (en) Solid state devolatilization of syndiotactic vinyl aromatic polymers with catalyst deactivation
Zhou et al. Postcrosslinking of macroporous styrene–divinylbenzene copolymers via pendant vinyl groups: Effect of the starting copolymers on the pore structure of the postcrosslinked products
AU622784B2 (en) Process for producing a styrene-based polymer
EP1016677B1 (en) Process for preparing styrenic resin
JPH0356504A (en) Method for removing residual volatile content of styrenic polymer
KR100562699B1 (en) Finishing process for syndiotactic vinyl aromatic polymers
JPH07112699B2 (en) Method for manufacturing resin molded products
JPH10195129A (en) Method for drying styrenic polymer
TWI261538B (en) Method of producing styrenic resin granulate and shaped articles
WO2004069882A1 (en) Multiple stage solid state devolatilization of syndiotactic vinyl aromatic polymers
JPH06192351A (en) Continuous preparation of impact-resistant molding material by anionic polymerization of styrene or another vinylaromatic compound
JPH10195130A (en) Method for drying styrenic polymer
JP2004075733A (en) Method for producing polymer structure having controlled cavity structure
JPH10195206A (en) Production of styrene rein pellet
JPS6399202A (en) Production of styrenic polymer
JP2007023116A (en) Method of preventing blocking of styrenic elastomer resin pellet
JPH03126521A (en) Manufacture of container
US20040171792A1 (en) Method of producing articles from syndiotactic vinyl aromatic polymers
JPH0649323B2 (en) Extrusion molding method for thermoplastic resin
JPH10237109A (en) Production of styrenic polymer

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees